
Full-System Critical Path Analysis

Ali G. Saidi† Nathan L. Binkert‡ Steven K. Reinhardt†? Trevor Mudge†

saidi@eecs.umich.edu binkert@hp.com stever@reservoir.com tnm@eecs.umich.edu

†The University of Michigan ‡Hewlett-Packard Labs ?Reservoir Labs
Department of EECS Palo Alto, California Portland, Oregon

Abstract
Many interesting workloads today are limited not by CPU pro-
cessing power but by the interactions between the CPU, mem-
ory system, I/O devices, and the complex software that ties all
the components together. Optimizing these workloads requires
identifying performance bottlenecks across concurrent hardware
components and across multiple layers of software. Common
software profiling techniques cannot account for hardware bot-
tlenecks or situations where software overheads are hidden due
to overlap with hardware operations. Critical-path analysis is a
powerful approach for identifying bottlenecks in highly concur-
rent systems, but typically requires detailed domain knowledge
to construct the required event dependence graphs. As a result,
to date it has been applied only to isolated system layers (e.g.,
processor microarchitectures or message-passing applications).

In this paper we present a novel technique for applying
critical-path analysis to complex systems composed of numerous
interacting state machines. We avoid tedious up-front modeling
by using control-flow tracing to expose implicit software state
machines automatically, and iterative refinement to add neces-
sary manual annotations with minimal effort. By applying our
technique within a full-system simulator, we achieve an inte-
grated trace of hardware and software events with minimal per-
turbation. As a result, we can perform this analysis across the
user/kernel and hardware/software boundaries and even across
multiple systems. We apply this technique to analyzing network
performance, and show that we are able to find performance bot-
tlenecks in both hardware and software, including some surpris-
ing bottlenecks in the Linux 2.6.13 kernel.

1 Introduction
A key challenge in evaluating the performance of a modern com-
puter system is that end-to-end behavior is the result of often sub-
tle interactions between many complex, concurrently operating
hardware and software components. When results do not match
expectations, locating the bottleneck component is difficult. As
architects and developers look to improve system performance,
the areas in which they should focus their effort are not neces-
sarily clear [15]. They can be left with no choice but to rely on

ad-hoc methods or intuition, which can be faulty, or to explore
a huge state space, which is costly both in terms of time and
resources.

This situation is particularly acute in high-bandwidth network
processing [7], where there is no single bottleneck that can be
easily addressed. Instead, performance losses come from the
combination of numerous overheads in interactions between the
network protocol, software running on the CPU, the memory
system, and the network interface controller [11, 18]. For exam-
ple, consider the case where the end-to-end bandwidth between
some sender and receiver is lower than expected. There are a
number of reasons that this could be the case:

• Transmit data is queued for the network interface controller
(NIC) in its DMA descriptor ring, but the NIC DMA con-
troller cannot process the descriptors quickly enough. Per-
haps the NIC cannot fetch the descriptors fast enough or the
I/O bandwidth is insufficient to fetch descriptors and pack-
ets at the rate the OS is making them available.

• There is data ready to be transmitted in the kernel, but the
device driver cannot fill the NIC’s DMA descriptors from
the kernel I/O buffers quickly enough. Perhaps the num-
ber of allocated buffers is insufficient, or the overhead of
reclaiming processed buffers is too high.

• The application has requested a transmission, but the ker-
nel’s TCP/IP protocol stack has not completed processing
the data so the device driver has not received it.

• There is data ready to be transmitted in the kernel, but the
TCP protocol is delaying transmission because the receiver
has not advertised sufficient buffer space to accept it. In this
case, the receiving system is the bottleneck; a similar exer-
cise must be repeated on that system to isolate the bottle-
neck to the NIC, device driver, kernel, application, or other
source.

• There is data ready to be transmitted in the kernel, but the
TCP protocol is delaying transmission because the number
of outstanding packets has reached the TCP congestion win-
dow size.



• The application has not requested a transmission via
write() or send(). In this case, the application is the bot-
tleneck.

Note that these reasons span from hardware through ker-
nel code up to the application on both the sending and receiv-
ing systems. Furthermore, because the transmission process is
pipelined, simply observing snapshots of system state is insuffi-
cient: at any given point in time, the application, kernel stack,
device driver, and NIC may all be actively operating on differ-
ent data units without any obvious indication of which one is
the bottleneck. Finally, each of the reasons listed is only an
intermediate determination, not a final cause. For example, if
the application or protocol processing is the bottleneck, further
analysis is required to determine which part of the code is prob-
lematic, whether the lack of performance is due to limitations in
instruction execution or memory bandwidth, etc. We have found
that the complexity of this problem generally stymies attempts
to tease out bottlenecks using traditional means such as ad-hoc
analysis of statistics or iterative testing of hypotheses.

In this paper we describe and apply a rigorous methodology
to identify bottlenecks quantitatively using critical-path analysis.
A prerequisite for critical-path analysis is an event dependence
graph representing timing constraints (PERT chart). Unfortu-
nately, since there are many interacting components, the task of
developing a global dependence graph through ad-hoc familiar-
ity with the subject matter rapidly becomes intractable. We make
the following contributions in this paper:

1. We describe an automated technique for converting systems
of multiple interacting state machines into a global depen-
dence graph suitable for performance analysis, including
bottleneck identification.

2. We show that the annotations necessary for this analysis
can be developed with modest effort and without detailed
knowledge of the particular implementation of the compo-
nents involved; in particular:

(a) state machines implicit in complex software systems,
such as the Linux kernel’s UDP and IP stacks, can be
traced with limited manual effort by relying primarily
on control-flow tracing and symbol table lookup

(b) the necessary inter-state-machine dependence annota-
tions can be uncovered using iterative refinement

3. We demonstrate an implementation of our technique that
uses a full-system multi-machine simulator to identify bot-
tlenecks across hardware/software boundaries.

Implementing our analysis using a simulator provides deter-
ministic results and easy, low-overhead observability of both
hardware and software components, along with the ability to
find performance bottlenecks in hardware designs before they are
built. We believe the techniques presented here could be applied
to real systems using instrumentation toolkits such as DTrace [5]
or the Linux Trace Toolkit [20], though the observability of hard-
ware devices would likely be more limited.

We discuss our techniques in Section 2 and our particular im-
plementation in Section 3. In Section 4 we describe an experi-
mental analysis we performed using our tools, presenting results
in Section 5. We discuss related work in Section 6, and we con-
clude and present future work in Section 7.

2 Technique
Critical-path analysis is a powerful technique for identifying the
key bottlenecks in a complex system with multiple concurrent
operations. It can also provide other useful metrics such as slack
(the amount of additional time an operation could take without
impacting the system) and speedup potential (the difference be-
tween the critical path and the next-most-critical path).

The prerequisite for critical-path analysis is a graph repre-
senting the dependences and timing between events in a system.
Building this graph for a simple system with a few events is rel-
atively simple. However, as the scope of the analysis increases,
the difficulty of building the graph increases at a faster rate: in
the extreme, the number of possible event interactions increases
as the square of the number of events. In the networking do-
main, the task of developing a global dependence graph between
the application, kernel stack code, device driver, and NIC rapidly
becomes intractable. The task requires substantial effort, and de-
tailed knowledge of all the systems involved.

We have identified a key technique that enables us to extend
critical-path analysis to a much wider scope by algorithmically
mapping the state machines that govern the behavior of individ-
ual components (software or hardware) to a global dependence
graph representing the overall execution of this collection of ma-
chines. Our technique involves two steps. First, the execution
of each individual state machine is converted into a dependence
graph. Second, the dependencies between the individual state
machines (or equivalently their dependence graphs) must be ex-
plicitly marked.

We begin by describing the conversion of an explicit state ma-
chine to a dependence graph. While some systems, such as hard-
ware devices, are designed as state machines, software normally
is not. Thus for software systems we have the additional chal-
lenge of generating a meaningful implicit state machine from
program execution. We automate this process substantially by
using program flow control information to identify states. The fi-
nal step of identifying dependences between state machines must
be performed manually. We describe how this step can be done
in an incremental, iterative fashion, eliminating the need for sub-
stantial up-front effort.

2.1 Explicit State Machines
We convert a state machine into a dependence graph by a simple
transformation. The fundamental insight is that events of inter-
est, which are the nodes in the dependence graph, correspond to
transitions (edges) in the executing state machine. Similarly the
time spent waiting between events, which are edge weights in
the dependence graph, correspond to the time spent in a state of



the state machine. There is thus a correspondence between the
states (nodes) of the state machine and the edges of the depen-
dence graph. These two equivalences are sufficient to generate a
dependence graph from the execution of a single state machine.

We illustrate the conversion of one explicit state machine in
Figure 1. An execution path through the state machine is trans-
formed into a DAG by turning each edge traversal into a node and
each node visit into an edge, with the edge weight correspond-
ing to how long the state machine remained in the corresponding
state.

When multiple state machines interact, they do so because a
transition in one state machine creates an output that induces a
transition in a different state machine. In this case, an edge must
be inserted in the dependence graph between the node represent-
ing the first state machine’s transition and the node representing
the induced transition. The weight on these inter-state-machine
edges corresponds to the communication latency between two
interacting state machines and is normally assumed to be zero.
Additionally, the weight on the other (intra-state-machine) edge
coming into the induced transition node is set to zero. This edge
corresponds to the waiting state in the consuming state machine,
which ideally has no inherent latency of its own. Setting this
weight to zero enables the correct calculation of the critical path
through the node.

This technique reduces the generation of a global dependence
graph to the description of several local state machines and
their interactions. These local state machines are often well
understood—in fact, hardware devices are often specified in
terms of these state machines—or can be derived by inspection.

To further illustrate this process, consider the state machines
presented in Figure 2. These state machines are simplified ver-
sions of three state machines in a NIC that interact to send pack-
ets out onto the network. The Descriptor Fetch state machine
DMAs buffer descriptors from main memory where the device
driver has placed them. The Transmit state machine reads these
descriptors, DMAs any packets that are referenced in them, and
places the packet in the outbound FIFO. Finally, the TX FIFO
state machine takes packets from the TX FIFO and sends them
out onto the wire.

Figure 3 shows one set of possible paths through the state ma-
chines in Figure 2. Note that the nodes are the transitions be-
tween states and not the states themselves in this graph. In the
scenario shown, the TX FIFO state machine waits on the Trans-
mit State machine, and the Transmit state machine waits on the
Descriptor Fetch state machine. Once the Descriptor Fetch state
machine has fetched a descriptor, the Transmit state machine can
DMA the associated packet and hand it off to the TX FIFO state
machine to be sent down the wire.

For our analysis, we must record two events: when the ma-
chine enters a new state (including the identity of the state being
entered) and when the machine is blocked waiting on an exter-
nal state machine (including the identity of the state machine
and state being waited on). The mechanism for recording these
events will vary, depending on both the nature of the state ma-
chine itself (e.g., software vs. hardware) and the instrumentation

environment (e.g., run-time tracing on real hardware vs. simula-
tion). In Section 3, we discuss how we annotate state machines
to record these events in our simulator-based implementation.

The resulting dependence graph (which is very similar to a
PERT chart [16]) is a fully connected DAG. (Any unconnected
component is not on the critical path and can be ignored.) Every
node in the graph corresponds to some state machine making a
state transition, and the edges between nodes are weighted with
the amount of time spent in that state. Every interaction edge rep-
resents a causal interaction and thus must point forward in time.
We call this graph a bottleneck graph (bgraph) for the remainder
of this paper.

The critical path between two nodes in the bgraph can be
found using standard graph analysis techniques. Generally, the
critical path of interest is one that starts where a request or data
is produced and ends where the result is consumed. In our future
discussion we use the term starting state machine to be any node
in the producing state machine and destination state machine to
mean any node in the consuming state machine.

2.2 Implicit state machines

It is not always the case that a component design is based on an
explicit state-machine model, particularly for software compo-
nents. Even when a software design is based on a state machine,
that structure may not be evident in the source code. Neverthe-
less, for the purposes of our analysis, each software component
must be decomposed into states where the component is busy
and states where it is waiting on an external component for input.
Given this decomposition, along with the transitions in the soft-
ware component on which other state machines wait (i.e., out-
going dependence edges), we can determine whether the com-
ponent is a bottleneck. If the component is a bottleneck, it may
be desirable to decompose its behavior further into finer-grained
states to better understand the nature of that bottleneck.

To enable non-experts to identify the state machines—even in
such substantial pieces of unfamiliar software as the UDP and
IP stacks in the Linux kernel—we can automatically generate
an initial decomposition by using function entry and exit points
(calls and returns) to delineate state boundaries. These events
can be recorded at runtime with the aid of a binary recompiler,
JIT, simulator, or VM. If the symbol table is available, the states
can be labeled according to source function names.

Given this automatic decomposition, the manual effort is re-
duced to three tasks, all of which can be performed incremen-
tally as described in the following section. All of these tasks
are handled by manual identification of points of interest using
source-code annotations. We discuss our annotation implemen-
tation further in Section 3.2.

The first task is identification of inter-state-machine depen-
dences, which is largely unchanged from the explicit state ma-
chine case. Second, the automatic decomposition may require
refining if there are places where the function-level decomposi-
tion is too coarse, e.g., if there is a waiting state in the middle of
a function. The third task arises when a single executable binary



S

B0A0 C0

B1A1 C1

B2A2 C2

B3A3 C3

A B

C

S

S

B0

A1

B2

C3

S-B0

B0-A1

A1-B2

B2-C3

S

B0

A1

B2

C3

a) b) c) d)

Figure 1: Conversion of a state machine. a) The original state machine; b) the trellis of that state machine (a DAG of all possible
state transitions in a state machine); c) the execution path through the trellis; d) the conversion of the execution path to a set of nodes
in the global dependence graph.

(e.g., an application or the Linux kernel) contains multiple state
machines. In this situation, users must indicate when the CPU’s
execution path leaves one state machine and enters another. This
event typically corresponds to a call from one subsystem into an-
other, e.g., from the protocol stack into the device driver, and is
thus not too difficult to recognize. The CPU may also switch
from one state machine to another when executing an interrupt
handler or time-slicing between applications. For software state
machines sharing a single CPU, the currently executing state ma-
chine stops running when a new state machine begins because of
an interrupt or function call.

In our experience so far, the difficulty in instrumenting soft-
ware state machines has been minimal, requiring not more than
a few hours of effort. For example, fewer than 100 lines of anno-
tations were required to instrument the entire UDP code path—
from application to driver—in a 2.6 series Linux kernel. We have
gone through the process twice now, once manually instrument-
ing all states of interest and a second time relying on a tool to
automatically generate software states as described above.

2.3 Iterative Model Construction and Verifica-
tion

A key feature of our approach is that a complete and detailed
state-machine decomposition is not required to perform anal-
ysis. As a result, users can make some minimal initial effort
towards labeling states and inter-state-machine dependences, or
use automatic tools as described above; use this information to
perform an initial analysis; then use the results of that analysis

to identify where critical modeling information is missing. This
technique allows users to construct the model through iterative
refinement, focusing their effort on the interesting and relevant
portions, and using some trial-and-error where necessary to tease
out key model attributes.

There are several tell-tale signs that a model is incomplete.
States that are occupied for extremely long periods are typi-
cally waiting on another state machine, indicating a missing
inter-machine dependence edge. Incorrect dependences can be
detected by observing when a state machine that is labeled as
waiting advances before the waited-on transition occurs. Our
implementation prints a detailed warning message in this situa-
tion. Spurious edges connecting otherwise disjoint components
often indicate that a transition between separate software state
machines was not labeled. The function-based state names pro-
duced by our automatic decomposition do a reasonably good job
of indicating the software state machine to which they belong,
aiding in identifying these situations.

If there is no path from the starting state machine to the desti-
nation state machine, there are two possibilities. One is that the
graph has disjoint components, in which case the user can direct
their attention to the state machines on either side of the dis-
connect, where a dependence has likely been overlooked. The
other possibility is that a resource along the way is so under-
provisioned that a producing state machine is always waiting on
its consumer, e.g., a queue is always full causing the producer to
stall. In this situation, only the dependence edge from the con-
sumer to the producer is created; because the system never ob-
serves the consumer waiting on the producer, the corresponding



FIFO Wait

FIFO 
Dequeue

FIFO 
Process

TX FIFO State Machine

Wire Wait

Fetch 
Complete

Fetch 
Desc

Wait

Descriptor Fetch State Machine

FIFO 
Queue

DMA 
Packet

Desc Wait

Desc 
Wback

Transmit State Machine

Figure 2: Simplified NIC State Machines

Fetch Desc → 
Fetch Complete

Fetch Complete → 
Wait

Wait → Fetch 
Desc

Desc Wait → 
DMA Packet

DMA Packet → 
FIFO Queue

FIFO Queue → 
Desc Wback

Desc Wback → 
DMA Packet

DMA Packet → 
FIFO Queue

FIFO Queue → 
Desc Wback

FIFO Wait → 
FIFO Process

FIFO Process → 
FIFO Dequeue

FIFO Dequeue → 
FIFO Wait

Time

FIFO Wait → 
FIFO Process

Figure 3: One possible bottleneck graph from the state machines illustrated in Figure 2. Note that time flows from left to right.

forward dependence edge does not exist. As a result, the graph
is not strongly connected. We have only seen this happen when
we intentionally under-provisioned a resource. The situation is
easily identified by starting at the destination state machine and
traversing inter-state-machine edges in reverse until a state ma-
chine is found that has no incoming inter-state-machine edges.

3 Implementation
In this section we describe our particular implementation of the
analysis technique described above. First we discuss the simu-
lator that we used, followed by the changes required to enable
annotation of state machines. Next we discuss the tool that pro-
cesses the recorded annotations, and finally we discuss the anal-
ysis and visualization techniques we have found useful.

3.1 M5 Simulator
Though our approach is not restricted to simulation, a simula-
tor provides benefits not easily obtainable otherwise, specifically
deterministic results and complete visibility into all aspects of
both hardware and software. For this work we use the M5 sim-
ulator [4], which models Compaq Alpha systems with enough

fidelity to boot unmodified Linux 2.6 kernels and includes a
range of hardware components including multithreaded out-of-
order processors, multi-level memory hierarchies, and I/O de-
vices. M5’s full-system simulation capability and detailed per-
formance models of memory and I/O devices are particularly im-
portant, as they provide state-machine timing information from
not only the application but also the kernel and hardware devices
to enable meaningful end-to-end critical path analysis.

3.2 Supporting Annotations

We perform an analysis experiment in two steps: first M5 sim-
ulates the system(s) of interest and outputs the annotations to
a file, then an analysis program reads the file and processes it.
Decoupling the data generation and data analysis allows interac-
tive analysis of the data. This ability comes at the cost of stor-
age space for the data; however, in practice, this requirement
has been relatively modest. One million annotation records re-
quire approximately 15MB of storage space (4MB compressed).
The amount of simulated time these annotations represent is de-
pendent on the workload and the number of states in each state
machine. Our automatic function-based approach to decompos-
ing software leads to software state machines have hundreds of



states. As a result, our current system generates a million anno-
tations for every hundredth of a second of simulated time. Due
to the cost of detailed performance simulation, a typical run may
represent only a second of real time, producing about 1.5GB of
uncompressed annotation data.

Since M5 uses software models to simulate all hardware
components, adding state-machine annotations to the hard-
ware is as simple as calling a function when the hard-
ware model changes states. We added two functions to
M5, begin(state machine, state) and wait(state machine, state,
wait state machine, wait state), which record their parameters
in a buffer. Periodically this buffer is flushed to disk.

To annotate software state machines, we leverage the simula-
tor’s ability to monitor execution with minimal system perturba-
tion. Given some processor state (PC, privilege level, etc.) the
simulator can find the nearest symbol (function name or label)
and in that way we can automatically create states from symbol
names in the kernel and applications as described in Section 2.
When the simulator observes a branch-and-link instruction, it au-
tomatically finds the target symbol and records the beginning of a
new state. However, using this technique, it is unclear what state
machine that particular state belongs to. We solve this problem
by annotating the entry and exit of state machines with pseudo-
instructions. During simulation, we maintain a stack of active
state machines, pushing the old machine each time a new state
machine is entered and popping the old machine when the cur-
rently running machine is exited. Whenever a context switch
occurs, we also change our state machine stack to the one that
matches the newly running thread. Finally, we check that state
machines are popped in the same order they are pushed, verify-
ing that all entries and exists of the state machines are properly
annotated.

In this way every function in the kernel and application can
become its own state with no overhead and the user need only
annotate the beginning and end of state machines as well as
where waiting occurs. Explicit annotations in source code are
converted (using gcc asm directives) into “pseudo-instructions”
in the application and kernel binaries. These pseudo-instructions
are encoded as unused opcodes and instruct the simulator to
take a specific action. We have four pseudo instructions: be-
ginSM(state machine), endSM(state machine), begin(state), and
wait(state, wait state machine, wait state). These instructions
mark the beginning of a state machine, the end a state machine,
entry into a state (in case the user wants to split up a large func-
tion), and waiting for a state machine, respectively. In each case
the simulator simply records the event type, time of occurrence,
and parameters involved.

3.3 Analysis

The bottleneck graph described above can be used for both data
visualization and to find the critical path. While it’s useful to
think about the graph as a whole, building the entire graph is
impractical. The graph quickly consumes memory and becomes
difficult to work with, let alone visualize. While the algorithm to

find the longest path of a DAG is straightforward [6], the time to
do these operations on millions of nodes is impractical.

We solve this problem by avoiding the need to construct the
full graph in memory. Instead we utilize the structure of the
graph to find the critical path while reading in the data produced
by our simulator. Because of the structure of the graph if the an-
notations are processed in the order that they occurred—which
is trivial to do—the critical path from a given starting state ma-
chine to the current node is either from the previous node in that
state machine or via an interaction with a different state machine.
Thus to find the critical path we only need to store the current
longest path from the start point to the newest state transition in
each state machine. Any time one state machine interacts with
another one, that state machine chooses the longer of its longest
path or the longest path from state machine it’s interacting with.
Hollingsworth et al. used a similar method for their online com-
putation of critical paths in the MPI domain [14]. With this
method our analysis program can process 1 million annotations
in approximately 80 seconds.

While the above technique can quickly find the critical path
and can provide considerable data on the graph structure for anal-
ysis, it’s also useful to visualize the graph to see how and where
various state machines interact. Unfortunately, as mentioned pre-
viously, the graph is far too large to visualize when the number
of nodes exceeds a few thousand.

To cope with this problem, we created a graphical model that
is a hybrid between a canonical state machine graph and the pre-
viously described bgraph. We call this graph a combined graph
(cgraph). Like the bgraph, cgraph nodes are state transitions;
however, there is only one cgraph node for each transition re-
gardless of the number of times that transition occurs at runtime.
These transformations result in a graph that is much easier to
visualize and work with.

An example of this combined graph (based on the NIC model
of Figures 2 and 3) is shown in Figure 4. Nodes are labeled
with the system (computer) they belong to and the transition that
is taking place. Edges are labeled with a state name and three
numbers corresponding to the number of entrances into that state,
the time spent in that state, and the time on the critical path spent
in that state. We define the criticality of a particular state as the
ratio of the time spent on the critical path in that state to the total
time on the critical path. This metric gives a quick summary
of the most important states on the critical path that is easy to
compare with other experiments. This criticality is available by
itself and is also coded on the graph by varying the edge color
from black (non-critical) to red (most critical). There are several
graph invariants:

1. For every node in the graph, the sum of the entrance count
of the outgoing edges must be equal to the sum of the en-
trance count of the incoming edges.1

2. The time on the critical path in the node can not exceed the
time spent in that node.

1This count can be off by one due to the window in which data was recorded.



1:FIFO Wait → 
FIFO Process

1:FIFO Dequeue 
→ FIFO Wait

1:FIFO Process → 
FIFO Dequeue

1:FIFO Queue → 
Desc Wback

1:DMA Packet → 
FIFO Queue

1:Desc Wait → 
DMA Packet

1:Desc Wback → 
DMA Packet

1:Fetch Complete 
→ Wait

1:Fetch Desc → 
Fetch Complete

1:Wait → Fetch 
Desc

1:Wait (1,55, 0)

1:Fetch Desc(2,20,5)

1:Fetch Complete(2,25,0)

1:DMA Packet(1,20,20)
1:FIFO Queue(2,20,20)

1:DMA Packet(1,30,30)

1:Desc Wback(2,30,15)

1:FIFO Process(2,35,10)

1:FIFO Dequeue(1,5,0)

1:FIFO Wait(2,60,0)

Figure 4: Combined bottleneck graph

3. For every system and state machine, there exists only one
node for any state transition A→ B.

4. For any edge, there can be more than one edge correspond-
ing to the same state. Multiple state transitions can end up
in state B, so an edge corresponding to state B must be able
to appear multiple times.

5. Inter-state-machine edges (dashed lines) do not represent
any time spent executing in a state machine but instead de-
scribe interactions between state machines. When a state
machine A reaches a state X in which it is waiting for an-
other state machine B to reach state Z before it can continue,
an inter-state-machine edge is placed between the successor
of state X in state machine A and the node in state machine
B that begins state Z.

In Figure 5, we show a complete cgraph based on the data
presented in the results section. All the text normally on the
graph has been removed as it would be too small to read. Though
the graph’s details are illegible, we include it to illustrate its size
and complexity. Even though the cgraph is quite large, it is many
orders of magnitude smaller than the corresponding bgraph, and
is not too difficult to navigate online using panning and zooming.
We present and discuss the most interesting portions of this graph
in the results section.

4 Methodology
We have tested our methodology by running micro-benchmarks
under Linux 2.6 on an appropriately modified copy of the M5
simulator. In the following sections we describe the benchmarks
and simulator parameters in turn.

4.1 Benchmarks
Netperf [13] is a network microbenchmark suite developed at
Hewlett-Packard. We used the UDP stream benchmark with the
system under test sending UDP packets to its peer as fast as pos-
sible. In general, the time spent executing the user-space code is

minimal; most of the processing time is spent in the networking
stack processing packets or in driver code managing the NIC.

Netperf produces a bandwidth measurement indicating the
maximum achievable communication rate between two systems.
Though the critical-path analysis identifies the bottleneck in
terms of latency, this latency bottleneck will also be the band-
width bottleneck for the pipelined transmission of multiple pack-
ets. Put another way, if a state machine is still processing a block
of data when the next block for it to process arrives it is both
a source of additional latency and limits the rate in which the
blocks of data can flow out of the system.

For the results shown in the next section we used a selection of
kernels, parameters and packet sizes, each illustrating a different
bottleneck. We started with Linux 2.6.13. After doing some ini-
tial experiments we found some interesting and unexpected per-
formance problems in the kernel’s “netfilter” code, which pro-
vides packet-filtering hooks used to implement firewalls and net-
work address translation in Linux. To further investigate these
we also used Linux 2.6.16 which fixed a number of issues with
the netfilter code. In addition we ran each kernel with netfilter
enabled and disabled.

In our simulations we used a fixed 1500 byte maximum trans-
mission unit (MTU) as is standard on the internet today. We ran
Netperf with two different UDP packet sizes, 1480 bytes (equal
to the MTU after a header is added) and 16KiB (greater than the
MTU, thus requiring fragmentation), to see how the bottlenecks
are affected when fragmentation is introduced.

4.2 Simulator Parameters
As mentioned before, we modified a copy of the M5 simulator to
support the annotating of states in hardware state machines and
in software. We configured M5 to model an Alpha 21264 sys-
tem based on the Compaq Tsunami chipset and used the default
parameters for such a system with few exceptions. The I/O la-
tencies were set to values similar to that of real hardware and the
L2 cache size was set to 8MB. Additionally, the bandwidth of the
I/O bus was set to that of a PCI-X bus (64bit, 133MHz) except
when otherwise mentioned in the results section. The I/O bus is
modeled as a generic bus, and does not model the particulars of



Figure 5: The combined graph generated by the analysis pro-
gram.

the PCI bus specification. As such the generic bus tends to have
a slightly higher effective bandwidth than a real PCI bus.

For the network interface we model an Intel 8254xGB chipset
and scaled the link performance to not be the bottleneck. The
model is accurate enough to support the standard Linux driver
for this device. We use a 10 Gbps physical link to prevent the
link itself from being the bottleneck.

All our experiments used two systems. In all cases one of the
two systems is of interest (the system under test), while the other
serves to stress the system under test. The system under test is
configured using detailed CPU and memory-system models, as
described above. The stressor is modeled with a simple 1 CPI
CPU and a perfect memory system to prevent it from being the
bottleneck and to reduce simulation time relative to modeling
detailed CPUs on both systems.

5 Results

In this section, we begin by quantifying the perturbation that our
annotations introduce. We then demonstrate the flexibility of our
critical-path analysis by showing how our technique can detect
bottlenecks at various levels of the system, including both hard-
ware and software bottlenecks.

5.1 Annotation Overhead

We analyze the perturbation that our annotations introduce into
the system by measuring the change in bandwidth between an
annotated system and an unannotated system. To verify that our
annotations are not introducing a large overhead, we compared
the performance of each configuration we present in this section
using the original kernel and application with the same experi-
ment using our annotated kernel and application.

The perturbations we saw are a result of several things: 1. a
larger binary due to the inserted pseudo-instructions; 2. different
code emitted by the compiler (since functions are of a slightly
different size the compiler could choose different optimizations
for the function); and 3. interrupts and scheduling occurring at
different times in the simulator due to the difference in the code
size and instruction counts.

We found the annotations had very little effect on the band-
width, resulting in a 3.8% change on average. This variation
included both slight increases and slight decreases relative to the
unannotated system, depending on the specific configuration.

5.2 Hardware bottlenecks

In our first experiment, we look at a Linux 2.6.13 kernel with
netfilter disabled sending 1480-byte UDP packets. We config-
ured the I/O bus to be a conventional 32-bit PCI bus running at
66MHz. This bus provides 2 Gbps of peak I/O bandwidth. How-
ever, a fraction of this bandwidth is lost to bus arbitration. An
additional portion of the bandwidth is consumed by the NIC to
manage DMA descriptors: for each DMA transfer of actual net-
work data, the NIC must read the descriptor corresponding to
that buffer, then update and write back the descriptor to mark
it as processed. In the case of the Intel NIC we model, these
descriptors are normally 16 bytes long. Finally, data may not al-
ways be ready to transfer when the bus is free, introducing idle
cycles which further reduce the effective bus bandwidth.

Simulating this configuration resulted in a bandwidth of
1813 Mbps on the link. Our critical-path analysis identified the
NIC transmit state machine as the primary bottleneck, specifi-
cally spending 96% of the time in the “DMA packet” state.

The transmit state machine portion of the combined graph
(cgraph) for this experiment is shown in Figure 6. All other
state machines have been removed from the graph, and rarely
traversed paths of the transmit state machine have been omitted
for legibility as well. As discussed in Section 3.3, each edge of
the cgraph is labeled with the name of the corresponding state in
the original state machine and the triple of values indicating the



testsys:TXS
Desc Writeback → Desc Fetch

testsys:TXS
Desc Wait → DMA Packet

Waiting for Descriptors

testsys:TXS
DMA Packet → Update Desc

testsys:TXS
Update Desc → FIFO Queue

1:Update Desc(1297,0,0) 

testsys:TXS
Desc Writeback → DMA Packet

1:DMA Packet(338,2106,2081) 

testsys:TXS
FIFO Queue → Desc Writeback

1:Desc Writeback(960,38,35) 

Descriptor available for writeback

1:Desc Writeback(338,13,13) 

1:DMA Packet(959,5847,5621) 

testsys:TXS
Desc Fetch → Desc Wait

1:Desc Wait(960,614,0)W

1:FIFO Queue (1297,23,22) 

More descriptors needed

1:Desc Fetch(960,0,0) 

Data in FIFO

Figure 6: Transmit State Machine – Combined bottleneck graph

number of visits to that state, the total time spent in the state, and
the time spent in that state on the critical path.

The state machine presented here is similar to the simplified
one we mention in Section 2. The state machine operates by
reading a locally cached descriptor, executing the action spec-
ified (DMAing a packet), queuing the packet for transmission,
updating the descriptor, and repeating. The only waiting ob-
served in this state machine during its execution was waiting for
descriptors (the dotted line at the top left of the graph). The
other intra-state-machine edges present in this graph are because
of some state machine waiting on transmit state machine.

The graph shows that the edges consuming by far the most to-
tal time and most time on the critical path (the second and third
numbers in the triple), marked in bold, both correspond to the
“DMA packet” state. The next most critical path has a critical
state in the Transmit Descriptor Fetch state machine (not shown).
Both of these clearly indicate that the I/O bandwidth is insuffi-
cient to support the rate at which the application and kernel can
generate data.

We verify this by replacing the PCI-like I/O bus (66MHz, 32-
bit) with a PCI-X-like bus (133MHz, 64bit) and rerunning the
experiment. The new bus has four times the bandwidth of the
original bus, so it should no longer be the bottleneck. Upon
rerunning the experiment—only changing the I/O bus—we ob-
served 2173Mbps of bandwidth on the link. The most critical
state was no longer in the NIC’s transmit state machine (or in the
NIC at all), but instead was the more typical bottleneck of the
(software) user-to-kernel data copy.

Our original I/O bus bottleneck would not be easily observed
via software profiling, even given detailed visibility into the ker-
nel code. The profiler would see various kernel components
working steadily, since packets are still being sent at a fast rate.

The only kernel indicator that the DMA is a bottleneck would be
number of free DMA descriptors the driver has available and the
size of the device queue. However, an execution-time profiler
would not provide any insight to the size or occupancy of these
structures.

5.3 Software and configuration bottlenecks

We now shift from looking at bottlenecks in hardware to bot-
tlenecks in software. Here again we use a Linux 2.6.13 kernel,
now with netfilter enabled, and a PCI-X-like bus. We look at
the difference in bottlenecks between sending a 1480-byte UDP
payload, the maximum size that can be sent without fragmen-
tation, and a 16 KiB payload, which must be fragmented. The
smaller payload size requires the application to perform more
system calls to send the same amount of data. On the other hand,
the larger payload must be fragmented by the transmitter and
checksummed without the help of the NIC. These differences re-
sult in different paths through the kernel and more importantly
different critical paths.

Upon running the two experiments, we noticed again that the
bottlenecks were not in the expected location of the user-to-
kernel copy, but instead being in the netfilter code. In Table 1
we show the states in which most of the time on the critical path
is spent. The most critical state in the small UDP payload ex-
periment was the netfilter function ipt do table which iterates
through the table of netfilter rules—of which there were none in
our experiment—checking the packet against each one. The ex-
periment with larger payloads showed an even more surprising
result: the most critical state was ip defrag. By showing two
different critical paths—and critical states—when only the pay-
load size is changed, our technique demonstrates its sensitivity



1480 byte payload 16KiB payload
Ip Send:ipt do table 11.36% Ip Send:ip defrag 12.78%
Ip Send:csum partial 10.23% Ip Send:memcpy 9.59%
Ip Send:nf iterate 7.38% Ip Send:ipt do table 6.94%
Ip Send: read unlock bh 3.61% Ip Send:ip copy metadata 6.90%
Ip Send: read lock bh 3.56% Ip Send:ip fragment 6.51%
Ip Send:memcpy 3.47% Ip Send:ip fast csum 4.87%
Ip Send:nf hook slow 3.42% Ip Send:nf iterate 3.84%
Ip Send:Call Pal Swpipl 3.26% Ip Send: read unlock bh 3.33%
Ip Send:ip finish output 2.95% Ip Send: read lock bh 3.12%
Ip Send:neigh resolve output 2.40% Ip Send:sock wfree 2.66%
Ip Send: remlu 2.31% Ip Send:ip finish output2 2.29%
Ip Send:skb checksum 2.26% Ip Send:neigh resolve output 2.29%

Table 1: Most critical states Linux 2.6.13 w/netfilter

to changes in workload parameters.
Additionally, we reran the analysis program to find the next

most critical path and the resulting critical states on that path.
The next most critical states are shown in Table 2. The small
payload critical path is 36% shorter than the original one and
the big payload critical path is 9% shorter. In both cases the
path returns to the user-to-kernel copy. The significantly smaller
next critical paths suggest that a large performance gain could
be achieved if the current critical path through the netfilter code
could be eliminated.

The critical paths we showed in Table 1 are a bit peculiar, espe-
cially for the larger payload. The most critical state, ip defrag,
defragments IP packets. However, the system under test is the
transmit side, which is expected only to fragment packets. In
fact, 5 rows below the ip defrag state there is an state named
ip fragment, which (with the help of some of the states in be-
tween) fragments packets that are larger than the MTU. Looking
at the combined graph or the critical path confirms that the ker-
nel is fragmenting the packet to be sent down the wire and then
almost immediately reassembling the fragments to pass them to
netfilter. This order results in a large overhead, and is an error
in the code; netfilter should be invoked before the packet is frag-
mented. This problem was fixed in Linux 2.6.16, something that
we were unaware of when we began running experiments, but
sought out after we found our surprising result.2

Turning our attention to the results for the small payload we
again see an unexpected function call, ip csum partial. While
we do expect the outgoing packet to be checksummed, we expect
the checksumming to be done by the hardware since the NIC is
capable of checksumming packets smaller than the MTU. In this
case the netfilter code erroneously believes it must calculate the
checksum manually. Again, once we investigated this issue, we
found that it had been fixed in 2.6.16.

An interesting observation from the most critical states tables
above is that netfilter states appear quite often as critical even
though no netfilter rules are present. Disabling netfilter and re-
running our experiments results in a 44% and 75% increase in

2See http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;-
a=commit;h=1bd9bef6f9fe06dd0c628ac877c85b6b36aca062.

performance for the small and large payload workloads, further
validating the bottlenecks we have identified.

To verify the fixes mentioned above, we reran our experiments
using the 2.6.16 kernel. The critical path in all the 2.6.16 experi-
ments is the user-to-kernel copy, as might be expected. Enabling
netfilter still affects performance, although not as significantly as
it did in the 2.6.13 kernels. Netfilter is on the second most criti-
cal path which is only 5% shorter than the critical path including
the user-to-kernel copy.

Unlike the PCI bottleneck described above, these netfilter bot-
tlenecks are theoretically visible to a kernel profiler. However,
the user-to-kernel copy function is still by far the dominant item
on a function-based profile, consuming roughly five times more
cycles than ip defrag in the 16 KiB payload experiment. To
discover this bottleneck with a profiler, a user would have to real-
ize that the UDP and IP stacks form a pipeline, then sum the time
spent in UDP functions and in IP functions separately to deter-
mine that the aggregate IP processing dominates. This function
categorization is not obvious, as it cannot be performed solely
based on function names. In contrast, our implicit-state-machine
approach automatically assigns functions to the appropriate state
machine once the boundary between state machines is properly
identified, and can even cope with a single static function being
called from multiple state machines. Thus our technique pro-
vides a much more direct, reliable, and automatic identification
of the bottleneck.

While many of the problems highlighted above have been
fixed in the 2.6.16 Linux kernel, our technique found these prob-
lems without any knowledge of the code or potential places that
needed improvement. This technique can be useful to people in
engaged in large or distributed development—where two pro-
grammers might not understand the interaction between their
components—or to drive future hardware development giving
engineers the ability locate and fix bottlenecks before building
a product.



1480 byte payload 16KiB payload
UDP Send: copy user 48.40% UDP Send:do csum partial copy from user 52.78%
UDP Send:ip append data 9.54% UDP Send:Call Pal Swpipl 5.86%
UDP Send:Call Pal Swpipl 6.08% UDP Send:alloc skb 4.85%
UDP Send:udp push pending frames 5.50% UDP Send:ip append data 3.43%
UDP Send:alloc skb 3.63% Ip Send:ip defrag 2.62%
UDP Send:sock alloc send skb 3.36% Ip Send:memcpy 1.93%
UDP Send:udp sendmsg 3.28% UDP Send: kmalloc 1.79%
UDP Send:ip generic getfrag 2.77% UDP Send:do csum partial copy fromiovecend 1.43%
UDP Send: spin lock bh 1.51% Ip Send:ipt do table 1.42%
UDP Send: kmalloc 1.49% Ip Send:ip copy metadata 1.37%
UDP Send:kmem cache alloc 1.41% Ip Send:ip fragment 1.31%
UDP Send:release sock 1.29% UDP Send:sock wmalloc 1.22%

Table 2: Next most critical states Linux 2.6.13 w/netfilter

6 Related Work

There is a large body of relevant work on performance analysis
and critical-path analysis.

A prerequisite for critical-path analysis is a dependence graph
representing timing constraints. Fields et al. developed a rela-
tively simple model from scratch for an out-of-order execution
pipeline [9]. In this paper and follow-on work [8, 10] the prin-
cipal concern was at the granularity of instructions; they seek to
find critical instructions and minimize the delay that each cause
through steering and scheduling. Nagarajan et al. extended this
work to the TRIPS architecture modeling their block execution
model and network links [17]. In that work, the focus shifts from
instructions to micro-architectural events. Our work shifts the
focus again upwards to system-level events.

In the networking domain, Barford and Crovella developed a
critical-path model for TCP [2]. They create a Packet Depen-
dence Graph by observing traces collected at the endpoints of a
given TCP connection, then analyze the traces using a simulation
of the TCP stack to attribute delay to one of several coarse-grain
causes (server, client, propagation delay, protocol timeout, etc.).
Unlike our work, their technique does not provide visibility into
the specific bottlenecks within the client or server systems.

Work on critical-path analysis has also been done in the MPI
domain. Yang and Miller developed a methodology to extract
critical path information from message and synchronization calls
and build a program activity graph based on these calls [21]. In
this case the authors were interested in the network’s usage, but
not its implementation. Their methodology is based on instru-
menting well defined interfaces to record events, which is not
feasible for our work because many of the components in the sys-
tems we are interested in interact via custom interfaces (e.g., the
descriptor ring between the driver and the NIC).

In all the work above, the models were developed essentially
from scratch based on familiarity with the subject domain. One
of our primary goals is to simplify model creation, allowing
much larger systems to be analyzed.

The Magpie [3] work at Microsoft Research gathered fine
grained traces of a large number of software components across

multiple systems, attributed the events in the trace to an initial
request and used machine learning techniques to find execution
anomalies for real-time performance debugging. The goal was
not to improve baseline performance, but instead find problems
in a real system relative to the expected baseline as they ran.
In similar work, Tierney et. al [19] modify applications and use
kernel logging to timestamp interesting events, which are then
visualized to help diagnose performance issues in real-time in a
large distributed system.

Aguilera et. al [1] attempt to find causal paths between mes-
sages by passively recording the traffic between systems without
any instrumentation in the machines themselves. They analyze
the collected network traces to find patterns and attempt to infer
request chains. They are able to identify the node in a distributed
system (for example the database server for a website) that is the
largest source of latency in responding to a request. However,
their technique does not provide any information about perfor-
mance bottlenecks within individual machines.

Hauswirth et. al [12] explain performance phenomena in sys-
tems composed of multiple layers of software in their Vertical
Profiling work. They use a combination of hardware perfor-
mance counters and software performance monitors to under-
stand system behavior. The information at various levels is gath-
ered separately and must be correlated manually. Additionally,
the user must know what particular software event(s) to monitor
that will provide useful information but not significantly perturb
the system.

7 Conclusion and Future Work
In this paper we have shown to how find bottlenecks in complex
hardware and software systems through critical-path analysis. In
doing so we have described a method for creating a dependence
graph without complete familiarity of all the systems involved
and proposed a method to visualize the interactions. We have
then applied these techniques, with the aid of a simulator, to the
Linux kernel, and shown that we can find both hardware and soft-
ware bottlenecks. In the process, we identified two problems that
existed in the Linux 2.6.13 kernel that we did not know about.



We believe that the techniques described here can greatly as-
sist architects by replacing ad-hoc methods based on intuition
with a rigorous method. These methods not only can help find
performance bottlenecks, but also quantify the possible perfor-
mance gain achievable. Furthermore, using these techniques can
minimize the number of experiments an architect would nor-
mally run by focusing attention to the bottlenecks at hand.

We have a great deal of future work planned. In the near term
we hope to analyze the performance bottlenecks inside the Linux
TCP stack and extend this methodology to multi-processor sys-
tems. While it would be very difficult to analyze hardware on a
real system, we would like to apply our technique to the analyze
the software on a real system using a tracing toolkit. Finally, we
hope apply these techniques to completely different systems, for
example the cache hierarchy in a multiprocessor.

Acknowledgments

We would like to thank Kevin Lim and Lisa Hsu for their sugges-
tions on early drafts of this paper and the anonymous reviewers
for their helpful comments. This work was supported by a gift
from Sun Microsystems.

References

[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and
A. Muthitacharoen. Performance debugging for distributed
systems of black boxes. In Proc. Nineteenth ACM Symp.
on Operating System Principles (SOSP), pages 74–89, New
York, NY, USA, 2003. ACM Press.

[2] P. Barford and M. Crovella. Critical path analysis of TCP
transactions. In Proc. SIGCOMM ’05, pages 127–138,
2000.

[3] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan. Mag-
pie: on-line modelling and performance-aware systems. In
9th Workshop on Hot Topics in Operating Systems (HotOS
IX), pages 85–90, May 2003.

[4] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G.
Saidi, and S. K. Reinhardt. The M5 simulator: Model-
ing networked systems. IEEE Micro, 26(4):52–60, Jul/Aug
2006.

[5] B. Cantrill. Hidden in plain sight. Queue, 4(1):26–36,
2006.

[6] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson.
Introduction to Algorithms. McGraw-Hill Higher Educa-
tion, 2001.

[7] W. Feng et al. Optimizing 10-Gigabit Ethernet for networks
of workstations, clusters, and grids: A case study. In Proc.
Supercomputing 2003, Nov. 2003.

[8] B. Fields, R. Bodı́k, and M. D. Hill. Slack: maximizing
performance under technological constraints. In Proc. 29th
Ann. Int’l Symp. on Computer Architecture, pages 47–58,
Washington, DC, USA, 2002. IEEE Computer Society.

[9] B. Fields, S. Rubin, and R. Bodik. Focusing processor poli-
cies via critical-path prediction. In Proc. 28th Ann. Int’l
Symp. on Computer Architecture, pages 74–85, May 2001.

[10] B. A. Fields, R. Bodik, M. D. Hill, and C. J. Newburn. Us-
ing interaction costs for microarchitectural bottleneck anal-
ysis. In Proc. 36th Ann. Int’l Symp. on Microarchitecture,
pages 228–239, Dec. 2003.

[11] A. P. Foong, T. R. Huff, H. H. Hum, J. Patwardhan, and
G. J. Regnier. TCP performance re-visited. In Proc. 2003
IEEE Int’l Symp. on Performance Analysis of Systems and
Software, pages 70–79, Mar. 2003.

[12] M. Hauswirth, P. F. Sweeney, A. Diwan, and M. Hind.
Vertical profiling: understanding the behavior of object-
oriented applications. In Proc. 19th Ann. Conf. on Object-
Oriented Programming Systems, Languages and Applica-
tions (OOPSLA ’04), pages 251–269, New York, NY, USA,
2004. ACM.

[13] Hewlett-Packard Company. Netperf: A network perfor-
mance benchmark. http://www.netperf.org.

[14] J. K. Hollingsworth. An online computation of critical path
profiling. In Proc. SIGMETRICS Symp. on Parallel and
Distributed Tools (SPDT’96), pages 11–20, New York, NY,
USA, 1996. ACM Press.

[15] D. Kegel. Mindcraft redux. http://www.kegel.com/
mindcraft_redux.html, Jan. 2003.

[16] K. G. Lockyer. An Introduction to Critical Path Analysis.
Pitman Publishing Co., 1964.

[17] R. Nagarajan, X. Chen, R. G. McDonald, D. Burger, and
S. W. Keckler. Critical path analysis of the TRIPS archi-
tecture. In Proc. 2006 IEEE Int’l Symp. on Performance
Analysis of Systems and Software, pages 37–47, Mar. 19–
21, 2006.

[18] G. Regnier, S. Makineni, R. Illikkal, R. Iyer, D. Minturn,
R. Huggahalli, D. Newell, L. Cline, and A. Foong.
TCP onloading for data center servers. IEEE Computer,
37(11):48–58, Nov. 2004.

[19] B. Tierney, W. Johnston, B. Crowley, G. Hoo, C. Brooks,
and D. Gunter. The netlogger methodology for high perfor-
mance distributed systems performance analysis. In Proc.
7th Int’l Symp. on High Performance Distributed Comput-
ing, page 260, Washington, DC, USA, 1998. IEEE Com-
puter Society.

[20] K. Yaghmour and M. Dagenais. System administration:
The Linux trace toolkit. Linux J., 2000(73es):22, 2000.

[21] C.-Q. Yang and B. P. Miller. Critical path analysis for the
execution of parallel and distributed programs. In Proc. 8th
Int’l Conf. on Distributed Computing Systems, pages 366–
373, June 1988.


