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Effect of Curvature on the Backscattering from a Leaf
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Abstract— Using a model previously developed for the backscattering cross section of a
planar leaf at X -band frequencies and above, the effect of leaf curvature is examined. For
normal incidence on a rectangular section of a leaf curved in one and two dimensions, an
integral expression for the backscattered field is evaluated numerically and by a station-
ary phase approximation, leading to a simple analytical expression for the cross section
reduction produced by the curvature. Numerical results based on the two methods are
virtually identical, and in excellent agreement with measured data for rectangular sec-
tions of coleus leaves applied to the surfaces of styrofoam cylinders and spheres of different
radii,

1. INTRODUCTION

Leaves are an obvious part of any vegetation canopy. They can vary in size, shape,
orientation, moisture content, etc., and if we are to model the backscattering from
a canopy, it is necessary to compute the backscattering from a single leaf [1,2]. In
a recent study [3] it was shown that for a typical planar leaf at X -band frequen-
cies and above, a resistive sheet model in conjunction with the physical optics
approximation accurately predicts the backscattering cross section at almost all
angles of incidence. The (complex) resistivity of the sheet is a function of the
gravimetric moisture content Mg of the leaf, and for all moisture contents, the
accuracy of the resulting prediction is adequate for most practical purposes.

In their natural state leaves are not generally planar, and any curvature may
reduce their backscattering cross sections. To explore this effect, measurements
have been carried out using a rectangular portion of a coleus leaf attached to
the surfaces of styrofoam cylinders and spheres of different radii. For a wide
range of curvatures, the reduction in the backscattering cross section at X -band
is accurately predicted by the physical optics approximation, and the results of
& numerical evaluation of the physical optics integral are almost identical to a
Fresnel integral expression derived from a stationary phase evaluation.

2. LEAF MODEL

A leaf can be regarded as a thin, non-magnetic lossy dielectric layer, and an
effective model for such a layer is an infinitesimally thin resistive sheet. The
sheet is simply an electric current sheet characterized by a (complex) resistivity
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R where .
VA

B= e ®

Here, k and Z are the propagation constant and intrinsic impedance respectively
of free space, 7 is the layer thickness, ¢ is the complex dielectric constant of the
material, and a time factor e~%*! has been assumed and suppressed.

‘The dielectric constant ¢ = &' + 4" of a leaf is primarily determined by its
gravimetric moisture content Mg, and can be found using a Debye-Cole dual-
dispersion dielectric model [4]. The model predicts &' and ¢” in terms of the
frequency, temperature and Mg, and approximate empirical expressions valid at
X -band and room temperatures are available [3]. The accuracy is within +20%.
The thickness 7 of a leaf also depends on its moisture content and decreases with
decreasing Mg. In reality, however, the thickness generally decreases from base
to tip and may vary by as much as 50 percent over the surface. For a class of
coleus leaves, an approximate expression for the average thickness in terms of Mg
was given in [3], but for the coleus leaves used in the present study the thickness
was measured at several points using calipers, and the averages determined. It is
worth noting that the resulting resistivity of the leaf was in good agreement with
the value of R measured using a leaf section placed in a waveguide.

At X -band frequencies and up to where the leaf thickness is comparable to
A/20 the physical optics approximation applied to the resistive sheet model pro-
vides an accurate estimate of the backscattering cross section of a planar leaf for
all moisture contents and most angles of incidence [3]. For a sheet lying in the
plane § = 0 of a Cartesian coordinate system (§,7n,() and illuminated by a plane
electromagnetic wave having

E‘ = (E sinasin ¢ 4+ fjsinacos ¢ + C cos.a)e‘""k(f cos ¢—nsin ¢) @)
(see Fig. 1), the induced electric current is
J =2 {fsinaTg(g) +{ coscrcos g T p(9) } etnein? ®)

where Y is intrinsic admittance of free space and [3]

Ta(¢) = (1 + ?secqb)
2R —1

Ip(¢) = (1+ 5 cosg)

I'g and —I'g respectively are the plane wave reflection coefficients for H-

polarization (a = w/2) when the magnetic vector is perpendicular to the plane

of incidence and for E-polarization (a = 0) when the electric vector is similarly

inclined. Since R = 0 corresponds to perfect conductivity, I'g and I'p show

how the current differs from the current Jp supported by a perfectly conducting

surface. Indeed,

1

T =Tpe - iTg(8) + Tpe - (Tp(4) (4)

,where 7 and ¢ are unit tangent vectors in and perpendicular to the plane of
incidence respectively.
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Figure 1. Geometry for the scattering of a plane wave from a resistive
sheet lying in the plane £ =0.

3. ONE DIMENSIONAL CURVATURE

In the Appendix, expressions are derived for the backscattering cross section of
a rectangular resistive plate of dimensions a,b as a function of the angle of in-
cidence, and we now examine the effect of giving the plate a constant radius of
curvature p in a principal plane. As a result of the bending, the plate conforms
to a portion of the surface of a right circular cylinder of radius p as shown in Fig.
2.
If the flat plate has length a in the z-direction and width b in the y-direction,
then b = 2p¢o. The illuminating field is a plane wave propagating in the negative

z-direction with .
E' = (ysina+ 2 cos a)e“ik(a*ﬂ) (5)

and in the backscattering direction the far field expression for the Hertz vector 7
is v
ikz ; 6+9o .

ey _ €4 Fr 41 ikp(1—cos ¢') 5 11

#(Z) = e bs, J(¢)e dé
where the phase origin has been chosen at the front of the cylinder. To ensure
that no portion of the outer surface of the plate is shadowed, it is necessary that
|8] < § — #o. The resistive sheet current J is given by (3) with the identification

. ¢$=4¢, H=—dsing'+jcosg’, (=3
Recognizing that the exponent in (5) is simply the incident field phase at the
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surface,
J(¢4") =2Y{ (—zsing' + §cos¢')sinaTg(4')
. +3cosacosd PE(é')}eikp(l_c“ ¢)
and hence & o1
T 5 o
7(z) = Efc;-g% N {(—:a sing’ + § cos ¢') sin a T g ()

+2cosecosd’ Ps(éf)}ezmp(l-cu ¢ ¢’

Figure 2. Geometry for the scattering of a plane wave from a resistive
sheet which conforms to a portion of the surface of right circular
cylinder of radius p.

The scattered electric field in terms of the Hertz vector ¥ is given by
E'=VxVx7w
and the far field approximation in the backscattering direction is

E'(%) = ik x iké x 7(T) = ‘: '3
where § is the far field amplitude. The resulting exp:;saion for T is
3= Ko f " (gsinaTa(#) + tcosalp(d)) cord! HibAi-ond)gg ()
in terms of W]Jg:: 1]:10 like- and cross-polarized backscattering cross sections are

2
o= A?|(gsina+2cosa)-3|2 (M

2
Ocross = %—'(f;cosa-— Zsina) -glz (8)
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Two methods were employed to evaluate the integral expression (6) for S.
In the first, the arc 6 — ¢, < ¢' < 0 + o was subdivided into 2M segments
and each replaced by a planar strip of width A = p@o/M centered at ¢' =

¢m» m=1,2,..., M, and tangential to the cylinder. From the formula (4.3) for
the ba.cksca.ttered far ﬁeld amplitude of an inclined plate, we then have
ik2ar 2 - sin U’
S= - Z {ymnal"g(quJ +zcosaPE(¢m)} cos gl e2ikA(l M#M)_—E_fr.

m=1
9)
with U’ = kA sin ¢}, . The summation was carried out numerically, and a compar-
ison with data obtained from a moment method solution of the integral equation
for a curved resistive strip is given in Section 5.

The second method is entirely analytical and is based on the stationary phase
(SP) approximation. The SP point of the integral in (6) is ¢' = 0 and on the
assumption that kp > 1, with 6 < ¢, so that the SP point lies within the range
of integration,

3= %‘3 kp{gsinarg(cn) + 3 cos arE'(o)}

{7 [VEelso +0)] +7 [VEn(go-0)] )

where o,

F(r) = _[) ¥ du (10)
is the finite range Fresnel integral. We remark that for |[r| < 1

F(r) =7+0(r%) (11)
whereas for |7| > 1

F(r) ~ %ﬁe‘*/“ (12)

Since I'g(0) = I'g(0) it now follows that

ik
S= ‘——g\/ kp(i sina + 2 cos )T i (0) { [\/ p(do + 5)] +F [\/ p(do — 0)]}
(13)
showing that to this approximation there is no depolanza.txon in the backscattering
- direction,

It is instructive to examine separately the special case of symmetric (normal)
incidence when § = 0. The argument of the Fresnel integrals in (13) is then
b/24/k/p,and if p> k52/4 the approximation (11) implies

=%

in agreement with the known express:on for the backscattered far field amplitude
of a planar resistive pla.te at normal incidence. On the other hand, if p < kb%/4,

(12) gives
) S = ~—\/_(ysxna+zcosa)Pg(0)e

(y sina + Z cos a)T'z(0) (14)
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which is the result for a resistive circular cylinder of radius p and length a. For
intermediate values of p the Fresnel integral must be retained, and when the far
field amplitude is normalized to the flat plate expression (14), denoted by the affix
fp, '

S 1
o5 = 2F0) (19)
independent of the resistivity, where
b |k

The above results are also valid for concave curvature if F(v) is replaced by
its complex conjugate. Calculations based on the formulas (9), (13) and (15) are
compared with numerical results obtained using the moment method and with
measured data in Section 5.

4. TWO DIMENSIONAL CURVATURE

We now consider the effect of giving the plate the same curvature in both principal
planes, so that the plate conforms to a portion of a spherical surface of radius ».
For simplicity the analysis is carried out for a plane wave incident symmetrically,
and the geometry is then as shown in Fig. 3.

Figure 3. Geometry for the scattering of a plane wave from a resistive
sheet which occupies a portion of the surface of a sphere of
radius r at normal incidence.

In terms of the spherical polar coordinates r,#',¢' such that z = rsiné cos ¢',
y=rsin# sing' and z =rcosd, the plate occupies the surface region T —0, <

0 < 5 +0,,—f(0') < ¢' < f(8') where 6, = b/(2r) and f(8') = a/(2rsinf').
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The incident electric field is the same as that in Section 3, and for .a perfectly
conducting plate the physical optics expression for the induced electric current at
a point #',¢' on the surface is

7pc = 2Y{sinasin0'(—5: sing +§cos'¢')
+ cos o~ cos §' + zsin ' m¢’)} eikr(1—siné’ cos ¢')

Unit vectors tangential to the surface and parallel and perpendicular respectively
to the plane of incidence are

M1=Q {—é(l — sin? @' cos? ¢') + (§sin6' sin g’ + 2 cos 8')sin & cos ¢’}
{1 = Q(~gcost + 2sind sing')
where
Q=(1-sin?¢ cos?¢')"
and in terms of #; and (; the perfectly conducting plate current is
Jpe =2Y {(sinasinﬁ’ sing’ + cos & cos 8')f; — siné’ cos ¢’
«(sin & cos §' — cos asin 8 sin ¢')(; } Qeikr(1-siné’ cos )
From (4) it now follows that for a resistive plate the current is
J=2Y {(sinasinﬂ's&nq&' + cosacos ') g(¢)A; — siné cos ¢’
«(sinacos 8 — cos asin @' sin¢' )T g(¢)1 } Qethr(1—sin ¢ cos¢') (17)
where the angle ¢ is such that
cos ¢ = sin @' cos ¢’
In the backscattering direction the far field expression for the Hertz vector &

etkz ;7,2 5+ rf(6') ikr(1—sin 8’ cos ¢')
(z) = E f_oo ./f(&') (0’ ¢e sin8'd9’'d¢'

and when the formula (17) for J is inserted, the backscattering far field amplitude
for the curved resistive plate is found to be

,kz 2 (540 ()
F-6 J-1(¢")
+ cos a2 {liin2 ¢ sin qb’I'E(cﬁ) + cos? OJPHW)}

is

[smazy sm2 ¢’ sin? ¢'Tx(4) + cos? G'PE(‘#‘)}

+ (cos af — sin @) sin 6’ cos 6’ sinqS'{I‘E(qS) - FH(¢)}]
. Q2 sin2 @' cos &' e2ikr(1—siné’ cos¢’)dold¢f (18)

The like- and cross-polarized backscattering cross sections can be computed by
substituting (18) in (7) and (8), and depolarization occurs to the extent that I'g
and I'p differ over those portions of the plate that contribute to the integral.
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The expression for S was evaluated using methods similar to those employed
in Section 3. The first method is numerical. By subdividing the ¢’ and ¢' ranges
into 2L and 2M increments respectively and treatmg each elementary patch
as a rectangular flat plate centered at ¢/ = 6), ¢/ = ¢}, (£ =1,2,...,L; m =
1,2,...,M) with dimensions A; = rA#, Ay = rsinfyA¢' where AG’ = 6,/L
and Aé’ = f(¢')/M , the result is-

= “% %[ ]A A2Q? sin 6), o8 P, e2skr(l—m8’m¢’ ysin Uy sin Vy
=1 m=1 172 ¢ Ul Vl

(19)
Here
Uy = kA cos 6 cos ¢,
Vi = kAgsingh,
and [ ] denotes the terms in square brackets in (18).
The second method is based on the statlona.ry phase approximation. The

(double) SP point of the integrand in (18) is & = x/2,4' = 0, and when all the
non-exponential terms are removed from the integrand at this point, we have

ikr b
S= k (ysma+§cosa)1"g(0)f_a ff(e'))

where we have used the fact that I'g(0) = I'g(0). By expanding the exponent
. about the SP point and retaining only the quadratic terms, we then obtain

:'f-—-——(ysma+zcosa)1‘5(0)f' f}-(2\/_) (20)

showing that to this approximation there is no depolanzataon The amphtude
normalized to its flat plate value (14) is

2i!¢r(l-—|in9’m¢’)dold¢f

S
| = q}' (1)~ g-”(‘rz) (21)
independent of the resistivity where
a [k b [k '
n=zyo =345 (22)

and the reduction in § fp i8 simply the product of the factors appropriate to a
one-dimensional curvature in each of the principal planes of the plate.

The extension to the case of a plane wave which is not incident symmetncally
is trivial. lf the plate is rotated through an angle 6 about the y-axis (see Fig. 3)
with |8] < § — 6, so that no part of the plnte is shadowed, the far field amplitude
correspondmg to (20) is

= -—(ysma +SCOGG)PH(0)'F( \/E)

T D))
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Here also the expression is a natural extension of the formula for a one-dimensional
curvature.

5. COMPARISON WITH EXPERIMENTAL DATA

To test the validity of the resistive sheet model and to explore the effect of leaf cur-
vature, a series of measurements was carried out using rectangular leaf sections.
Coleus leaves were chosen because they retain their moisture after being cut: at
room temperature (23°C) the change in moisture content after 20 minutes was less
than one percent. The scattering measurements were made at X -band in a small
tapered anechoic chamber using an HP 8510A network analyzer. A schematic
of the equipment is shown in Fig. 4, and the general procedures employed are
described in [3]. The only significant improvements made to the original system
were the introduction of an automatic target positioner to permit measurements
at specified increments in angle, and the use of strings stretched between syn-
chronously rotating stepper motors at the top and bottom of the chamber to
facilitate the target support. Since a single linearly-polarized horn antenna was
used to radiate and receive the signals, only the like-polarized backscattering cross
section could be measured. A small metal sphere was employed for calibration.

styrofoam

HP 8510

HP 9000
HP 8511 computer

Figure 4. Schematic of the RCS measurement system.

Some results for a plane rectangular section of a leaf having ¢ = 1.33)\ and
b = 2\ with Mg = 0.7 and * = 0.5 mm are shown in Figs. 5 and 6. E
polarization (a = 0) was used in both cases. In Fig. 5 the leaf was initially
vertical (8 = 0) and the data as a function of the rotation angle ¢ are in good
agreement with the curve computed from (A.4). In Fig. 6 the leaf was tilted back
(8 = 8 deg.) and a similar comparison with (A.8) is shown. For completeness,
the cross polarized cross section computed using (A4.9) is included in Fig. 6.
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CROSS SECTION AREA (dBsm)
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Figure 5. Comparison of the measured RCS (x x x) with the theoretical
expression (A.4) (—) for a rectangular section (¢ = 4 cm,

b =6 cm) of a cut coleus leaf with Mg = 0.7 and + = 0.5 mm
for E-polarization (a =0), =0 and A =3 cm.
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Figure 6. Comparison of the measured RCS (* * *x) with the theoretical
' expression (A.8) (—) for the rectangular section of the coleus
g leaf with Mg = 0.7 and 7 = 0.5 mm for E -polarization (a =
0), B8 =8 deg and A = 3 cm. The theoretical cross polarized
RCS (A.9) (xxx) is also shown.
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With the confidence that physical optics in conjunction with the resistive sheet
model is adequate for planar leaves, we now compare the predictions for curved
leaves with moment method data and with experimental results. To check the
accuracy of (9), the scattering was computed using a two-dimensional moment
method code [5] for resistive strips extended to the three-dimensional case by
assuming that the current is independent of z, and in Fig. 7 the backscattering
cross section computed using (9) is compared with moment method data for a
curved leaf having radius of curvature p = 2\ and for a flat leaf (p = o©). The
overall agreement is good out to 50 and 70 degrees respectively, where the lower
limit for the curved leaf corresponds to the onset of shadowing. In Fig. 8 the
Fresnel integral approximation (13) is compared with (9) for curved leaves having
p=2X and 3). The agreement is excellent as long as the stationary phase point
. is on the leaf, i.e., for |8| < 28 and 19 degrees respectively, but remains good for
incidence angles out to about 45 degrees. -

Experimental measurements were also performed. In the first experiment a
rectangular leaf section of the same size as before was attached to the surface
of a right circular cylinder of styrofoam and the normal incidence backscattering
cross section was measured. Cylinders of six different radii were used and the
cross sections were normalized to that of the planar leaf, The measured cross
section reductions for E polarization are plotted as a function of p in Fig. 9 and
compared with the curves computed using the numerical summation (9) and the
stationary phase approximation (15). The agreement is excellent. As p decreases
from 33 to 3, v increases from 0.76 to 3.14. Over the entire range, (9) and (15)
yield virtually identical results, and (15) provides a simple and accurate expression
for the cross section reduction.

-15.
]
’g ~
4] L .
= = f -
g {
x"J
g £
g
E Jh'l
.O
=45, - - R L T
-%0. -79. -50. -30. -16. 10.

INCIDENCE ANGLE (Degrees)
Figure 7. RCS of a rectangular resistive sheet computed using the moment
method (lines) and the numerical summation (9) (points) for
p =2\ (---,xxx) and p = oo (—, 000). The size and resistivity
of the sheet are the same as in Fig. 5 with 7 = 0.32 mm and
A=3 cm. '
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Figure 8. RCSofa recta'.ﬁ'gular resistive sheet computed using the numeri-
" cal summation (9) (lines) and the Fresnel integral approximation -
“(13) (points) for p = 2 (===, xxx) and p = 3X'(—, 000). The
size and ‘resistivity of the sheet are the' same as in Fig. 5 thh
' 1'—-032 mma.nd A=3 cm.

0.
0.9
0.8
0.7
0.5
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o(curved) /o(flat)

0.2

6.1

0.0 -
0. 3. 6. 9, 12. 15. 18, 21, 24 - 27. 30 n.

P (cm)
Figure 9. _Companson of the measured RCS (1- % %) reduction at normal
incidence with the numerical summation (19) (—) and the Fres-
. nel integral approximation (15) (---) for.a one dimensionally
. curved rectangular section of a colens. ]eaf versus radius of cur-
vature (7 = 0.32 mm, A =3 cm). -
For the case of a two dimensional curvature a similar experiment was performed
in which a leaf section was mounted on the surface of a styrofoam sphere. Spheres
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of six different radii were used. To facilitate the mounting a naturally-curved leaf
was chosen and cut to conform to the spherical region §—6, < ¢ < F+00, —do <
¢' < ¢o where 8, = b/(2r), po = a(2rsinb,), with a = 1.33) and b = 2)\. The
region is slightly different from that specified in Section 5, and the leaf sections are
no longer rectangular when flattened out, but calculations based on the summation
(19) showed that the cross section reduction is the same for both. The measured
data are compared with the numerical and analytical results (19) and (21) in
Fig. 10. The agreement is again excellent and confirms the validity of the simple
formula (21) for curvature in two dimensions.

o(curved) /o(flat)

0. 3 6 9 12 15 18 2. 24 7. 3. 33
R (cm)

Figure 10. Comparison of the measured RCS (* * %) reduction at nor-
mal incidence with the numerical summation (19) (—) and
the Fresnel integral approximation (21) (--- ) for a spherically
curved section of a coleus leaf versus radius of curvature (7 =

0.32 mm, A =3 cm).

As evident from the preceding figures, curvature can have a significant effect
on the backscattering cross section, and in a practical situation, it is important
to know the frequency range where any curvature of a leaf must be taken into
account. To this end, Fig. 11 shows the normal incidence cross section reductions
versus frequency for three leaf sections 6 cm on a side, curved in one dimension
with radii 3, 6 and 12 cm. In all three cases Mg = 0.7, 7 = 0.5 mm and the
frequency dependence implied by (1) and the Debye-Cole dielectric model was
included. Once again (9) and (15) yield virtually identical results and if, for
example, p = 12 cm, the curvature produces a significant effect only at C -band
frequencies and above.
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Figure 11. Normal incidence RCS reduction versus frequency due to the
one dimensional curvature of a rectangular section of a leaf
with Mg = 0.7 and 7 = 0.5 mm for three different radii of
curvature using the numerical (9) (—) and analytical (15) (---)
expressions. ' :

8. CONCLUSIONS

The resistive sheet model in conjunction with the physical optics approximation
which was previously shown [3] to accurately predict the backscattering cross
section of a planar leaf has now been extended to the case of a curved leaf. For a
rectangular section of a leaf curved in one and two dimensions, the physical optics
expression for the backscattered field as a function of the angle of incidence was
evaluated numerically and by a stationary phase approximation. The latter leads
to simple analytical expressions for the cross section reduction produced by the
curvature. Numerical results based on the two methods are virtually identical over
a wide range of incidence angles and in excellent agreement with measured X -
band data for rectangular sections of coleus leaves applied to surfaces of styrofoam
cylinders and spheres of different radii. As a result of these comparisons, it is
concluded that the curvature effect is accurately simulated by a multiplicative
factor involving a Fresnel integral whose argument is a function of the relevant
leaf dimension, the radius of curvature, the frequency, and the angle of incidence,
but independent of the material properties of the leaf.

APPENDIX: FLAT PLATE ANALYSIS

To illustrate the application of the formulas in Section 2, consider a rectangular
resistive plate occupying the region —a/2 < n < a/2, -b/2 < ( < b/2 of the
plane ( = 0 and illuminated by the plane wave (2) as shown in Fig. 1. Since
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there is only an electric current induced in the plate, the scattered field can be
attributed to an electric Hertz vector 7. In the backscattering direction the far
field expression for 7 is

ikr ¥4 _ .
77 = S [ Tme)etnine anc

where the integration is over the illuminated surface of the plate, and if the physi-
cal optics approximation is employed, it is a trivial matter to determine ¥. From

©)

ikr af2 pb/2 .
7(7) = et L Y, 2ikn sin ¢
7(7) e ./—b , {1} sinalg(4) + Ccosacosq&l"g(é)} e dq(?(
S naTa(#) +¢ #T5(9)} 22T (41
=% on fsinaly cosacos¢p'p 1)
where
U =kasing (A.2)
and the backscattered far field amplitude is
= M {({ sing + fcosg)sinaTg(4) + { cosa I‘E(Q‘))} cosqssm v (A.3)
In terms of S the like-polarized backscattering cross section is
2 . 2
o= '\; ((sinasing + fjsinacos ¢ + { cosa) - gl
and the cross-polarized cross section is
2 . 2
Ocross = 5; (é cosasing + A cosacos ¢ — { sinax) ?l
Thus
o =4r a: {sm aTg(4) + cos’ & I"E(qb)} cos ¢sm ul* (A4)
and
Ccross = 47 %b- sin @ cos a{l"g(q&) I'E(¢)} cos qum vl (4.5)

and we observe that the cross-polarized return vanishes if at least one of sina,
cosa, or cos¢ is zero or I'p(¢) = I'g(¢). This last condition is satisfied for a
perfectly conducting plate.

The above example corresponds to the rotation of the direction of incidence in
the én-plane and is equivalent to the rotation of the plate through an angle ¢
about the (-axis with the illumination fixed in space. A more general situation
is that in which the plate is first tilted back through an angle ﬂ (see Fig. A.1)

rior to rotation. In terms of a rotated coordinate system §',7',{' where &=
{cosﬁ +{sing, i =, ¢! = —&sinfB + ( cos B, the plate now occupies —a/2 <
7' < a./2 —b/2 < ¢’ < b/2, and the incident electric field is

__(£s1nas1n¢+nsmacos¢+Ccosa)e ik(¢’ cos B cos g—n' sin $—('sin f cos ¢)
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Since the unit vector normal to the plate is E’ , the physical optics expression
for the current that would be induced if the plate were perfectly conducting is

Jpe =2Y {-f cos asinf cos @ + 7i(sina cos B + cosa sinﬁ's'ih é)
+ { cos a cos B cos ¢} etk (n sin¢+('sin fcos g)
which can be written as . " _
Jpe =2Y {(sin acosfsin¢ + cos a sinﬂ)?';n — (sin asin B — cos & cos Bsin @)
+cos B cos gl} peik(n i $+('sinBcos )
where
P = (1 - cos® B cos® qé)";

and

fiy = P(—&sin? B cos ¢ +fsin ¢ + { sin B cos B cos ¢)

{1 = P(~£sinBsin g — fjsin fcos ¢ + { cos Bsin @)

are, respectively, unit vectors in and perpendicular to the plane of incidence, lying
in the plane of the plate. The current induced in the resistive plate is therefore

J=2Y {(sinamﬁ sin ¢ + cos a sin B)I' gr(41)7 — (sin asin § — cos & cos B sin )
+cos B cos T p(g1){y | Petklr sind+('sinfeong) (4.6)

where ¢, is the angle between the negative of the intident field direction and the
normal to the plate, i.e., cos™!(cosScos¢).

Figure A.1. Geometry for the scattering of a plane wave by a tilted resistive
sheet, '
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The Hertz vector defining the backscattered field is

: eikr /2 pb/2 ,
. 'ﬁ"(r)__ _ﬂ_%f‘ f J(‘T C ;k(q’squC sin B cos ¢) dﬂdC

b/2
and-when the integra.t:on is performed we obtain
eikr
f(") = 2o [(sm acosBsin¢ + cos asin B)I'g(#1)71 — (sinasin B
— cos a cos 3 sin ¢) cos B cos q&I‘E(q&l)Cl] Psm v sn;rV

where U is given in (4.2) and
o V = kbsinfcos¢
The resulting expression for the backscattered far field amplitude is
12
3= ";:5 [(ésinqs +ﬁcos¢){5ina [coszﬁsinz'gorg(qsl) + sinzﬂPE(¢1)]
+cosasinfcos Bsin ¢ L1 (¢1) ~ Ta(41)] }
+¢{cosa [sin? BT (¢1) + cos? Fsin? $Tp(41)]

+ sinasinBcos@Fsing [T g(p1) — PE(qﬁl)]}]P cos B cos ¢

sinU sinV
TV

(4.7)
and ‘we note that this reduces to (4.3) when B = 0. The backscattering cross
sections are

o =4r|—

ab {(smacosﬂsmé + cos asin B)?T g (¢1) + (sin asin B

sinUsinV

— cos a cos A sin ¢)°T E(¢1)}'P2 cos f cos p— | (A.8)
and ' |

Ocross = 4w -‘;—b(sin acos sin ¢ + cos a sin B)(sin asin B — cos a cos B sin @)

sinUsin V |2
{Ta(81) - Ta(61) | P? cos feos 5=
As required, these reduce to (A.4) and (A.5) when § = 0, and for all 8 the

cross-polarized return vanishes for a perfectly conducting plate. A comparison
with measured data for a leaf is given in Section 5.

(4.9)
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