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Electromagnetic Scattering from Vibrating Penetrable
Objects Using a General Class of Time-Varying Sheet

Boundary Conditions
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Abstract—Calculation of electromagnetic (EM) scattering
from vibrating penetrable cylinders of arbitrary cross-section is
presented using a general class of time-varying sheet boundary
conditions (SBCs) in conjunction with the method of moments
(MoM). Sheet impedance and admittance expressions are first
derived from the exact scattering solution for a penetrable circular
cylinder with perturbed radius. Then, using the SBCs, integral
equations are derived and solved numerically so that vibrating
cylinders with arbitrary cross-section can be treated. Cylinder
vibrations are assumed to be non-relativistic, allowing a simplified
calculation of the scattered Doppler spectrum. A critical factor
in the calculation of the potentially small Doppler components is
that the time-varying nature of the cylinder boundary, contained
within the sheet impedance and admittance expressions, can
be isolated from the unperturbed terms in the scattered field.
Comparison with exact and analytical perturbation solutions are
presented to demonstrate the accuracy of the numerical solution.

Index Terms—Doppler spectrum, electromagnetic scattering,
impedance boundary conditions, method of moments (MoM),
RCS, sheet boundary conditions.

I. INTRODUCTION

I N a previous paper by the authors [1], a numerical approach
is introduced to calculate the electromagnetic (EM) scat-

tering from vibrating perfect electric conducting (PEC) objects
using time-varying impedance boundary conditions (IBCs).
Movement of the PEC boundary is accounted for by applying a
time-varying surface impedance at the unperturbed (stationary)
boundary. Unfortunately, the numerical approach in [1] is lim-
ited to vibrating PEC bodies. In this paper, we generalize this
technique so that vibrating, penetrable objects can be treated.

An electromagnetic (EM) wave scattered from a vibrating
target will contain a spectrum of frequencies, referred to as the
Doppler spectrum, due to the time-varying nature of the ob-
ject’s boundary. The Doppler spectrum is sometimes called the
micro-Doppler in order to differentiate it from the bulk Doppler
shift associated with a target moving at constant velocity. There
are a number of applications in which the scattered EM Doppler
spectrum is of interest. Several recent studies have found that the
Doppler spectrum is useful for target detection and recognition
[2]–[5]. It has also been applied to modal analysis of vibrating
structures [6]. Some early studies involving the calculation of
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Fig. 1. Modeling of vibrating penetrable object with a stationary object having
time-varying sheet impedance, Z (t), and admittance, Y (t). (i = 1,2).

EM scattering from oscillating and rotating objects are found in
[7]–[11]. None of these studies, however, consider arbitrary vi-
brations of the surface. More recently, an analytical study of EM
scattering from metallic and dielectric circular cylinders with ar-
bitrary vibration has been presented using a perturbation tech-
nique [12], [13], but the technique cannot be applied to objects
of arbitrary cross-section. What is needed now is an efficient nu-
merical method to calculate the EM scattering from a vibrating,
penetrable object having arbitrary cross-section and arbitrary vi-
bration.

As mentioned in [1], a rigorous calculation of the scattering
from vibrating objects must include all of the relativistic effects
generated by the moving surfaces. For many practical applica-
tions, relativistic effects can be ignored and a simplified method
for calculating the scattered Doppler spectrum is possible. In
the simplified approach, commonly referred to as the quasi-sta-
tionary (QS) approximation [14], the scattered field is calcu-
lated as if the object were stationary at any time . The scat-
tered field then varies as is changed. The QS approximation is
valid provided that the object is not moving at relativistic speeds
and the vibration frequency is much smaller than the EM fre-
quency. A “brute force” application of the QS approximation
requires re-discretization of the object and computation of the
scattered field for each time instant. In this paper, however, we
present a more efficient application of the QS approximation
where the object is only discretized once, and a general class
of time-varying boundary conditions is derived and applied at
the unperturbed boundary to account for the object vibration,
see Fig. 1. It will be shown that the time-varying nature of the
boundary is contained within the sheet impedance/admittance
expressions and can be isolated from the unperturbed compo-
nent of the scattered field, resulting in an accurate calculation
of the Doppler spectrum no matter how small the vibration.
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The literature associated with traditional IBCs is quite large,
and a good overview of the subject can be found in [15],
[16]. The simplest form is the first-order (standard) impedance
boundary condition (SIBC) usually attributed to Leontovich
[17]. Generalized IBCs (GIBCs) which incorporate higher
derivatives of the surface fields are also possible and usually
provide greater accuracy [18]. In this paper, we generalize the
IBC expressions to include fields both interior and exterior to a
penetrable scatterer. The new boundary conditions are shown
to be closely related to those defining a resistive or conducting
sheet [15], [19]. Our aim here is not to completely replace
the scatterer with an IBC or sheet condition, but instead we
retain the original object and require the boundary condition to
accurately model the vibration of the object when applied at the
object’s stationary, unperturbed boundary. The remainder of
this paper is organized as follows: A general class of boundary
conditions is introduced in Section II, and the relevant sheet
impedance/admittance expressions are derived from the scat-
tering solution for a two-dimensional (2-D) dielectric circular
cylinder with perturbed radius. Integral equations using the
boundary conditions are presented in Section III and solved
using the method of moments (MoM) [20]. Finally, results
from the numerical solution and comparisons with existing
analytical solutions are presented in Section IV.

II. SHEET BOUNDARY CONDITIONS

Normally, IBCs are used to simplify a scattering problem by
replacing a complex scatterer, such as a penetrable object or
coated metallic object, with a surface impedance applied at the
exterior boundary. The usual form of the SIBC is given by

(1)

where represents the surface impedance relating the tangen-
tial electric and magnetic fields at the boundary. In the present
case, however, completely replacing a penetrable object with
a surface impedance is not appropriate. Instead we propose to
keep the original object, allowing fields internal to the scatterer,
and require that the boundary condition applied at the unper-
turbed boundary account for the perturbation of the object. Con-
sequently, a more general form of the IBC in (1) is needed that
includes fields both internal and external to the scatterer. An ap-
propriate set of boundary conditions can be obtained by intro-
ducing a general impedance/admittance sheet at the unperturbed
boundary. For the scenario shown in Fig. 1, the following set of
sheet boundary conditions (SBCs) is postulated:

(2)

(3)

where and represent the sheet impedance and admittance,
respectively, in the th region ( ,2). The SBCs of (2) and (3)
are closely related to the conditions defining resistive and con-
ducting sheets [19], but they represent a more general form of
the sheet conditions. An illustration of the relationship between
the SBCs and the traditional sheet conditions is given in Ap-
pendix A. It is interesting to note that (2) and (3) reduce to the
standard IBC of (1) if the fields are set to zero in either region.
Furthermore, if and in both regions, (2) and (3)
reduce to the usual boundary conditions at a source-free inter-
face. More general expressions can be obtained by using higher
derivatives of the tangential fields on the boundary and will be
introduced later in this section.

In what follows, the exact solution for a circular cylinder
will be used to derive the sheet impedance/admittance values
for a perturbed, penetrable cylinder for both transverse mag-
netic (TM) and transverse electric (TE) polarizations. The goal
is to accurately reproduce the fields scattered from a perturbed
cylinder using the SBCs of (2) and (3) applied at the unperturbed
boundary. Although derived for a circular cylinder, the SBCs
can ultimately be applied to cylinders of arbitrary cross-section
and perturbation, following the same approach taken by tradi-
tional IBCs.

A. TM Case

Consider a time-harmonic, TM-polarized plane wave inci-
dent upon a penetrable circular cylinder with unperturbed radius

(4)

The eigenfunction solution for the scattered fields in Region 1
takes the form [21]

(5)

where the mode coefficients, , are given by

(6)

In these expressions, and are the propagation constants
and and are the intrinsic impedances of the background
and cylinder, respectively. If the radius of the cylinder is per-
turbed by a small number , the perturbed mode coefficients
can be obtained by replacing with in (6) followed by
a first order Taylor series expansion of each term about .
The perturbed mode coefficients then become (7), shown at the
bottom of the page. The approximation in (7) is valid provided
that , .

(7)
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Now if we apply the proposed SBCs in (2) and (3) to
the eigenfunction scattering solution for a penetrable circular
cylinder of radius , the mode coefficients become (8), shown at
the bottom of the page. By equating (8) to the mode coefficients
for the perturbed cylinder in (7) and keeping only first order
terms in , we can solve for sheet impedance and admittance
values that will yield an equivalent solution. Following some
lengthy algebraic manipulation, and using the relationship from
Bessel’s equation, it can be shown that an equivalent solution
(to first order in ) is obtained when

(9)

(10)

(11)

(12)

Note that the sheet admittance expressions in (11) and (12) de-
pend on the mode number and, as such, cannot be applied
to a cylinder with non-circular cross-section. This mode depen-
dence suggests that a higher order boundary condition should be
used in place of (3). If we revise the general, second order GIBC
found in [1], [15] to account for fields interior to the scatterer,
we can replace the SBC of (3) with

(13)

where denotes differentiation tangent to the surface. The
increased accuracy of this boundary condition comes from the
inclusion of higher order derivatives of the fields. When applied
to a circular cylinder with sheet admittance independent of ,
(13) becomes

(14)
When the boundary condition in (14) is compared with (3) to-
gether with (11) and (12), and recalling that has a -depen-
dence of , it becomes evident that an equivalent solution (to
first order in ) for the perturbed mode coefficients is achieved
if

(15)

(16)

This completes the derivation of the sheet impedance/admit-
tance values for TM polarization. Although derived for a cir-
cular cylinder with perturbed radius, the boundary conditions
can be extended for arbitrary perturbation of a cylinder by al-
lowing to be a function of position on the boundary. Fur-
thermore, a cylinder of arbitrary cross-section can be treated
by using the boundary conditions with a numerical technique
such as MoM. Details of the numerical approach are presented
in Section III.

B. TE Case

Before applying the numerical technique, it should be noted
that the sheet impedance/admittance values for TE incidence
can be easily derived using the duality of the field equations.
Note that the boundary conditions in (2) and (3) are duals of
each other with an interchange of and and applied to
the surface of a perturbed boundary to yield the dual boundary
conditions.

III. INTEGRAL EQUATION FORMULATION

In this section, we develop integral equations incorporating
the SBCs of the previous section that allows us to solve for
the scattering from a perturbed, penetrable cylinder of arbitrary
cross-section for the TM and TE cases.

A. TM Case

Consider a TM-polarized plane wave incident at

(17)

In order to derive the relevant integral equations, the perturbed
cylinder is replaced with a closed surface coincident with
the unperturbed cylinder boundary. Invoking the equivalence
principle, two sets of electric ( and ) and magnetic (
and ) equivalent currents are introduced on the unperturbed
boundary, see Fig. 2. Each set radiates in an infinite homoge-
nous medium with constitutive parameters corresponding to
the associated region. The equivalent currents are related to the
tangential fields on the boundary by

(18)

(19)

Two integral equations are obtained by enforcing the -field
conditions in (19)

(20)

(21)

(8)
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Fig. 2. Geometry of scattering problem for cylinder of arbitrary cross-section.

where the scattered fields are given by

(22)

with ,2. The operator denotes differentiation along
the direction normal to , and the differential element rep-
resents arc length along the integration contour. Coupling of the
two integral equations is achieved through the SBCs of Sec-
tion II. For the TM case, we can rewrite the boundary conditions
of (2) and (13) using equivalent currents

(23)

(24)

By solving the system of equations, the equivalent currents in
Region 2 can be written in terms of the currents in Region 1.
Keeping only first order terms in

(25)

(26)

Now substituting (25) and (26) into (21) yields two integral
equations, (20) and (21), for the two unknown current compo-
nents and .

The coupled integral equations are solved using the tradi-
tional pulse-basis and point-matching MoM technique. The con-
tour is discretized into linear segments, and on each seg-
ment the current distributions of and are assumed con-
stant. Enforcing the integral equations (20) and (21) at the mid-
point of each segment results in the matrix equation

(27)

where and are vectors denoting the electric and
magnetic currents, respectively, on the th segment. is the

excitation vector whose elements are

(28)

where denotes the midpoint of the th segment. Finally,
each component of the impedance matrix is an matrix
whose elements are given by

(29)

(30)

(31)

(32)

(33)

(34)

where are elements of the identity matrix. Note that compo-
nents of the impedance matrix containing the sheet impedance/
admittance expressions are preceded by to denote that they are
small quantities. Once the currents are found by solving (27), the
scattered field can easily be found by evaluating (22).

B. TE Case

The numerical formulation for the TE case can be easily
found by utilizing the duality relationship of the field equations.

IV. NUMERICAL RESULTS

In order to illustrate the validity of the numerical solution pre-
sented here, several canonical cases are considered. The exact
solution for a circular cylinder with a perturbed radius provides
a benchmark for comparison. Note, however, that the numer-
ical solution allows the application to other, non-canonical cases
with arbitrary perturbation. The time-varying boundary condi-
tions for a vibrating cylinder are also introduced in this section,
and results are compared with known analytical solutions pub-
lished in [13].
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Fig. 3. SBC approximation of TM scattering from circular dielectric cylinder
with a perturbed radius. (� = 2:2� , a = 0:75� , � = 0:02� ).

Fig. 4. SBC approximation of TE scattering from circular dielectric cylinder
with a perturbed radius. (� = 2:2� , a = 0:75� , � = 0:02� ).

A. Perturbed Cylinder

For a dielectric circular cylinder, an exact scattering solution
is known for both an unperturbed cylinder with radius and a
perturbed cylinder with radius . The sheet boundary condi-
tions are applied at the unperturbed boundary but should accu-
rately predict the scattering from the perturbed cylinder. As an
example, consider a plane wave incident at upon a di-
electric cylinder with dielectric constant and radius

perturbed by . The background medium
(Region 1) is assumed to be free space. Figs. 3 and 4 show the
bistatic RCS for the TM and TE cases, respectively. The 2-D
RCS is calculated

(35)

for the TM case, and is calculated in similar fashion using
. In Figs. 3 and 4, the SBC approximation is in excellent

agreement with the exact solution for a dielectric cylinder with

Fig. 5. SBC approximation of TM scattering from circular dielectric cylinder
with a perturbed radius. (� = 10:0� , a = 0:75� , � = 0:02� ).

Fig. 6. SBC approximation of TE scattering from circular dielectric cylinder
with a perturbed radius. (� = 10:0� , a = 0:75� , � = 0:02� ).

perturbed radius. If the dielectric constant of the cylinder is in-
creased, the SBC approximation remains accurate. Consider a
cylinder with dielectric constant with the same
dimension and perturbation as before. Figs. 5 and 6, illustrate
the ability of the SBCs to accurately predict the change in RCS
caused by the perturbation. Notice that at some scattering an-
gles the change is greater than 10 dB. Similar results are ob-
tained for other dielectric cylinders having different dielectric
constant values and different radii.

B. Doppler Spectrum of Vibrating Cylinder

To model the scattering from a vibrating cylinder, the SBCs
considered here must become time-varying. Furthermore, to
accurately calculate the Doppler spectrum from the vibrating
cylinder it is necessary for the time-varying components of the
scattered field to be separated from the constant terms. With
this in mind, we revisit the matrix equation of (27) used to solve
for the electric and magnetic surface currents. The inverse of
the impedance matrix is used to solve the system and needs to
be written in such a way that the perturbed and unperturbed
terms are isolated from each other. This is accomplished by
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first separating the terms containing the perturbation parameter
and then applying the well known matrix identity given by

(42) in Appendix B. Keeping only first order terms in , we can
write

(36)
where

The first term in (36), , is the impedance matrix inverse for
the unperturbed problem, and all of the perturbed components
are isolated in the second term on the right. Note that only the
unperturbed impedance matrix needs to be inverted and that no
further matrix inversion is required. When the cylinder is vi-
brating, the time-varying nature of the boundary conditions is
contained within the expression for the perturbation of the sur-
face, and as a result, the time-dependence is confined to the per-
turbed terms in (36). Isolating the time-varying terms is signif-
icant because the inverse of the unperturbed impedance matrix
need only be computed once. It can then be used to calculate the
perturbed, time-varying portion of the scattered field.

To illustrate the scattering from a vibrating object, consider a
dielectric cylinder excited at a mechanical resonance. The exci-
tation can be achieved through acoustic or mechanical means.
Acoustic excitation of solid elastic cylinders has been treated in
[22], and the cylinder displacement derived therein will be used
here. The radial displacement at the surface of the cylinder takes
the form

(37)

where and are the magnitude and phase, respectively, as-
sociated with the th mode of vibration, and is the vibration
frequency. The mode is the fundamental mode of vi-
bration for a solid cylinder occurring at the lowest resonant fre-
quency. Assuming that this mode is excited, the time-varying
perturbation of the surface becomes

(38)

Substituting (38) into the sheet impedance/admittance expres-
sions in Section II we can use the numerical procedure of Sec-
tion III to solve for the scattered fields. Taking the Fourier trans-
form of the time-varying scattered field provides the scattered
Doppler spectrum. An example Doppler spectrum for an object
vibrating at frequency is given in Fig. 7. The unshifted com-
ponent of the scattered spectrum, corresponding to the scattered
field from the target when stationary, can be obtained from the
unperturbed terms in the numerical solution. The 1st harmonic
of the Doppler spectrum is shifted in frequency by an amount
equal to the vibration frequency and can be calculated from the
perturbed (time-varying) terms in the numerical solution.

Fig. 7. Example Doppler spectrum scattered from an object vibrating at a fre-
quency f illuminated by an incident EM frequency f .

Fig. 8. Comparison of the MoM (SBC) and the analytical perturbation solu-
tion for TM Doppler scattering from a vibrating circular dielectric cylinder. The
n = 2 mechanical mode of the cylinder is excited. (a = 1:0� , � = 2:0� ,
Max displacement = 0:001� ).

Since the time-varying nature of the object is manifest in
the Doppler components of the scattered spectrum, we are in-
terested in the scattering behavior of the 1st harmonic of the
Doppler spectrum. For TM incidence upon a dielectric cylinder,

, with radius , the bistatic scattering of the
1st harmonic is calculated using the MoM and shown in Fig. 8.
The mechanical mode of the cylinder is excited. The
MoM is shown to have excellent agreement with the analytical
perturbation solution from [13]. For TE incidence, the bistatic
scattering of the 1st harmonic can be seen in Fig. 9 where again
the mode is excited. Again, excellent agreement is ob-
tained for all scattering angles.

V. CONCLUSION

In this paper, a general class of boundary conditions has been
introduced to model EM scattering from vibrating penetrable
objects. A MoM implementation of the SBCs is presented and
shown to provide an accurate solution for both TM and TE
polarizations. Separation of the perturbed, time-varying terms
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Fig. 9. Comparison of the MoM (SBC) and the analytical perturbation solu-
tion for TE Doppler scattering from a vibrating circular cylinder. The n =

2 mechanical mode of the cylinder is excited. (a = 1:0� , � = 2:0� ,
Max displacement = 0:001� ).

in the numerical solution is critical in calculating the small
Doppler components of the scattered spectrum. Although a
circular cylinder is used for comparison with known analytical
results, the MoM with the SBCs derived in this paper can be
applied to cylinders of arbitrary cross-section with arbitrary
perturbations. The SBCs presented here can also be extended
to model 3-D vibrating objects and is reserved for future work.

APPENDIX A
RESISTIVE/CONDUCTING SHEET CONDITIONS

The purpose of this section is to illustrate the relationship be-
tween the SBCs presented in this paper and resistive/conducting
sheets found previously in the literature. Thin layers of mate-
rial are often simulated using resistive and/or conducting sheets
[15], [19]. In general, combined resistive and conducting sheets
are used when both the permittivity and permeability of the thin
layer are different from the surrounding medium. The boundary
conditions proposed in [19] for a combined sheet are

(39)

(40)

where and are the intrinsic impedance and admittance,
respectively, of the background medium, and the superscripts

denote the field evaluated just above/below the boundary,
respectively. The sheet resistivity and conductivity terms are

(41)

where is the sheet thickness, is the propagation constant
of the background medium, and and are the relative per-
mittivity and permeability, respectively, of the sheet. Note that
the conditions in (39) and (40) can be obtained from the more
general conditions of (2) and (3) from Section II if the sheet
impedance and admittance expressions are related by

and . The limitation of (39) and (40), however, is that
the medium above and below the sheet must be the same. If the
sheet is placed on an interface between two different media, the
boundary conditions can be derived from the more general con-
ditions in (2) and (3).

APPENDIX B
MATRIX IDENTITY

For square matrices and such that , , and
are nonsingular, the following identity holds [23]:

(42)

where is the identity matrix.
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