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Abstract: An alternate approach is presented for the prediction of induced surface currents on
perfect electric conducting (PEC) circular cylinders of large radius by observation of the asymptotic
behaviour of the Fock currents. The currents are separated in the fashion of the physical theory of
diffraction in terms of a uniform or physical optics component and a nonuniform or diffraction
component which is highly localised to the shadow boundary. The approach can be extended to
that of a general convex surface by application of known methods such as incremental-length
diffraction coefficients. The case of the 2D PEC circular cylinder at normal incidence is developed
first and then extended to that of oblique incidence analytically. The resulting expressions for the
induced current are algebraic and are shown to be highly accurate for cylinders having radii of
curvature larger than a wavelength. Total near-fields generated by this macromodelled current are
in good agreement with those of the exact solution everywhere.

1 Introduction

Owing to the ever increasing demand for wireless systems,
development of accurate propagation models have attained
significant prominence over the past decade. Many natural
terrain features exhibit both curved and doubly curved
surfaces. Ridge lines in mountainous areas exhibit the
features of a long curved cylinder which is essentially infinite
in one dimension at high frequencies. These lines may
be the result of the natural formation of the mountain
chain or a feature of erosion. Geologically recent mountain
chains, while exhibiting sharp-edged features, still have
electrically large radii of curvature even in the HF band.
This indicates that diffraction from curved surfaces,
as opposed to knife-edge diffraction, is the appropriate
prediction tool.

While the exact solution for a circular cylinder is
known [1], the convergence properties of the resulting
eigenseries deteriorate as cylinder radius increases, making
it impractical for problems of large electrical size and
thus alternate solutions are sought. The convergence
properties of this series can be improved by applying a
Watson-type integral transform [2] and the resulting
expressions are the basis for many of the high-frequency
techniques in use.

Current high-frequency methods for the prediction of
scattering and diffraction from convex surfaces can be
divided into two categories, those which are valid away
from the surface (geometrical/uniform theory of diffraction
(GTD/UTD), valid in regions I, II, III in Fig. 1) and those
which are valid near the surface of the object (asymptotic
theory of diffraction, Fock methods, valid in regions IV, V,

VI in Fig. 1). None of these methods are valid in all regions
around a cylinder and all suffer from significant short-
comings, as be discussed in the following Section.

2 Shortcomings in existing hiqh-frequency
techniques

2.1 GTD/UTD
GTD and UTD solutions are field solutions, valid away
from the convex surface. GTD, developed by Keller [3] in
the 1950 s is valid in the deep-lit and deep-shadow regions
(I and III in Fig. 1), but not in the transition region between
the shadow and illuminated areas (region II in the same
Figure). In his UTD solution for plane-wave incidence,
Pathak developed a method which accounts for the fields in
the transition region (region II) [4]. In this approach a
Watson-type transform is applied to the exact solution for a
circular cylinder [2], and the resulting integrals solved by
making appropriate approximations depending on the
point of observation. The resulting expressions consist of
a Fresnel-type integral which dominates in the transition
region and a Pekeris function which dominates in the deep-
lit region and should dominate in the deep-shadow region.
Hussar and Albus [5] have shown that the Fresnel term in
the UTD solution does not decay in the predicted fashion in
the shadow region and thus the Pekeris term does not
dominate as expected in this region. For source and/or

shadow boundary

source

grazing ray

convex 
surface

IV

V VI

I - lit 

II - transition 
     lit

II - transition 
     shadow 

III deep shadow

Q1

Fig. 1 Definition of regions around a convex surface

The authors are with The Radiation Laboratory, Department of Electrical
Engineering and Computer Science, The University of Michigan, Ann Arbor
MI 48109-2122, USA

r IEE, 2004

IEE Proceedings online no. 20040089

doi:10.1049/ip-map:20040089

Paper first received 1st September and in revised form 18th November 2003.
Online publishing date: 20 January 2004

IEE Proc.-Microw. Antennas Propag., Vol. 151, No. 1, February 2004 43



observation in the near zone of the cylinder, the UTD
solution is not asymptotic (in terms of cylinder radius) and
significant error is observed in field calculations as cylinder
radius increases. Examples in [5] show an error of greater
than 10dB in the shadow region near transition (the
boundary between regions II and III in Fig. 1) which
increases to near 40dB in the deep-shadow region. In [5],
the Pathak formulation is adjusted with a correction
consisting of an infinite series which produces very accurate
results. The method is not valid however, for both source
and observation very near the surface and the number of
terms necessary for convergence of the series is directly
proportional to the distance of both source and observation
from the cylinder surface and increases as either one or both
are moved away from the cylinder.

2.2 Asymptotic theory of diffraction:
evaluation of Fock-type integrals
For observation points on or near the cylinder surface,
asymptotic field solutions based on Fock theory [6] are
usually applied. These solutions in general consist of solving
the canonical Fock-type integrals, which are functions of a
universal variable, in either a numerical fashion or by
referencing tabulated data. In the deep-lit and deep-shadow
regions these integrals reduce to an asymptotic and residue
series, respectively. These integrals are highly oscillatory in
nature and difficult to evaluate numerically. The universal
variable is a function of the observation distance from the
shadow boundary along the circumference of the cylinder.
As observation moves into the lit region from the shadow
boundary, the convergence properties of the Fock integrals
degrade and eventually will fail to converge. As this is a
function of distance from the shadow boundary, the point
where the integrals will no longer converge is more localised
to the shadow boundary as the cylinder radius increases. At
this point in the lit region a transition must be made to the
asymptotic series. For cylinders of large radii, this transition
occurs at a point in the lit region where the asymptotic series
does not converge well and a significant discontinuity in the
surface current occurs. A method has been developed by
Pearson [7] which improves the convergence properties of
these types of integrals, but does not effect the region of
convergence on the cylinder surface. Logan, in his extensive
work on diffraction theory, has published tabulated data on
the Fock integrals [8] for observation at and around the
shadow boundary. The extent of the tabulated data into the
lit region, however, is limited by the region of convergence
of the Fock integrals.

As an example of the convergence problems of the Fock-
type integrals in the lit region, Fig. 2 shows the TM
(incident electric field parallel to the cylinder axis) and TE
(incident magnetic field parallel to the cylinder axis) current
distributions, for cylinders of radius 10, 15 and 20l,
generated by the Fock solution. Note that on these plots
0.25 corresponds to normal incidence, in the deep-lit region,
with �0.25 and 0.75 both corresponding to the deep-
shadow region. What is apparent in these curves is the
convergence problems of the Fock-type integrals in the
deep-lit region, and the increasing region of nonconvergence
as cylinder radius increases. While Fock functions and Fock
integrals are described in more detail in Section 3.1 the
reason for the convergence problems stems from evaluation
of the Airy function and its derivative contained within the
integrand of the Fock functions. As observation is moved
more deeply into the lit region from the shadow boundary,
the Fock integrand becomes more oscillatory, and evalua-
tion of these Airy functions more difficult. The point in the
lit region where the Fock integrals can no longer be

evaluated is not deep enough into the lit region for the
asymptotic approximation to the Fock integrals to be of
practical accuracy. The effect of the nonconvergence of the
Fock-type integrals on the total electric fields can be seen in
Fig. 3. In this Figure a comparison is shown of the total
TM fields generated by the macromodelled currents,
developed later in this paper, to those generated by the
Fock current functions, for a cylinder of radius 15l.
Observation is 1l off the surface of the cylinder. Note in
these plots that �90 and +90 correspond to the deep-
shadow and deep-lit regions, respectively. Referring to the
Fock currents in Fig. 2, for a cylinder of radius 15l, it is
apparent that the solution did not converge at near normal
incidence, in the deep-lit region. This discrepancy is
apparent in the accuracy of the total fields generated by
these currents, as observed in Fig. 3 in both the deep-lit and
deep-shadow regions. It can be shown by asymptotic
evaluation of the radiation integrals that in the deep-lit and
deep-shadow regions the main contributor to the scattered
fields is the current in the deen-lit region, around normal
incidence, the same area where the convergence problems
arise in generating the Fock currents. This is evident in the
total fields in Fig. 3 as the most significant error observed in
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the fields generated by the Fock solution are in these
regions.

Owing to the discussed shortcomings with current high-
frequency techniques, it is desired to develop a method for
predicting the fields scattered by a circular cylinder that is
highly accurate and valid in all regions around the cylinder.
If the induced surface currents could be calculated simply,
quickly, and in an accurate fashion, fields in all regions
around the cylinder could be calculated by application of
the radiation integrals. With this as a motivation, a heuristic
method is developed, which predicts the behaviour of the
induced surface currents on a perfect electric conducting
(PEC) circular cylinder, when excited by a plane wave at
oblique incidence angles. The induced surface currents are
decomposed in the manner of the physical theory of
diffraction (PTD) [9] in terms of a uniform or physical
optics (PO) component and a nonuniform or diffraction
component. In using this decomposition the proposed
method can be described as a form of PTD for convex
surfaces. To predict these diffraction currents, a set of
macromodels are developed using a combination of the
asymptotic behaviour of the Fock currents [2, 4, 6] and the
exact solution for oblique incidence. These macromodels
are used to predict the high-frequency behaviour of the
diffraction current as a function of k0a, where k0 is the free-
space propagation constant and a the cylinder radius, to a
very high degree of accuracy. To predict the induced
diffraction currents, these macromodels are simply applied
to a set of reference data generated by the exact solution for
a cylinder of moderate radius. These macromodels are valid
for cylinders of radius a4l and the resulting total surface
currents are highly accurate. The observed error in
magnitude e8 is less than �60dB, where e8¼ 20 log
(8Jex7�7Jmm8) and Jex and Jmm are the exact and
macromodelled total induced surface currents, respectively.
The error in phase e+¼+Jex�+Jmm is less than 0.11
everywhere except in the deep-shadow region.

3 Development of macromodel

Consider an infinite right-circular PEC cylinder, illuminated
by a monochromatic plane wave, as shown in Fig. 4.
The cylinder is oriented along the z-axis with yi, defined
from the z-axis and confined to the y–z plane and f defined
from the x-axis and positive towards the y-axis.

The propagation constant of the plane wave k is defined
as k¼�k0cosyi #z�k0sinyi #y. For the problem of an infinite
cylinder the z-component of the propagation constant of
the scattered field must match that of the incidence field,
requiring that scattered fields be confined to the specular
cone, as shown in Fig. 4.

Decomposing the induced surface current in the manner
of PTD we write the diffraction current JD as JD¼ Jex�JPO

where JPO is the PO current given by

JPO ¼ 2n̂n� H i lluminated region
0; shadow region

�
ð1Þ

Depending on the polarisation of the incident field, on the
cylinder surface

H i ¼

�H0x̂x;
TMcase ðtransversemagnetic to z�axisÞ;
H0ðsin yiẑz� cos yiŷyÞ;
TE case ðtransverse electric to z�axisÞ:

8>><
>>: ð2Þ

The objective is to macromodel JD(f)¼ 7JD(f)7e
jc with

algebraic expressions, which are in terms of k0a, and for the
general case of oblique incidence and arbitrary polarisation.
This is accomplished by simply applying appropriate scaling
(expansion or contraction of co-ordinate f) and weighting
(multiplicative factor) functions to a reference data consist-
ing of the magnitude and phase components of the exact
diffraction current for a specific radius cylinder. In practice,
to apply the macromodel, reference data is generated for a
cylinder of moderate k0a using the exact solution for normal
incidence (2-D case). The macromodel is then applied to
this reference data to generate extremely accurate surface
currents for an infinite PEC cylinder of any radius larger
than 1l and for the general case of oblique incidence.

In the remainder of this Section the Fock formulations
for the generation of induced surface currents on a PEC
cylinder are reviewed along with observations relevant to
developing the macromodel. The macromodel will then be
developed for the 2-D case (TM z and TE f currents only
are excited) in both the shadow and lit regions. The
macromodel for the 2-D currents is then extended to the
case of oblique incidence in a simple fashion. All
macromodelled currents, including the additional z-directed
current excited at oblique incidence for the TE case, are
generated from the reference data for a cylinder excited at
normal incidence (2-D case). In all cases the macromodel is
also applied to generate the induced surface currents on a
half-cylinder (–p/2rfrp/2 in Fig. 4) and this current
simply mirrored to generate currents around the full
circumference of the cylinder.
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3.1 Fock theory
The macromodel of the diffraction current JD predicts the
behaviour of this current as a function of k0a by observing
the asymptotic behaviour in the analytical expressions for
the Fock currents. These currents indicate the general
behaviour of the diffraction current as a function of k0a for
all regions on the cylinder surface. The analytical expres-
sions for currents on the surface of a PEC cylinder are given
by Pathak [4]. These expressions are a special case of the
Fock currents in which the canonical Fock integrals are
approximated by a Taylor-series expansion in the close
neighbourhood of the surface and reduce to the Fock
solution on the cylinder surface. In the shadow region the
Fock currents for TM and TE cases are given by

JTM
s ¼ UiðQ1Þ

jk0Z0
ejk0af

k0
m

� �
~ggðZÞẑz ð3Þ

JTE
s ¼ �UiðQ1Þejk0afgðZÞf̂f ð4Þ

where the subscript s denotes the shadow region. In (3) and
(4) Ui (Q1) is the incident electric field for the TM case and
the incident magnetic field for the TE case evaluated on the
cylinder surface at the shadow boundary (point Q1) shown
in Fig. 1. Also in (3) and (4), m¼ (k0a/2)

1/3, Z0 is the
characteristic impedance of free space and ~ggðZÞ and g(Z)
are the Fock functions given by

~ggðZÞ ¼ 1ffiffiffi
p

p
Zþ1
�1

dt
e�jZt

w2ðtÞ
ð5Þ

gðZÞ ¼ 1ffiffiffi
p

p
Zþ1
�1

dt
e�jZt

w0
2ðtÞ

ð6Þ

where Z¼�mf and is defined in the shadow region only,
and w2 is the Airy function as defined in [4]. In the lit region
the Fock currents are given by

JTM
l ¼ UiðP Þ

jk0Z0
e�j

ðZ0Þ3
3

k0
m

� �
~ggðZ 0Þẑz ð7Þ

JTE
l ¼ �UiðP Þe�j

ðZ0Þ3
3 gðZ 0Þf̂f ð8Þ

where the subscript l denotes the lit region and the incident
field Ui is evaluated at the point P on the surface of the
cylinder, in the lit region, where the value of the induced
surface current is desired. In (7) and (8), ~gg and g are
functions of Z0, where Z0 ¼�m sinf and is defined in the lit
region only. To construct the macromodel for the induced
surface diffraction currents the following observations of
the asymptotic behaviour of the Fock currents are noted:

(i) The factor m, implicit in both Z (shadow region) and Z0

(lit region), is proportional to (k0a)
1/3.

(ii) In the shadow region the Fock functions for both the
TM and TE cases can be evaluated in terms of a residue
series which is a function of Z. This indicates that the
macromodel developed for the complex diffraction current
in the shadow region is valid throughout the shadow region.

(iii) The TM current, given by (3) in the shadow region and
(7) in the lit region, has a weighting factor of k0/m.

(iv) In the deep-lit region ~ggðZ 0Þ and g(Z0) can be expanded
into an asymptotic series given by

~ggðZ 0Þ ¼ �2jZ 0e j
ðZ0Þ3
3 1þ j

4Z 03 þ
1

2Z 06 � � �
� 


ð9Þ

gðZ 0Þ ¼ 2e j
ðZ 0Þ3
3 1� j

4Z 03 �
1

Z 06 � � �
� 


ð10Þ

(v) The phase component of the Fock currents can be
decomposed into a highly oscillatory and slowly varying or
gentle phase component. If we designate the exponential of
the diffraction current by

e jchðk0a;fÞþjcgðk0a;fÞ ð11Þ
where the subscripts h and g indicate the highly oscillatory
and gentle phase components of the current, respectively,
the highly oscillatory phase terms are known in all regions.

In the lit region, ch(k0a,f) is simply the phase of the
incident field or

chðk0a;fÞ ¼ k0a sinf ð12Þ
and in the shadow, ch(k0a,f) is a linear-phase term given
by

chðk0a;fÞ ¼ k0af ð13Þ
The remaining gentle phase component cg(k0a,f) is
monotonic in both the lit and shadow regions and this is
the component of the phase which will be macromodelled.

3.2 2-D case, normal incidence
To generate diffraction currents for cylinders of arbitrary
radius the macromodels are applied to reference data
consisting of the diffraction currents from a cylinder of
moderate radius, generated from the exact solution. The
macromodels described in this Section are developed using
reference data for the TM case from a cylinder of radius 20l
and for the TE case a cylinder of radius 50l. Reasons for
the choice of these cylinder sizes to generate the reference
currents are given in more detail in Section 4.

3.2.1 Magnitude, shadow region: To begin
development of the macromodel for the diffraction current
magnitude in the shadow region, we again note that the
Fock currents in the shadow region can be evaluated in
terms of a residue series, and thus the macromodel
developed is valid throughout the shadow region. Recall
that the factor m is proportional to (k0a)

1/3 and is implicit in
the argument Z of both the ~ggðZÞ and g(Z) terms in (3) and
(4). This implies a scaling of co-ordinate f by (k0a)

1/3 for
both the TM and TE cases. For the TM case, a factor of (1/
m) is observed in (3) implying a multiplicative or weighting
factor for the TM current of (k0a)

�(1/3). Observation of (4)
shows no weighting of the TE currents in the shadow
region. Examination of diffraction currents generated by the
exact solution, however, shows that the TM weighting
factor is approximate and that there is a small weighting of
the TE currents. Empirical expressions are determined,
which are functions of k0a, to adjust for this. Applying these
scaling and weighting factors we now define the macro-
model in the shadow region, relating the diffraction current
magnitudes on a cylinder of arbitrary radius a2 to that of
the reference cylinder of radius a1 by

jJTM ;TE
D ðk0a2; fÞj ¼ aTM ;TE

s

JTM ;TE
D k0a1;

k0a1
k0a2

� �ð1=3Þ
f

 !










 ð14Þ

The weighting factor aTM ;TE
s is given by

aTM ;TE
s ¼ k0a1

k0a2

� �W TM ;TE
s ðk0a2Þ

ð15Þ
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where W TM ;TE
s ðk0a2Þ is a function of k0a and is asymptotic

in k0a, with limiting values of approximately (1/3) for the
TM case and 0 for the TE case for cylinders of large k0a.
Recognising the asymptotic behaviour of W TM ;TE

s ðk0a2Þ,
expressions for it are obtained by fitting an exponential to
the curves generated by the exact solution, and are given by

W TM
s ðk0a2Þ

¼

0:3373þ 0:009562e�0:1176k0a2

þ0:0045531e�0:04896k0a2 for 1loa2o20l

0:3348þ 0:005651e�0:01103k0a2

þ0:001721e�0:0024k0a2 for 15loa2oþ1

8>>><
>>>:

ð16Þ

W TE
s ðk0a2Þ

¼

�0:02086þ 0:01708ð1� e�0:09979k0a2Þ
þ0:006827ð1� e�0:002576k0a2Þ for 1loa2o50l

�j0:005987� 0:007045ð1� e�0:006046k0a2Þj
for 20loa2oþ1

8>>><
>>>:

ð17Þ

3.2.2 Magnitude, lit region: To macromodel the
magnitude of the JTMDz and JTEDf diffraction current in the lit

region, note that the behaviour of the diffraction current as
a function of (k0a) transitions from the shadow boundary to
the deep-lit region, and thus expressions which are also a
function of f, must be developed. Sigmoidal functions are
then used to model the transition from the shadow
boundary to the deep-lit region as a function of f.

For the TM case, we note that in the transition from
shadow to lit regions the magnitude of the diffraction
current is continuous across the shadow boundary; there-
fore (14) and (15) apply in the lit region at and very near the
shadow boundary. However, for the TE case, the
magnitude of the diffraction current across the transition
from shadow to lit is discontinuous. The PO current for the
TE case undergoes an abrupt transition from a constant in
the lit region to zero at the shadow boundary. The exact TE
current changes gradually and monotonically across the
shadow boundary. Remembering that the diffraction
current is defined as JD¼ Jex�JPO, the abrupt change in
the PO current causes a phase reversal in the TE diffraction
current and an abrupt change in the magnitude of the TE
diffraction current across the shadow boundary. This can
be seen in Fig. 5b. It was determined empirically by
observation of the exact solution that, near the shadow
boundary in the lit region, (14) and (15) can be applied for
the TE case if the factor W TE

s ðk0a2Þ is modified as follows:

W TE
l;sbðk0a2Þ ¼ �2:25W TE

s ðk0a2Þ ð18Þ

where the subscript l, sb implies the lit region at the shadow
boundary.

To define the magnitude of the diffraction currents in the
deep-lit region recall that, in the deep-lit region, the surface
currents are described by the asymptotic expansions of the
Fock functions, ~ggðZ 0Þ and g(Z0) given in (9) and (10). The
first terms in (9) and (10) are the PO currents, with higher-
order terms defining the nonuniform or diffraction currents.
In the deep-lit region, only the second terms in (9) and (10)
are needed to evaluate the diffraction current. Substituting
the second term in (9) and (10) for ~ggðZ 0Þ and g(Z0) in (7)

and (8) and evaluating the resulting expression indicates
that the diffraction current in the deep-lit region is weighted
by a coefficient of 1/(k0a), implicit in the (Z0)3 term in the
denominator of the second term in (9) and (10) (recall that
m¼ (k0a/2)

1/3). There is no scaling of the argument f in the
deep-lit region for either the TM or TE case.

Having established the behaviour of the diffraction
current magnitudes at the shadow boundary and in the
very deep-lit region, a function must be specified to change
from the shadow boundary to the deep-lit region and as a
function of f. Defining the relationship between the
diffraction current, magnitude in the lit region on a cylinder
of arbitrary radius a2 and the reference cylinder of radius a1
as

jJTM ;TE
D ðk0a2; fÞj ¼ aTM ;TE

l

JTM ;TE
D k0a1;

k0a1
k0a2

� �STM ;TE
l ðfÞ

f

 !












ð19Þ

where aTM ;TE
l is the weighting factor in the lit region given by

aTM ;TE
l ðk0a2;fÞ ¼

k0a1
k0a2

� �W TM ;TE
l ðfÞ

ð20Þ
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and the functions STM ;TE
l ðfÞ and W TM ;TE

l ðfÞ in (19) and (20)
are the powers of the scaling and weighting expressions for
the TM and TE cases, and define the transition in the lit
region from shadow boundary to deep lit as a function of f.
Recognising that these functions ought to be very gentle,
with known values at the shadow boundary (f¼ 0) and
deep-lit region (f¼ p/2), sigmoidal functions are chosen to
describe the transition. Sl and Wl are given by the following
expressions:

SlðfÞ ¼ b� c

1þ e�dð
f
2p�f0Þ

ð21Þ

and

WlðfÞ ¼ bþ c

1þ e�dð
f
2p�f0Þ

ð22Þ

where b, c, d, and f0 in (21) and (22) are constant
parameters determined by optimisation. To calculate the
optimal values for these coefficients, a simple search
algorithm is employed. The algorithm searches through a
range of values for d and f0 (b and c are defined in terms of
d and f0) and determines the values which produce
minimum error between diffraction current generated by
the exact solution and diffraction current generated by the
macromodel. The optimal values of b, c, d, and f0 for a test
cylinder of radius a¼ 200l (as the transitional behaviour of
the diffraction currents through the lit region is a function
of f only, any cylinder of radius larger than the reference
cylinders can be used as a test cylinder for optimisation of
these parameters) are given in Table 1 with the exception of

the b and c coefficients for the weighting functions W TM ;TE
l .

Remembering that the weighting functions W TM ;TE
l at the

shadow boundary are also functions of k0a, then the
coefficients b and c for the weighting functions in the lit
region must also be functions of k0a as well as f. Defining
these coefficients as bTMw ; bTEw ; cTMw and cTEw in Table 1, they
can be calculated in terms of the TM and TE weighting
functions in the lit region and at the shadow boundary. At
the shadow boundary, W TM

l is defined by W TM
s (is given by

(16)) and W TE
l is defined by W TE

l;sb ðW TE
l defined at the

shadow boundary given in (18)). These coefficients as
functions of k0a are given by

cTMw ¼ ð1� W TM
s Þ 1

1þ e�dð1�f0Þ
� 1

1þ edf0

� ��1

ð23Þ

cTEw ¼ ð1� W TE
l;sbÞ

1

1þ e�dð1�f0Þ
� 1

1þ edf0

� ��1

ð24Þ

bTM ;TE
w ¼ 1� cTM ;TE

w
1

1þ e�dð1�f0Þ

� �
ð25Þ

3.2.3 Phase, all regions: Having developed an
accurate model for the magnitude of the complex diffrac-
tion current, the next step is to macromodel the gentle phase
component for the 2-D case, described in (11). This gentle
phase component, cg(k0a, f), is monotonic for the TM case
and piecewise monotonic for the TE case, as shown in
Figs. 6a and 6b respectively. The observed behaviour of the
Fock currents again allows for prediction of the asymptotic
behaviour of this gentle phase factor in an accurate fashion.
In the shadow region, as already noted, a residue series is
applied to calculate the complex surface currents. Recall
that this residue series is a function of Z which again implies

a scaling of the argument f, implicit in Z, by (k0a)
(1/3) for

both the TM and TE cases. This scaling was determined to
be valid for the gentle phase function in the shadow region.
In addition, it was also determined empirically that this
scaling is an acceptable approximation in the lit region.
While no weighting of the gentle phase component is
implied by observation of the Fock currents, it was
observed that a small offset of cg(k0a, f) as a function of
k0a is necessary, and this offset is determined by observing
the exact solution. Thus the expression relating the gentle

Table 1: Optimised parameters for sigmoidal transition
functions

d f0 b c

STM
l ðfÞ 9.903 0.5650 0.3346 0.3391

STE
l ðfÞ 10.6 0.6630 0.3336 0.3430

W TM
l ðk0a;fÞ 10.025 0.5268 bTM

w cTM
w

W TE
l ðk0a;fÞ 8.5 0.610 bTE

w cTE
w
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Fig. 6 Gentle phase component (degrees) around full circumfer-
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cylinder at the shadow boundary, with (f/2p)¼�0.25 in the deep-
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phase component for a cylinder of radius a2 to the reference
cylinder of radius a1 is

cTM ;TE
g ðka2; fÞ ¼ OTM ;TE

þ cTM ;TE
g ka1;

k0a1
k0a2

� �ð1=3Þ
f

 !
ð26Þ

where OTM,TE is the adjustment factor for the gentle phase
term and is given, for the TM case in all regions and the TE
case in the shadow region, by

OTM ;TE
l;s ðk0a2Þ

¼

�0:07255þ 0:05857ð1� e�0:08778k0a2Þ
þ0:01777ð1� e�0:01231k0a2Þ for 1loa2o20l

�0:01608þ 0:01701ð1� e�0:01592k0a2Þ
þ0:005747ð1� e�0:002158k0a2Þ for 15loa2oþ1

8>>><
>>>:

ð27Þ
As mentioned earlier the PO current for the TE case
undergoes an abrupt transition at the shadow boundary

causing a phase reversal in the diffraction current. Thus cTE
g

is discontinuous across the shadow boundary as seen in
Fig. 6b. Consequently OTE is also discontinuous across the
shadow boundary. The relationship between OTE in the
shadow and lit regions was determined empirically to be

OTE
l ðk0a2Þ ¼ �2OTE

s ðk0a2Þ ð28Þ

3.3 Oblique incidence
To extend the macromodel to the case of oblique incidence
for both polarisations, a comparison is made between the
exact solution for a PEC circular cylinder, when excited at
both normal and oblique incidences [1]. It is observed that
the oblique solution can be obtained from that of normal
incidence by making the following modifications:

� k0a-k0a sinyi, incident wave simply ‘sees’ an effectively
smaller cylinder

� a multiplicative, progressive phase factory ejk0 cos yiz is
added

� TE current is modified by sin yi (projection factor).

An additional z-directed current is generated for the TE
case at oblique incidence angles. This current is not
independent, and its dependence on JTEf ðk0a; f; yiÞ is given
by [1]

JTEz ðk0a; f; yiÞ ¼
j cot yi
k0a sin yi

@

@f
JTEf ðk0a; f; yiÞ ð29Þ

Having an expression for JTEf ðk0a; f; yiÞ the expression for

JTEz ðk0a; f; yiÞ can be obtained. However, remembering
that JTEf ðk0a; f; yiÞ is composed of a PO component

JTEPOfðk0a; f; yiÞ and a diffraction component JTEDfðk0a; f;
yiÞ, the magnitude and phase of JTEDfðk0a; f; yiÞ is

macromodelled separately and evaluation of

@

@f
JTEDfðk0a; f; yiÞ

is not straightforward. A procedure is outlined for the
calculation of

@

@f
JTEDfðk0a; f; yiÞ

As mentioned, to generate JTEz ðk0a; f; yiÞ the term
@

@f
JTEDfðk0a; f; yiÞ

must be evaluated in terms of the macromodel. The
expression for JTEDfðk0a; f; yiÞ in terms of the macromodel

is of the form given by (14), (19) and (26) or

JTEDfðk0a2; fÞ ¼ aTE JTEDf k0a1;
k0a1
k0a2

� �STEðk0a2;fÞ
f

 !












� efjO
TEðk0a2ÞþjcTE

g ðk0a1;ð
k0a1
k0a2

Þð1=3ÞfÞge jchðk0a2;fÞ ð30Þ

The derivative of (30) with respect to f is straightforward
with the exception of two terms. These terms are the
derivatives of the magnitude and gentle phase component of
the reference cylinder, and their evaluation in terms of the
macromodel is not obvious. These terms are given by

@

@f
JTEDf k0a1;

k0a1
k0a2

� �sTEðk0a2;fÞ
f

 !












¼ @

@~ff
jJTEDfðk0a1; ~ffÞj

@~ff
@f

ð31Þ

where

~ff ¼ k0a1
k0a2

� �STEðk0a2fÞ
f ð32Þ

and

@

@f
cTE
g k0a1;

k0a1
k0a2

� �ð1=3Þ
f

 !

¼ k0a1
k0a2

� �ð1=3Þ @

@~ff
cTE
g ðk0a1; ~ffÞ

ð33Þ

where STE in (31) is the scaling factor for the TE case, given
by 1/3 in the shadow region and the sigmoidal transition
function STEl in the lit region, as described previously. While

evaluation of @~ff=@f in (31) is simple, evaluation of the
other derivatives to the right of the equal sign in (31) and
(33) is not. To evaluate these terms, we note that

@

@ ~ff
jJTEDfðk0a1; ~ffÞj

and

@

@ ~ff
cTE
g ðk0a1; ~ffÞ

in (31) and (33) are derivatives of the entire argument and
are therefore independent of k0a. We can therefore calculate
these terms directly from diffraction current in the reference
data. To do this we simply define the diffraction current in
terms of its real and imaginary parts or JTEDf ¼ X þ jY . The
derivative of the magnitude is then given by

@

@~ff
jJTEDfj ¼

XX 0 þ YY 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2 þ Y 2

p ð34Þ

and the derivative of the phase by

@

@~ff
cTE
g ¼ Y 0X � YX 0

X 2 þ Y 2
ð35Þ
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4 Validation and simulations

In the previous Section, a macromodel was developed
which relates the diffraction current on a PEC cylinder of
arbitrary radius a2 to that of a reference cylinder of radius
a1, for plane-wave excitation at oblique angles. In practice,
this macromodel allows the complex diffraction currents for
any cylinder with radius a2 illuminated by a plane wave at
oblique incidence to be generated from the diffraction
current for a reference cylinder of radius a1 when excited at
normal incidence. The reference data is generated using the
exact solution for a cylinder with a moderate value of k0a.
In this Section, the validity and accuracy of the macromodel
is examined by comparing the surface currents and near
fields generated by the eigensolution with those of the
macromodel for cylinders of radii larger than 1l. Figure 5
shows the macromodelled diffraction current magnitude for
cylinders of radii 10l and 100l excited at normal incidence
compared with the exact solution for the TM case (a) and
the TE case (b). The horizontal axes in both Figures are the
normalised angular dimension or f/2p with f/2p¼ 0, 0.5
corresponding to the top and bottom shadow boundaries
respectively. The reference cylinder radius a1 was chosen to
be 20l for the TM case and 50l for the TE case.

The choice of radius for the reference cylinder is somewhat
subjective but is based onmaintaining high accuracy not only
for cylinders of large electrical size, but also for cylinders
down to a wavelength in radius. Both the gentle phase
component and magnitude of the exact diffraction current
have ripple in the deep-shadow region, caused by creeping
wave effects, which can be seen in Fig. 5. The larger the
cylinder, the smaller (in amplitude) and more localised these
oscillations are to the deep-shadow region (f/2p¼�0.25 in
Fig. 5). For large cylinders, the level of diffraction current at
which this ripple takes place is very low and it is therefore
unlikely that this ripple would affect the near field anywhere
except perhaps very near the surface in the deep shadow, and
this implies that a larger cylinder, for the reference cylinder, is
optimum for minimising the error between the exact solution
and the macromodelled current. Smaller cylinders however,
mainly resulting from more dominate creeping wave effects,
have more variation in the diffraction current in the vicinity
of the shadow boundary, as a function of k0a, so too large a
reference cylinder will not properly model the diffraction
currents for cylinders of a smaller size. Thus the size of the
reference cylinder is chosen to optimise accuracy as cylinder
radius increases, while still being able to model cylinders of a
more moderate radius.

Note that, in the reference data, the ripple in the deep-
shadow region is removed from both the magnitude and
gentle phase components of the diffraction current, and the
remaining curve extended by assuming a continuation of the
slope of the remaining data. In addition, the macromodelled
diffraction current for the TE case (Fig. 5b) shows noticeable
error for the 10l cylinder in the lit region as normal incidence
is approached (f/2p¼ 0.25) and is attributed to increasing
error in the value of the weighting factor a for decreasing k0a.
In this region, the PO current is dominant and the error in the
total current is still within the values described previously. In
practice this has no effect on the accuracy of the total fields.

The error between the exact solution and the macro-
model was investigated from a cylinder of 1l radius up to a
cylinder with radius of 200l. In this range, the maximum
error in magnitude in the total current (PO+diffraction)
was �60dB where the magnitude error is as previously
defined or em¼ 20 log77Jex7�7Jmm77. The phase error over
this range was found to be less than 0.11 near the shadow
boundary. Figure 7 shows an example of the macromo-
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delled total current for a 100l PEC cylinder excited at
oblique incidence yi¼ p/4 as compared with the exact
current. Figure 7a and 7b show the magnitude and phase,
respectively, of the total current for the TM case. Figure 7c
shows the TE f-directed current with Fig. 7d showing the
additional z-directed current for the TE case at oblique
incidence angle. As can be seen, the macromodel agrees very
well with the exact solution in all cases.

The accuracy of the total fields (incident+scattered)
generated by the macromodelled currents is shown in Fig. 8
for the TM case (a) and TE case (b). The data shown is for
a 100l cylinder excited at oblique incidence yi¼ p/4, with
fields 1l off the cylinder surface plotted. Results from the
macromodel are again compared with the exact solution.
The scattered fields for both solutions are generated by
applying the radiation integrals to the exact and macro-
modelled total currents. The fields generated by the
macromodel are in good agreement over the entire range
shown for both the TM and TE cases. The macromodel
was shown to produce near fields that are highly accurate
over a dynamic range of greater than 85dB for cylinders of
up to 200l radius. The one exception to this is the TE f-
directed near fields at oblique incidence. As the incidence
angle approaches grazing, the TE PO current is attenuated
by a sin yi factor. As this happens, the accuracy of the TE
f-directed near fields is degraded. However, in the near
field, the TE r-directed field is the dominate field
component.

The results shown so far are for plane-wave incidence
and near-field observation. By application of reciprocity
[10], source and observation may be switched and the case
of far fields generated from a point source (small dipole)
radiating in the presence of a convex surface may be
investigated. It can be shown through reciprocity that for
identical point sources the following relationship holds:

l̂l1 � E2 ¼ l̂l2 � E1 ð36Þ
where E1, E2 are electric fields caused by point sources with

orientation l̂l1; l̂l2, respectively. If l̂l1 is radiating in the far
field of the convex surface and the corresponding electric
field E1 is observed in the near field of the surface, it is
equivalent to the plane-wave excitation problem with the
incident plane wave weighted by the dipole field coefficients
given by

Ei
dðrÞ ¼

jl1k0Z0I0
4pr

e�jk0r½��II�II � ki1 � l̂l1k̂ki1� ð37Þ

where the vector r ¼ rr̂r is defined from the axis origin
(always at the origin of the local radius of curvature) to the
dipole position, l1 is the dipole length, and I0 is the dipole
current magnitude. If l2 is the orientation of a dipole
radiating in the near field of the convex surface and
knowing the plane-wave solution (36) can be solved for
fields E2 which are the far fields generated by an
infinitesimal dipole radiating in the presence of a convex
surface. Applying this technique far-field results for the 2-D
case were generated for an infinitesimal dipole radiating in
the presence of a 20l circular PEC cylinder, which can
represent, the fuselage of an aircraft (12m diameter at
1GHz). The dipole is positioned at the top of the fuselage
(x-axis, co-ordinates in Fig. 4 apply), 0.1l away from the
surface. Figure 9 shows the far-field patterns for three
dipole orientations along with their corresponding posi-
tions. Figure 9a shows the result from a x-directed point
source with Figs. 9b and 9c showing the results from a y-
and z-directed dipole. Note that the observation point is at
the minimum for the standard far-field criteria of 2D2/l
where D is the diameter of the cylinder. Again, the fields
generated from the macromodel are in excellent agreement
with those generated by the exact solution.

5 Summary

Motivated by the shortcomings in existing high-frequency
techniques, an alternative method was sought to calculate
the diffraction currents induced on the surface of electrically
large PEC cylinders when excited by a plane wave at
oblique angles. An approach to determining these diffrac-
tion currents has been presented which is based on the
asymptotic behaviour of the Fock currents. The method
presented is highly accurate, producing total near fields with
a dynamic range of over 85dB. The macromodel developed
is algebraic in nature and simple to implement. The block
diagrams in Figs. 10 and 11 outline the procedure to
generate both the reference data and macromodelled
surface currents, respectively. To generate these macro-
modelled surface currents, the following steps are taken:

(i) Generate reference data at normal incidence (a¼ 20l for
TM, a¼ 50l for TE) using the exact solution. Remove
oscillations in reference data in deep shadow and approx-
imate by extending slope of remaining data.

(ii) Apply (14)–(17) and (18)–(25) to the magnitude of the
reference data for normal incidence to generate the
magnitude of the diffraction current in the shadow and lit
regions, respectively, for a cylinder of the desired radius.

−80

−60

−40

−20

0

−90 −72 −54 −36 −18 0 18 36 54 72 90

0

�s, deg.

a

b

−80

−60

−40

−20

|E
 T

E
|, 

dB
T

|E
 T

M
|, 

dB
T

eigensolution
macromodeled
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PEC cylinder excited by a plane wave at oblique incidence angle,
yi¼ p/4 with �901 corresponding to deep shadow and 901
corresponding to normal incidence (deep lit)
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(iii) Apply (26)–(28) to the gentle phase component of
the reference data for normal incidence to generate the
gentle phase component in the shadow and lit regions,
respectively.

(iv) To generate the TM z and TE f currents for oblique
incidence simply apply the modifications given in Section
3.3. For the additional z-directed current generated at
oblique incidence for the TE case, apply (29)–(35) to the
reference data for normal incidence to generate the
derivative of the f-directed current needed.

(v) Reference cylinder data is compressed as a function of f
when macromodelling surface diffraction current on
cylinders of larger radius than that of the reference cylinder.
Because of this, the macromodelled data does not extend
over the full range of the cylinder (deep shadow to deep lit).
To extend the macromodelled data to the full extent of the
cylinder, simply assume a continuation of the slope in the lit
and shadow regions, respectively.

(vi) If higher sampling of diffraction currents is required,
apply simple linear interpolation to the magnitude and

reference data from 
exact solution 
TM a1  = 20λ 
TE  a1  = 50λ 
10 samples/λ

normal incidence

extract PO component (2)
extract HF component
in lit region (12) and 
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use Re and Im parts of exact 
diffraction current (a1 = 50λ) and 
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Fig. 10 Generation of reference data: generate once, reference
diffraction current JD(a1)

 

 
 
 
 
 
 
 

 

−120

 

−105

 

−90

 

−75

 

−60

 

−45

 

−30

 

−15

0

90

30

210

60

240

270

120

300

150

330

180

0

 

 
 
 
 
 
 
 

0

eigensolution
macromodeled

−120

−105
−90
−75
−60
−45
−30
−15

0

−120
−105
−90
−75
−60
−45
−30

−15

90

30

210

60

240

270

120

300

150

330

180

0

90

30

210

60

240

270

120

300

150

330

180

0

a

b

c

Fig. 9 Magnitude (dB) of total far fields generated by a point
source (small dipole) radiating in presence of 20l PEC cylinder
positioned 0.1l off cylinder surface along the x axis (01 in plot) at
z¼ 0
Observation is at 2D2/l from cylinder centre and in x–y plane at z¼ 0

a jES
fj, far-field, x-directed dipole

b jES
fj, far-field, y-directed dipole

c jES
z j, far-field, z-directed dipole

apply (14) and (15) for 
general polarisation and
(16) and (17) for TM and 
TE cases, respectively.  

apply (19) − (25) for 
general polarisation and

Table 1, and (18) for 
TE polarisation

apply (26) and (27) for 
general polarisation and
(28) for TE polarisation

normal incidence - magnitude
shadow region TM, TE

lit region TM, TE

add PO 
component (2) normal incidence - phase

apply relation of (31) 
and (32) to (29) and (30) 

in Section 3.3

oblique incidence

oblique incidence 
TEz current

apply (34) − (37) to 
(33)

JD (a2)

macromodeled 
current 

add HF component
in lit and shadow 

regions (12) 
and (13)

Fig. 11 Procedure to implement macromodel: apply macromodel
to reference current JD(a1)

52 IEE Proc.-Microw. Antennas Propag., Vol. 151, No. 1, February 2004



gentle phase component of the macromodelled current to
generate additional data points.
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