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Fast Multipole Representation of Green’s Function
for an Impedance Half-Space

Kamal Sarabandi, Fellow, IEEE, and Il-Suek Koh

Abstract—In this paper, exact and approximate multipole rep-
resentations for fields of a horizontal or a vertical infinitesimal
dipole above impedance surfaces are derived from the exact
image formulation. These multipole expansions are appropriate
for applications in the method of moments through a formu-
lation known as the fast multipole method. Unlike the existing
approximate formulations, these new multipole representations
of the Green’s function for the half-space impedance surface
problem do not impose any restrictions on the location of source
or observation points and are computationally very efficient.

Index Terms—Green’s function, method of moments (MoM),
multipole half-space.

I. INTRODUCTION

THE SOMMERFELD problem of radiation of a short
dipole above an infinite dielectric half-space is a classic

problem in electromagnetics that has received significant
attention. However, because of its relevance in a wide range of
applications, it is still being examined. The formal solution is
represented by integrals whose integrands are highly oscillatory
and slowly decaying. These properties make direct numerical
integration computationally inefficient. For impedance sur-
faces, however, an efficient method known as exact image
theory has been implemented [1]. Since this formula replaces
the poorly converging integrands of the Sommerfeld integral
with exponentially decaying integrands, calculation of the
fields from an arbitrary source above an impedance surface
can be performed very efficiently, independent of the relative
locations of the source and observation points. Hence it is
now practical to apply this exact image representation as the
half-space Green’s function in integral equation (IE) numerical
methods such as the method of moments (MoM). However,
the numerical complexity of MoM is at best , which
prohibits the application of MoM to electrically large objects.

In recent years, several methods have been proposed to over-
come this difficulty. These include the fast multipole method
(FMM) [2], adaptive integral method (AIM) [3], and many other
variations of FMM and AIM. FMM has been rigorously for-
mulated for the free-space Green’s function and successfully
applied to a large class of problems ranging from passive cir-
cuit analysis to computation of the radar cross-section (RCS)
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of complex objects. In recent years, the FMM algorithm has
been extended to include scattering problems in the presence
of a dielectric half-space using the method of complex images
[4]. The method of complex images uses Prony’s method to ap-
proximate a component of the integrand of the Sommerfeld in-
tegral in terms of a summation of exponential functions, which
can then be integrated analytically. The result is expressed as a
summation of discrete image points in the complex plane. The
drawback of this method is that, depending upon the location of
observation and source points (especially if they are close to the
surface), the number of exponential terms in Prony’s approxi-
mation has to be increased.

In this paper, by applying the exact image formulation, an
efficient multipole representation of the Green’s function for
impedance surfaces is obtained and is shown to be very accurate
for all locations of source and observation points. This paper is
organized as follows: In Section II, the multipole representation
is formulated. In Section III, the convergence property of the for-
mulation is investigated and the accuracy of the results verified
by comparing them with those obtained from direct numerical
integration of the exact images.

II. FAST MULTIPOLE REPRESENTATION OF GREEN’S FUNCTION

FOR IMPEDANCE SURFACES

The geometry of an elementary current source above an
impedance surface is shown in Fig. 1. An infinitesimal dipole
is oriented along unit vector and located at above a
surface with a normalized impedance of . The ob-
servation point is located at . A closed-form expansion
for the total fields in the presence of the impedance surface
using the exact image theory is given by [1]

(1)

Here and are the direct dipole fields and the fields from its
image if the surface is a perfect electric conductor, respectively.
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Fig. 1. Arbitrarily oriented infinitesimal dipole locates at (x ; y ; z ) over an
impedance surface with a normalized impedance � = Z =Z .

Also in (1), , , is free-space propaga-
tion constant, ,

, and
. Before proceeding with the development of the FMM

representation of the total field (Green’s function), note that
all integrands in (1) contain two rapidly decaying exponential
terms: one containing either or and the other containing

, which has a positive imaginary part. These exponential de-
caying terms ensure fast convergence of Green’s function for
half-space impedance problems. Physically, or can
be interpreted as distributed image current in the complex
plane . For inductive surfaces such as the earth,

, the decay factor for the horizontal polarization is much
higher than the vertical polarization. In extreme cases where

, the decay factor of the integrand for the vertical polar-
ization is dominated by , as mentioned earlier.

Multipole representation of dyadic Green’s function for
applications in integral equations method has been proven to
be useful with regard to computational speed and resources.
Examining (1), it is obvious that the FMM algorithms [2]
can be used for and directly. However, for the rest of
expressions in (1), an additional multipole representation is
needed in order to decompose the Green’s function in terms of a
summation of the products of two functions: one dependent on
the source coordinate and the other dependent on the observation
coordinate. To achieve this goal, a multipole expansion for

is needed where represents
or . One can attempt to express in the integrand
of in terms of its multipole expansion. However, since the
domain of extends to infinity, such substitution cannot be
rigorously justified despite the fact that, due to the exponential
decay, the integral does not contribute significantly for large
values of . We will revisit this approach after deriving a
formal solution.

To derive a formal multipole expansion for the Green’s func-
tion, a new integral expression for is obtained. Integrating by
parts and noting , it
can be shown that must satisfy the following first-order dif-
ferential equation:

(2)

The general solution of (2) for is composed of the particular
solution and the homogeneous solution and given by

(3)

where is a constant function of . Note that new integral rep-
resentation is highly oscillatory and not amenable for numerical
evaluation. However, as will be shown next, this expression is

Fig. 2. Definition of vectors ~X and ~d in the formulation of multipole
representation of (4).

suitable for multipole expansions. But first the coefficient in
(3) must be determined.

To find , it is noted that in the upper
half-plane of the plane, where . However, since
must approach zero due to the radiation condition, must be
zero when . Noting that is an analytic function of ,
then according to analytic continuation, must be zero for all
values of (the entire plane). Now a multipole representation
of can be obtained using the Gegenbauer’s addition theorem.
According to Fig. 2

Requiring , Gegenbauer’s addition theorem [5] states
that

(4)

where ,
, and is the

angle between the and vectors given by ,
as shown in Fig. 2. Also here, is the Legendre polynomial
and and are spherical Bessel functions of th order. The
plane wave expansion representation of is given by [2]

(5)

where and
. Substituting (5) in (4) and then performing integration

with respect to , can be written as

(6)

This formal solution, within the radius of convergence of the
series, is an exact representation of the multipole expansion for
the Green’s function, which will be verified numerically. Also
the regions of convergence of the series will be identified. It is
important to note that (6), except for the factor ,
is identical to that of the free-space multipole representation of
the Green’s function, and therefore is of the same computational
complexity. As will be shown later, (6) converges very quickly
when , which is the case for horizontal polarization
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Fig. 3. Definition of vectors ~X and ~d in the formulation of multipole
representation of (8).

and when the magnitude of the normalized sur-
face impedance is less than unity . These values of nor-
malized surface impedance correspond to ground impedances at
ultra-high-frequency band and below, or water surfaces below
10 GHz.

Unfortunately, the series convergence may become rather
poor for vertical polarization when . As decreases,
each term in the summation decays slowly with , and the
partial summation starts to oscillate. This increases the required
number of terms in the summation for convergence, and hence
the expansion becomes numerically unstable. The formal
derivation of (6) seems to be exact, and therefore the lack of
convergence of the series under certain conditions for the ver-
tical polarization must be further examined. This problem can
be a result of interchanging the order of the infinite summation
and the integration. This interchange is not always allowed
according to Lebesque’s dominated convergence theorem.

To verify the validity of (6) (where the series converges),
another independent approach may be followed. Noting the ex-
ponential decays in the integrand of , the integral range can be
truncated, i.e.,

(7)

where is chosen to satisfy . This choice
of also satisfies the condition for which the following addition
theorem for the scalar Green’s function is valid. Using Gegen-
bauer’s addition theorem for complex quantities, the integrand
of (7) (scalar Green’s function with complex range function) is
expanded as

(8)

where ,
, and is a com-

plex angle between and vectors given by
(see Fig. 3). This expansion is valid for the condition

. Using the identity given by (5)

(9)

In , the exponential function in the integrand of (9) dis-
appears, and the expression reduces to the formal solution pre-
viously derived. Therefore, the formal solution converges for
a large value of but the convergence rate becomes poorer
when decreases.

Fig. 4. Convergence behavior of (6) as a function of <[p]. Magnitude of each
term of the summation is shown.

For and in situations when convergence is poor (the
region of poor convergence which will be specified later), an
approximate identity can be formulated. However, this approxi-
mate formulation is much less efficient than the expansion given
by (6). Applying a Gaussian quadrature numerical integration
applied to the exact image representation, can be approxi-
mated as a finite summation of the form that resembles the
method of complex images, i.e.

(10)

where with
and being the weighting factor and zero of the Legendre

polynomial of th order. The discrete terms in (10)
can be expanded using (8). Because of the exponential decay
in the integrand , the order can be chosen so that
the accuracy of (10) is independent of source and observation
coordinates.

III. SIMULATION RESULTS

For a frequency of 50 MHz and a surface with a normalized
surface impedance ( and

), the FMM expressions for are compared
with the direct numerical calculations. For simplicity,
is located at (0,0,0) and is at (7,0,2.2). For numerical
simulations, the following identity is used, which can be derived
directly from (6):

(11)

Fig. 4 shows the magnitude of each term of the summation
given by (11) for as a function of for two different
surface impedances and

. In this figure, it is clearly shown that
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(a)

(b)

Fig. 5. Error between left-hand side (numerical integration) and right-hand
side (FMM identity) of (11) as a function of p=k at 50 MHz. Observation point
is fixed at (7.5,0,2.2). (a) Percentage error of magnitude (<100%) and (b) phase
difference (<90 ).

as the real part of decreases, the convergence of the summa-
tion becomes poorer (terms decay much slower), and the partial
sum begins to oscillate as mentioned earlier. The following fig-
ures show comparisons of the results obtained from the FMM
expression given by (6) and (10) with those obtained from direct
numerical integration. Fig. 5 is a plot of the difference between
the direct numerical integration [left-hand side of (11)] and its
FMM representation [right-hand side of (11)] as a function of
the real and imaginary part of . For this calculation, obser-
vation and source points are, respectively, fixed at (7.5,0,2.2)
and (0,0,0), and the number of summation terms is ten. As
seen in this figure, except for the case of and

, the expansion given by (6) gives excellent re-
sults. Hence for all practical purposes, the identity given by (6)
can be used except when and . In
this region ( and ), the less efficient
formula given by (10) may be used. By changing the location of
source and observation points, it was determined that the region
of validity of (6) is independent of the coordinates of the source

(a)

(b)

Fig. 6. Comparison of left-hand side (numerical integration) and right-hand
side (FMM identity) of (11) when p = � = 3:14 + 1:05i as a function of
observation point positions, (7 + 0:5 cos�; 0:5 sin�; 2:2). (a) Magnitude and
(b) phase.

and observation points. For a numerical comparison, an example
is considered when the observation point is moved along a pa-
rameterized curve , ,
and . Fig. 6(a) and (b) shows comparisons of the mag-
nitude, and the phase of the left- and right-hand side of (11)
for , respectively. These two results are
in excellent agreement. Fig. 7(a) and (b) shows the same com-
parisons for . For this case (choosing

), discrepancies of less than 0.2 dB in the magnitude
and 1 in phase are observed.

The next consideration is of convergence properties of the
FMM formulation versus distance. Fig. 8 shows an example
of this examination. For this figure, (11) is computed again
along an observation line ,
where , for , and a fixed

. The compared results are in excellent agreement. By
increasing to 20, the results are not affected. A required
number of terms for convergence of the FMM identity can
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(a)

(b)

Fig. 7. Comparison of left-hand side (numerical integration) and right-hand
side (FMM identity) of (11) when p = � = 0:31 � 0:11i as a function of
observation point positions, (7 + 0:5 cos�; 0:5 sin�; 2:2). (a) Magnitude and
(b) phase.

be estimated at approximately 12 for single precision, and
21 for double precision using the well-known semiempirical
equation for the free-space case [2]. Therefore the FMM (11)
has the same convergence property as that of the free-space
one when in the region of convergence of the summation.

IV. CONCLUSION

Two multipole representations of the field of a dipole above
impedance surfaces are formulated. These formulations are suit-
able for FMM-type algorithms applied to scattering problems
for an object over/on an impedance surface. One formulation is
exact and valid for the range of and
and the other, which is approximate and computationally less
efficient, for the complement region. These representations are
verified by comparing them with a direct numerical integration.
It is shown that the exact multipole expansion for the Green’s

(a)

(b)

Fig. 8. Comparison of left-hand side (numerical integration) and right-hand
side (FMM identity) of (11) when p = � = 3:14 + 1:05i as a function of
observation point positions, (7 + 3t cos(2�t); 3t sin(2�t); 2:2), where 0 �
t � 1. (a) Magnitude and (b) phase.

function of the half-space problem is very similar to that for the
free-space case, and hence has the same computational com-
plexity and convergence property.
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