
Analyzing NIC Overheads in Network-Intensive Workloads

Nathan L. Binkert, Lisa R. Hsu, Ali G. Saidi,
Ronald G. Dreslinski, Andrew L. Schultz, and Steven K. Reinhardt

Abstract—Keeping up with modern high-bandwidth networks is a significant challenge for system designers. A key obstacle
to high network throughput is the high overhead of communication between the CPU and network interface controller (NIC),
which typically resides on a standard I/O bus with high access latency. We investigate the impact of this overhead by analyz-
ing the performance of hypothetical systems in which the NIC is more closely coupled to the CPU, including integration on the
CPU die, using three network-intensive benchmarks. We find that systems with high-latency NICs spend a significant amount
of time in the device driver. NIC integration can substantially reduce this overhead, providing significant throughput benefits
when other CPU processing is not a bottleneck. NIC integration also enables cache placement of DMA data; this feature has
tremendous benefits when payloads are touched quickly, but can harm performance in other situations due to cache pollution.

Index Terms—Hardware/software interfaces, I/O and data communications, modeling of computer architecture, simulation.

1 INTRODUCTION
N the past decade, the role of computers in society has under-
gone a dramatic shift from standalone processing devices to
multimedia communication portals. As a result, TCP/IP net-

working has moved from an optional add-on feature to a core sys-
tem function. Ubiquitous TCP/IP connectivity means that
network I/O can no longer be considered an afterthought in com-
puter system design.

Nevertheless, network interface controllers (NICs) in main-
stream computers continue to be treated as generic peripheral
devices connected through standardized I/O busses. While the
PCI-X 2.0 and PCI Express standards are addressing this raw
bandwidth mismatch of 10Gbps Ethernet (20Gbps full-duplex)
and PCI-X (8.5Gbps), these standards do not fundamentally
reduce the latency of communication between the CPU and the
network interface, which currently stands at thousands of CPU
cycles (see Section 3).

One approach to addressing this bottleneck is to optimize the
interface between the NIC and the CPU [3, 4, 7, 8, 15]. Most pro-
posals in this area focus on redesigning the hardware interface to
reduce or avoid overheads on the CPU, such as user/kernel con-
text switches, memory buffer copies, segmentation, reassembly,
and checksum computations. The most aggressive designs, called
TCP offload engines (TOEs), attempt to move substantial por-
tions of the TCP protocol stack onto the NIC [1]. These schemes
address the I/O bus bottleneck by having the CPU interact with
the NIC at a higher semantic level, which reduces the frequency
of interactions. Some researchers have addressed I/O bus band-
width by using NIC memory as a cache, eliminating bus transfers
[16, 10].

This paper examines the impact of NIC access latency directly
by modeling systems in which the NIC is moved progressively
closer to the CPU, including integration directly on the CPU die.

We model these hypothetical systems using detailed full-system
simulation, and evaluate them under three network-intensive sce-
narios: a web server, an NFS server, and a network address trans-
lation (NAT) server. We find that systems with high-latency NICs
spend a significant amount of time in the device driver. NIC inte-
gration can substantially reduce this overhead, providing signifi-
cant throughput benefits when other CPU processing is not a
bottleneck. NIC integration also enables cache placement of
DMA data; this feature has tremendous benefits when payloads
are touched quickly, but can harm performance in other situations
due to cache pollution.

This paper begins with a discussion of the options for NIC
placement (Section 2), followed by a description of our simula-
tion environment in Section 3 and our benchmarks in Section 4.
Section 5 presents simulation results, and Section 6 presents our
conclusions and future work.

2 NIC PLACEMENT OPTIONS
To investigate the impact of changing the location of the NIC

in the memory hierarchy, we chose a set of five configurations
(Figure 1). The first system, standard PCI Express (STE), has an
off-chip memory controller and a dedicated PCI Express x4 chan-
nel for the 10GigE NIC hanging off an I/O bridge. The Hyper-
Transport PCI Express (HTE) configuration represents a similar
system with an on-chip memory controller. In this case, the sys-

I

• N.L. Binkert, L.R. Hsu, A.G. Saidi, R.G. Dreslinski, and S.K. Reinhardt
are with the Department of Electrical Engineering and Computer Sci-
ence, University of Michigan, Ann Arbor, MI 48109-2122. E-mail: {bink-
ertn, hsul, saidi, rdreslin, stever}@eecs.umich.edu.

• A.L. Schultz is with the Department of Electrical Engineering and Com-
puter Science, University of California, Berkeley, CA 94720-1770. E-
mail: alschult@eecs.berkeley.edu.

Figure 1: NIC placement options.

STE
HTEHTD

OCC

OCM

L2

CPU

Mem

SB NB

Disk

B
(io)

NI

B
(io)

MemBus

PCIE PCIX

L2

CPU

Mem

NB

NI

B

MemBus

HT

L2

CPU

Mem
NB

Disk

B
(cs)

NI

MemBus

PCIX

HT

NI

Disk

B
(cs)

NI

B
(io)

PCIE PCIX

tem has one fewer chip separating the NIC from the CPU. STE
and HTE are both aggressive I/O designs expected to be common
in the near future. The HyperTransport direct (HTD) configura-
tion represents a potential design for systems that implement stan-
dard I/O high speed interconnection with the NIC attaching to one
of these ports. This would be analogous to attaching a NIC
directly to a 6.4GB/s HyperTransport channel. The fourth and
fifth configurations, on-chip memory-bus-attached (OCM) and
on-chip cache-attached (OCC) represent integrating the NIC onto
the CPU die. There are systems in existence today that have an
integrated NIC, but we are specifically interested in the case
where the NIC has direct access to the high speed memory and
cache busses. The fourth design attaches the NIC directly to the
memory bus to provide very high bandwidth and low latency
while the fifth goes one step further and attaches the NIC to the
bus between the CPU core and its last level cache (LLC). Though
no detailed analysis was provided, other researchers have shown
[12] that the final configuration provides the potential vast perfor-
mance improvements. These improvements can be attributed to
decreased latency and fewer memory bus crossings. In addition,
on the receive side, direct attachment eliminates cold cache
misses that are generally necessary when dealing with received
data because data is provided directly to the LLC. It is important
to note that there is of course a potential downside to placing data
directly in the cache—pollution. We present a variation on the
final two configurations, on-chip split (OCS), where the NIC is
attached to both the cache bus and the memory bus. In this setup,
we provide header data directly to the cache and the payload data
to memory in hopes of attaining the best of both worlds.

3 SIMULATOR PLATFORM
Evaluation of alternative NIC architectures is usually done by

emulation on a programmable NIC or by hardware prototyping.
While these approaches allow modeling of different NICs in a
fixed system architecture, unfortunately they do not lend them-
selves to modeling a range of system architectures as we have
described in the previous section. We thus turn to the M5 simula-
tor1 for our investigation [2]. The M5 simulator is capable of
booting unmodified Linux kernels; in particular, we used Linux
2.6.8.1 for this work.

M5 has a detailed CPU timing model to capture the primary
timing impact of system-level interactions, including properly
modeling memory barrier instructions, uncached memory
accesses (e.g. for programmed I/O) and executes actual Alpha
PAL code to handle interrupts and traps. To provide deterministic,
repeatable simulation of network workloads, as well as accurate
simulation of network protocol behavior, M5 models multiple
systems and the network interconnecting them in a single process.
We also use a detailed and realistic memory model capable of
modeling busses of different bandwidths as well as store and for-
ward bridges with different latencies.

The Ethernet NIC model used in M5 is based on the National
Semiconductor DP83820 Gigabit Ethernet device with some
minor bug-fixes and an MTU of 1500 bytes. We found we had to
implement interrupt coalescing to reduce the actual number of

interrupts posted so as not to overwhelm the CPU. We use a
fixed-delay scheme in which the device uses a timer to defer
delivering a packet interrupt for a specified time (10us in our
experiments).

The parameters we used in modeling the configurations of Sec-
tion 2 are listed in Table 1. We are modeling the approximate
characteristics of these systems, rather than absolute performance,
so some of these parameters are approximations. In addition to
the parameters shown, it is worth noting that we also add a
bridge-dependent latency penalty for each bus bridge that con-
nects devices on separate chips. These bridge latencies were
tuned based on measurements taken from real hardware using a
custom written Linux kernel module. Table 2 presents timings for
devices on three real machines in four different locations corre-
sponding to NIC locations that we studied.

The peripheral device, similar to the PCIE configuration, repre-
sents a modern device hanging off a commodity I/O bus, in which
multiple bridges need to be crossed to access the device. The off
north bridge (NB) location is similar to our HTE configuration,
where a standard I/O bus is connected to the NB directly. Simi-
larly the HTD configuration could be realized by physically inte-
grating the NIC into the NB. Thus we used the access latency
comparable to that of an integrated NB device.

OCM is represented by measurements for a device integrated
on the CPU die. The Alpha EV6 has no such devices, but both
Pentium chips have an integrated local I/O APIC. These devices
have an access time of 3x-4x more than the on-chip access time
we modeled. However, we believe these devices were not
designed to minimize latency, and that an integrated NIC could be
designed with an access time closer to that of a cache.

We measured the memory access latencies for our configura-
tions with an on-chip and off-chip memory controller. With our
memory configurations an on-chip memory controller has as

1. http://m5.eecs.umich.edu provides more details

Table 1: Simulated System Parameters

Frequency 4 GHz, 6 GHz, 8 GHz, or 10 GHz

Fetch Bandwidth Up to 4 instructions per cycle

Branch Predictor Hybrid local/global (ala 21264).

Instruction Queue Unified int/fp, 64 entries

Reorder Buffer 128 Entries

Execution BW 4 insts per cycle

L1 Icache/Dcache 128KB, 2-way set assoc., 64B blocks, 16MSHRs
Inst: 1 cycle hit latency Data: 3 cycle hit latency

L2 Unified Cache 4MB or 16MB, 8-way set assoc. 64B block size,
25cycle latency, 40 MSHRs

L1 to L2 64 bytes per CPU cycle

L2 to Mem Ctrlr 4 bytes per CPU cycle

HyperTransport 8 bytes, 800 MHz

Main Memory 65 ns latency for off-chip controller, 50 ns on-chip

Table 2: Uncached access latencies
latency ± standard deviation (all in ns)

Device
Location

Alpha
DP264

Pentium III
933MHz

Pentium 4
3GHz Simulator

Peripheral 788 ± 40 835 ± 54 803 ± 24 773 ± 8.6
Off NB — 423 ± 49 392 ± 21 381 ± 7.2
On NB 475 ± 26 413 ± 61 216 ± 16 190 ± 2.0
On Die — 132 ± 52 82 ± 3 30 ± 2.9

access latency of 50ns and an off-chip memory controller has a
latency of 65ns. In both cases our results are similar to the pub-
lished [11] numbers of 50.9ns and 72.6ns respectively.

4 BENCHMARKS
For our evaluation, we used several standard benchmarks: net-

perf [9], a modified SPECweb99 [14], and NFS with a Bonnie++
[5] stressor. All benchmarks were simulated in a client-server
configuration. The system under test was modeled in detail, with
detailed CPU, timing, and memory modeling. The other system
was run artificially quickly (simple in-order functionally modeled
CPU with perfect memory system) to keep it from being the bot-
tleneck in the simulation. In addition to the simple client-server
setup, the netperf and SPECweb99 benchmarks were simulated in
a network address translation (NAT) configuration with the client
system accessing the server through a NAT box.

Netperf is a simple network throughput and latency
microbenchmark tool developed at Hewlett-Packard. We focus on
two of the many microbenchmarks that are included in netperf:
stream, a transmit benchmark; and maerts, a receive benchmark.
In both of these, the netperf client opens a connection to the
machine running the netserver and sends data at the highest rate
possible.

SPECweb99 (Specweb) is a well-known webserver benchmark
that stresses the performance of a server machine. Simulated cli-
ents generate web requests to form a realistic workload for the
server, consisting of static and dynamic GET and POST opera-
tions over multiple HTTP 1.1 connections. Specweb also involves
dynamic ad rotation using cookies and table lookups. The original
benchmark is intended to be tuned to determine the maximum
number of simultaneous connections a server is able to handle.
However, iterative tuning is impractical for our purposes due to
the relative slowdown of our simulated environment. We created
our own benchmark client that generates Specweb client requests
using the same statistical distribution as the original clients, but
without the throttling. Our version thus continuously generates
packets until the link bandwidth is saturated. We use the Apache
http server, version 2.0.52, with a maximum of 100,000 clients
and 50 threads per child.

NFS is a network file system from Sun. We ran Bonnie++, a
simple benchmark for testing hard drive and file system perfor-
mance, on our client to exercise a remote NFS server. The Bon-
nie++ tests we utilized consist of a series of block writes across
the network.

For our NAT configurations, we simply placed another
machine between the server and client to act as a NAT machine.
The client’s requests are translated by the NAT machine from a
private network address to the address of the NAT machine, so
that the client’s true IP address is hidden from the server by the
NAT box. When conducting these experiments, the system under
test was the NAT machine.

The results we present in the next section were composed from
a single sample of 200 million cycles from the above mentioned
benchmarks. However, we did run many of the configurations for
an extended period of time taking 50 or more samples of 200 mil-
lion cycles each. These results show a coefficient of variation of
less than 10% for all metrics we discuss in this paper. Further-

more if we increase the cycle time to 400 million cycles the coef-
ficient of variation decreases to around 5%. We consider these
results stable and intend to re-run all our numbers using a 400
million cycle sample time in the near future. An exception to this
is our NFS benchmark which does not run long enough to take as
many samples as we would like.

5 RESULTS
We first examined the behavior of our simulated configurations

using the netperf microbenchmark, varying CPU speed and last -
level cache (LLC) size. We then use our application benchmarks
(web, NFS, and NAT) to explore the performance impact of our
system configurations under more realistic workloads.

5.1 Microbenchmark Results
Figure 2 plots the achieved bandwidth of our TCP receive

microbenchmark across our six system configurations, four CPU
frequencies (4, 6, 8, and 10 GHz) and two cache sizes. Although
the higher CPU frequencies are not practically achievable, they
show the impact of reducing the CPU bottleneck, which will
likely be achievable through multiprocessing (at least for the
macrobenchmarks below which exhibit easily exploited connec-
tion-level parallelism). The integrated NICs universally provide
higher performance, though their advantage over the direct
HyperTransport interface is slight at lower frequencies when the
benchmark is primarily CPU-bound. The more tightly coupled
interfaces also get more of a boost from larger LLC sizes. In some
situations, the in-cache DMA configuration (OCC) provides

4GHz 6GHz 8GHz 10GHz

B
a
n
d
w

id
th

 (
G

b
p
s)

0

2

4

6

8

10

ste
hte
htd
ocm
occ
ocs

4GHz 6GHz 8GHz 10GHz

B
a
n
d
w

id
th

 (
G

b
p
s)

0

2

4

6

8

10

ste
hte
htd
ocm
occ
ocs

Figure 2: TCP receive microbenchmark performance.
(Top: 4MB, Bottom: 16MB)

higher performance than OCM and OCS. The explanation for this
difference can be seen in Figure 3, which shows the number of
last-level cache misses per kilobyte of network bandwidth for
these configurations. When the cache is large enough to hold all
of the network receive buffers, OCC dramatically reduces the
number of cache misses incurred. Interestingly, this condition is a
function of both the cache size and the CPU speed: a faster CPU
is better able to keep up with the network and thus its buffers fit in
a smaller cache. Because our microbenchmark does not perform
any application-level processing, the cache pollution induced by
OCC when the cache is too small does not negatively impact per-
formance. We will see a counterexample when we look at mac-
robenchmarks below.

Figure 4 breaks down CPU utilization for the same configura-
tions just described. Clearly, moving the NIC closer to the CPU
drastically reduces the amount of time spent in the driver, as it
reduces the latency of accessing device registers. This translates
directly to the higher bandwidths of Figure 2. However, most
cases are still CPU-bound, as can be seen by the idle times shown.
Only with the OCC configuration are we able to make even the
10GHz CPU powerful enough to cease being the bottleneck, as
can be seen by its much increased idle time percentage. OCC
reduces the time spent in copy, since the source locations of data
from the network are in the cache rather than in memory. Though
this reduction occurs in all configurations, it is not uniform across
all CPU speeds. This is because copy time goes hand in hand with
misses/kB -- when there is a miss in the cache, you must copy the
data in from memory. Looking at all three graphs together tells

you that OCC at 10GHz saturates the network at 10Gbps, as some
other configurations also manage to do, but only OCC at 10GHz
has idle capacity in the CPU to perform other tasks.

Figure 4 also illustrates a potential pitfall of integration: over-
responsiveness to interrupts. Because the CPU processes inter-
rupts much more quickly with the on-chip NIC, it processes fewer
packets per interrupt, resulting in more interrupts and higher
interrupt overhead.

Figure 5 presents the performance, cache, and cpu utilization
results for the TCP transmit microbenchmark at a 4MB last-level
cache size. For this microbenchmark, we configured the sender to
not touch the payload data before it is sent. The result here is sim-
ilar to what one might see in a web-server where the content is
static. Since the payload data is not touched, a larger cache size
does not change the results as compared to a 4MB LLC, making
presentation of these results unnecessary.

At low frequencies, on-chip NICs exhibit a noticeable perfor-
mance improvement over direct HyperTransport; because trans-
mit is interrupt intensive, low-latency access to the NIC control
registers speeds processing. Again, we see that faster processors
increase the utility of in-cache DMA, as they have fewer out-
standing buffers and are thus more likely to fit them all in the
cache. Although all of the configurations have some idle time,
with the faster CPUs the on-chip NICs have a distinct advantage
over HTD. When looking at the cache performance results, the
bulk data transfer is done by DMA reads rather than writes, DMA
data placement affects only headers and acknowledgment pack-

4GHz 6GHz 8GHz 10GHz

M
is

se
s

/ K
B

0

5

10

15

20

25

30
ste
hte
htd
ocm
occ
ocs

4GHz 6GHz 8GHz 10GHz

M
is

se
s

/ K
B

0

5

10

15

20

25

30
ste
hte
htd
ocm
occ
ocs

Figure 3: TCP receive microbenchmark misses per kilobyte.
(Top: 4MB, Bottom: 16MB)

4 Ghz 6 Ghz 8 Ghz 10 Ghz

%
 C

P
U

 T
im

e

0

20

40

60

80

100

ste ste ste stehte hte hte htehtd htd htd htdocm ocm ocm ocmocc occ occ occocs ocs ocs ocs

idle
other
user
copy
bufmgt
stack
driver
interrupt

4 Ghz 6 Ghz 8 Ghz 10 Ghz

%
 C

P
U

 T
im

e

0

20

40

60

80

100

ste ste ste stehte hte hte htehtd htd htd htdocm ocm ocm ocmocc occ occ occocs ocs ocs ocs

idle
other
user
copy
bufmgt
stack
driver
interrupt

Figure 4: TCP receive microbenchmark CPU utilization.
(Top: 4MB, Bottom: 16MB)

ets, giving OCC and OCS similar performance, but only slightly
ahead of OCM.

The high idle time in STE and HTE is due to poor overload
behavior; note that the link bandwidth is only a fraction of what
HTD and the on-chip interfaces achieve. We are investigating
whether this behavior is due to our device model, the NS83820
driver, or is inherent in Linux 2.6.

5.2 Macrobenchmark Results
While the microbenchmark results provide valuable insight

into the fundamental behavior of our configurations, they do not
directly indicate how these configurations will impact real-world
performance. To explore this issue, we ran the three application-
level benchmarks described in Section 4: the Apache web server,
an NFS server, and a NAT gateway. Although we ran with both

4 MB and 16 MB caches, we present only the 4 MB results here.
For each benchmark, we show network throughput, L2 cache
misses per kilobyte of network data transmitted, and a breakdown
of CPU time.

The web server results are shown in Figure 6. In this test, we
can see that the 4 GHz runs are CPU limited and only very minor
performance improvements are realized by tighter integration of
the NIC. On the other hand, the 10 GHz runs are network bound
and achieve marked improvement in bandwidth when the NIC is
tightly integrated. While a 10 GHz CPU may never be realized, a
webserver benchmark is highly parallel, and this single-cpu
10 GHz system performance could readily be achieved by a chip
multi-processor system. Another thing that stands out in these
graphs is that OCC has the opposite effect of misses/kB with the
webserver benchmark as compared to the microbenchmarks. This

4GHz 6GHz 8GHz 10GHz

B
a
n
d
w

id
th

 (
G

b
p
s)

0

2

4

6

8

10

ste
hte
htd
ocm
occ
ocs

4GHz 6GHz 8GHz 10GHz

M
is

se
s

/ K
B

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
ste
hte
htd
ocm
occ
ocs

4 Ghz 6 Ghz 8 Ghz 10 Ghz

%
 C

P
U

 T
im

e

0

20

40

60

80

100

ste ste ste stehte hte hte htehtd htd htd htdocm ocm ocm ocmocc occ occ occocs ocs ocs ocs

idle
other
user
copy
bufmgt
stack
driver
interrupt

Figure 5: TCP transmit microbenchmark results.

4GHz 6GHz 8GHz 10GHz

B
an

dw
id

th
 (

G
bp

s)

0

1

2

3

4

5
ste
hte
htd
ocm
occ
ocs

4GHz 6GHz 8GHz 10GHz

M
is

se
s

/
K

B

0

5

10

15

20

ste
hte
htd
ocm
occ
ocs

4 Ghz 6 Ghz 8 Ghz 10 Ghz

%
 C

P
U

 T
im

e

0

20

40

60

80

100

ste ste ste stehte hte hte htehtd htd htd htdocm ocm ocm ocmocc occ occ occocs ocs ocs ocs

idle
other
user
copy
bufmgt
stack
driver
interrupt

Figure 6: Web server benchmark.

is unsurprising since the working set of this application is actually
non-trivial, unlike the microbenchmarks. Thus, the OCC configu-
ration actually pollutes the cache and reduces cache performance.
One thing that is important to note is that in this case, the misses
occur to userland data not related to the networking. This is evi-
denced by the fact that the fraction of time spent copying does not
increase even though misses per kilobytes increases. Because of
the pollution, it is clear that OCS, which is the hybrid OCC/OCM
configuration, achieves the lowest cache miss rate out of all con-
figurations.

Figure 7 shows the NFS server for the various configurations.
Again, the 4 GHz runs are largely CPU bound and do not exhibit
significant performance improvement with the on-chip NICs.
Here, the interplay between network buffer sizing and CPU
speeds is clearly illustrated. When looking at the bandwidth and

misses/kB graphs, OCC clearly just pollutes the cache. However,
at 10GHz, despite having the same cache size, OCC is a boon to
performance. This has to do with the rate at which the CPUs can
pick up packets for processing. Since the 10GHz machine is so
fast, the buffering it requires is less, thus the appearance of work-
ing set sizes changing with CPU speed. As with the microbench-
mark, moving the NIC closer to the CPU drastically reduces the
amount of time spent in the driver since it reduces the latency of
accessing device registers. In addition, the time spent copying is
similarly proportional to the misses. In nearly all cases, these
effects result in improved bandwidth due to the loosening of the
CPU bottleneck.

Figure 8 shows the NAT gateway performance. In this case, we
are running the TCP receive microbenchmark between two hosts
on either side of the gateway. The poor performance in the low

4GHz 6GHz 8GHz 10GHz

B
an

dw
id

th
 (

G
bp

s)

0

2

4

6

8

10
ste
hte
htd
ocm
occ
ocs

4GHz 6GHz 8GHz 10GHz

M
is

se
s

/ K
B

0

10

20

30

40

50

60

70

80
ste
hte
htd
ocm
occ
ocs

4 Ghz 6 Ghz 8 Ghz 10 Ghz

%
 C

P
U

 T
im

e

0

20

40

60

80

100

ste ste ste stehte hte hte htehtd htd htd htdocm ocm ocm ocmocc occ occ occocs ocs ocs ocs

idle
other
user
copy
bufmgt
stack
driver
interrupt

Figure 7: NFS server benchmark

4GHz 6GHz 8GHz 10GHz

B
a
n
d
w

id
th

 (
G

b
p
s)

0

2

4

6

8

10

ste
hte
htd
ocm
occ
ocs

4GHz 6GHz 8GHz 10GHz

M
is

se
s

/ K
B

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
ste
hte
htd
ocm
occ
ocs

4 Ghz 6 Ghz 8 Ghz 10 Ghz

%
 C

P
U

 T
im

e

0

20

40

60

80

100

ste ste ste stehte hte hte htehtd htd htd htdocm ocm ocm ocmocc occ occ occocs ocs ocs ocs

idle
other
user
copy
bufmgt
stack
driver
interrupt

Figure 8: NAT gateway benchmark:

performance configurations is due to poor behavior under over-
load conditions. The insertion of a NAT machine that is modeled
in detail between a fast server and client is potentially a major
cause of network congestion in our simulation. The configura-
tions with unexpectedly significant idle time in their NAT runs do
have packets dropped at the NAT box, and we believe the poor
performances are due to the TCP stack attempting congestion
control at the endpoints. But our runs do not run long enough to
achieve steady state to confirm this, and we are still looking into
other possibilities. However, this hypothesis makes sense since
the faster CPUs, coupled with the low-latency NIC placements do
not have trouble, since the increased speeds allow the NAT
machine to not drop packets.

The misses/kB graph shows that the OCC configuration elimi-
nates all misses, while the OCS eliminates misses on only header
data, as we had hoped for. Also note that for this configuration,
OCC and OCS are able to saturate the network link while having
CPU to spare.

Overall, tighter integration is clearly a performance win in all
cases, but the best performer varies depending on the application.
DMAing directly to the cache can yields huge performance differ-
ences in some circumstances while hurting performance in others.
The header splitting configuration is a reasonable first step in
attempting to mitigate the problem of cache pollution while
achieving some of the benefit, but more can be done.

6 CONCLUSIONS AND FUTURE WORK
We have simulated the performance impact of integrating a

10 Gbps Ethernet NIC onto the CPU die, and find that this option
provides higher bandwidth and lower latency than even an
aggressive future off-chip implementation. We believe the con-
cept of CPU/NIC integration for TCP/IP processing points the
way to a large number of potential optimizations that may allow
future systems to cope with the demands of high-bandwidth net-
works. In particular, we believe this avenue of integrating simpler
NICs should be considered as an alternative to the current trend of
making off-chip NICs more complex.

One major opportunity for an on-chip NIC lies in closer inter-
action with the on-chip memory hierarchy. Our results show a
dramatic reduction in the number of off-chip accesses when an
on-chip NIC is allowed to DMA network data directly into an on-
chip cache.

We have begun to investigate the potential for NIC-based
header splitting to selectively DMA only packet headers into the
on-chip cache. Clearly there is room for more intelligent policies
that base network data placement on the expected latency until
the data is touched by the CPU, predicted perhaps on a per-con-
nection basis. The on-chip cache could also be modified to handle
network data in a FIFO manner [17].

Another opportunity for integration lies in the interaction of
packet processing and CPU scheduling. We have observed in this
work the necessity for interrupt coalescing for high bandwidth
streaming. Along with this benefit comes an associated penalty
for coalescing in a latency-sensitive environment. An on-chip
NIC, co-designed with the CPU, could possibly leverage a hard-
ware thread scheduler to provide low-overhead notification, much
like in earlier MPP machines [6, 13].

We have also demonstrated a simulation environment that com-
bines the full-system simulation and detailed I/O and NIC model-
ing required to investigate these options. We have already made
this environment available to other researchers on a limited basis,
and plan to make a wider public release in the near future.

While a general-purpose CPU is not likely to replace special-
ized network processors for core network functions, this trend
should allow general-purpose systems to fill a wider variety of
networking roles more efficiently, e.g., VPN endpoints, content-
aware switches, etc. Given the very low latencies integrated NICs
can achieve, we also see opportunity for using this “general-pur-
pose” part as a node in high-performance message-passing super-
computers as well, eliminating the need for specialized high-
performance interconnects in that domain.

In addition to exploring the above issues, our future work
includes expanding our benchmark suite to include additional
macrobenchmarks. We currently have a VPN application and an
iSCSI-based storage workload under development. A comparison
of the performance of an integrated NIC with a TCP offload
engine (TOE) is highly desirable, but a TOE model and the asso-
ciated driver and kernel modifications would be very complex to
implement.

ACKNOWLEDGEMENT
This material is based upon work supported by the National

Science Foundation under Grant No. CCR-0219640. This work
was also supported by gifts from Intel and IBM, an Intel Fellow-
ship, a Lucent Fellowship, and a Sloan Research Fellowship.

REFERENCES
[1] Alacritech, Inc. Alacritech / SLIC technology overview. http://www.alac-

ritech.com/html/tech_review.html.
[2] Nathan L. Binkert, Erik G. Hallnor, and Steven K. Reinhardt. Network-ori-

ented full-system simulation using M5. In Proc. Sixth Workshop on Com-
puter Architecture Evaluation using Commercial Workloads, February
2003.

[3] Philip Buonadonna and David Culler. Queue-pair IP: A hybrid architecture
for system area networks. In Proc. 29th Ann. Int’l Symp. on Computer Archi-
tecture, pages 247–256, May 2002.

[4] Jeffery S. Chase, Andrew J. Gallatin, and Kenneth G. Yocum. End system
optimizations for high-speed TCP. IEEE Communications, 39(4):68–74,
April 2001.

[5] Russell Coker. http://www.coker.com.au/bonnie++/.
[6] William J. Dally et al. The J-Machine: A fine-grain concurrent computer. In

G. X. Ritter, editor, Information Processing 89, pages 1147–1153. Elsevier
North-Holland, Inc., 1989.

[7] Chris Dalton, Greg Watson, David Banks, Costas Calamvokis, Aled
Edwards, and John Lumley. Afterburner. IEEE Network, 7(4):36–43, July
1993.

[8] Peter Druschel, Larry L. Peterson, and Bruce S. Davie. Experience with a
high-speed network adaptor: A software perspective. In Proc. SIGCOMM
’94, August 1994.

[9] Hewlett-Packard Company. Netperf: A network performance benchmark.
http://www.netperf.org.

[10] Hyong-youb Kim, Vijay S. Pai, and Scott Rixner. Increasing web server
throughput with network interface data caching. In Proc. Tenth Int’l Conf.
on Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS X), pages 239–250, October 2002.

[11] Xbit Laboritories. http://www.xbitlabs.com/articles/cpu/dis-
play/lga775_19.html.

[12] Dave Minturn, Greg Regnier, Jon Krueger, Ravishankar Iyer, and Srihari
Makineni. Addressing TCP/IP processing challenges using the IA and IXP
processors. Intel Technology Journal, 7(4):39–50, November 2003.

[13] R. S. Nikhil, G. M. Papadopoulos, and Arvind. *T: A multithreaded mas-
sively parallel architecture. In Proc. 19th Ann. Int’l Symp. on Computer
Architecture, pages 156–167, May 1992.

[14] Standard Performance Evaluation Corporation. SPECweb99 benchmark.
http://www.spec.org/web99.

[15] Thorsten von Eicken, Anindya Basu, Vineet Buch, and Werner Vogels. U-
Net: A user-level network interface for parallel and distributed computing.
In Proc. Fifteenth ACM Symp. on Operating System Principles (SOSP),
pages 40–53, 1995.

[16] Kenneth Yocum and Jeffrey Chase. Payload caching: High-speed data for-
warding for network intermediaries. In Proc. 2001 USENIX Technical Con-
ference, pages 305–318, June 2001.

[17] Li Zhao, Ramesh Illikkal, Srihari Makineni, and Laxmi Bhuyan. TCP/IP
cache characterization in commercial server workloads. In Proc. Seventh
Workshop on Computer Architecture Evaluation using Commercial Work-
loads, February 2004.

