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Abstract
This paper proposes new network interface controller (NIC) de-
signs that take advantage of integration with the host CPU to pro-
vide increased flexibility for operating system kernel-based perfor-
mance optimization. We believe that this approach is more likely to
meet the needs of current and future high-bandwidth TCP/IP net-
working on end hosts than the current trend of putting more com-
plexity in the NIC, while avoiding the need to modify applications
and protocols. This paper presents two such NICs. The first, the
simple integrated NIC (SINIC), is a minimally complex design that
moves the responsibility for managing the network FIFOs from
the NIC to the kernel. Despite this closer interaction between the
kernel and the NIC, SINIC provides performance equivalent to a
conventional DMA-based NIC without increasing CPU overhead.
The second design, V-SINIC, adds virtual per-packet registers to
SINIC, enabling parallel packet processing while maintaining a
FIFO model. V-SINIC allows the kernel to decouple examining a
packet’s header from copying its payload to memory. We exploit
this capability to implement a true zero-copy receive optimization
in the Linux 2.6 kernel, providing bandwidth improvements of over
50% on unmodified sockets-based receive-intensive benchmarks.

Categories and Subject Descriptors B.4.2 [Input/Output and
Data Communications]: Interconnections (Subsystems)—Interfaces;
C.5.5 [Computer System Implementation]: Servers

General Terms Performance, Design, Experimentation

Keywords Network Interfaces, TCP/IP Performance, Zero-copy

1. Introduction
As 10 Gbps Ethernet (10GigE) network components drop in price,
they are being more widely deployed in data centers and compute
clusters as well as in network backbones. Coupled with the iSCSI
protocol, 10GigE is also serving as a storage-area network (SAN)
fabric. With 1 Gbps Ethernet effectively the default for current
desktop systems, 10GigE connections will be required to avoid
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contention at any local-area server shared by a reasonable number
of these clients [17].

Although users can now plug 10 GigE links into their server sys-
tems, getting those systems to keep up with the bandwidth on those
links is challenging [14]. Unfortunately for system designers, there
is no single bottleneck to high-bandwidth TCP/IP processing that
can be easily addressed. Instead, performance losses come from
the combination of numerous overheads in interactions between the
CPU, memory system, and network interface controller [16, 34].

One very promising and straightforward step to reducing net-
working overheads is the integration of the NIC on the CPU
die. Although not found in current high-performance server sys-
tems, CPUs with integrated Ethernet NICs appear in other envi-
ronments [8, 33], are rumored to be present in some upcoming
servers [13], and have been shown to provide substantial perfor-
mance improvements on server workloads [5]. (See Section 2.1
for further discussion.) Given the trend toward increasing levels
of system integration and the ubiquity of Ethernet, we view NIC
integration as inevitable in the long term.

While simply integrating a conventional NIC has significant
performance benefits, we believe that substantial further opportu-
nities lie in redesigning the NIC to take advantage of its proximity
to the host CPU. This paper approaches this redesign process by
starting with a minimal on-chip NIC and adding hardware features
only as needed. We show that low-latency NIC access allows the
OS kernel and device driver to be involved much more directly in
the low-level operation of the NIC, opening up the opportunity for
optimization of network data handling in the kernel and driver soft-
ware. In the long term, we believe that the ability to experiment
with and deploy significant networking feature and performance
upgrades as device driver or kernel releases (rather than, e.g., pro-
prietary firmware updates) will greatly increase the flexibility and
performance of network end hosts.

We present and evaluate two on-chip NIC designs. The first,
the Simple Integrated NIC (SINIC), strips the device down to its
most basic components—a pair of FIFOs—supplemented only by
a block copy/checksum unit. All other processing—including the
functions typically performed by a DMA engine on even basic
conventional NICs—is done in software by the device driver on a
general-purpose host CPU. Using detailed full-system simulation,
we show that SINIC provides performance comparable to an on-
chip conventional DMA-descriptor-based NIC, despite its relative
simplicity. Furthermore, though SINIC shifts the responsibility for
copying NIC FIFO data from DMA hardware to the device driver,
the SINIC system exhibits slightly lower CPU overheads than the
system with the DMA-based NIC. This benefit arises because the
SINIC driver can copy data directly into kernel internal data struc-
tures (sk buffs in Linux), eliminating the overheads of manag-
ing a separate DMA descriptor queue and translating between that
queue and the kernel internal buffer representation.



The key benefit of SINIC is not in providing comparable per-
formance at lower cost, but in creating opportunities for software
optimization. To illustrate this potential, we describe a modest set
of Linux kernel extensions that allow the protocol stack to defer
copying payload data out of the receive FIFO until the packet’s
protocol header has been processed. If the receiving user process’s
destination buffer address is known (e.g., because the process has
already called read()), the packet payload can be copied directly
from the NIC FIFO to the user’s buffer, achieving true zero-copy
operation.

Because the base SINIC design presents a plain FIFO model
to software, each packet must be copied out of the FIFO before
the following packet can be examined. This restriction significantly
limits packet-level parallelism when the deferred copy technique is
applied. Our second NIC design removes this restriction by adding
virtual per-packet control registers to the SINIC model. This ex-
tended interface, called V-SINIC, enables overlapped packet pro-
cessing in both the transmit and receive FIFOs. With V-SINIC, the
device driver can initiate processing on newer packets even while
older packets wait in the FIFO for their destination memory address
to be determined. Again using full-system simulation, we show that
V-SINIC with our zero-copy extensions implemented in the Linux
2.6 kernel provides bandwidth improvements of over 50% on an
unmodified sockets-based receive-intensive micro-benchmark.

The remainder of the paper begins with a qualitative case for
simple integrated network interfaces, including comparisons to
other approaches such as TCP offload engines (TOEs). We fol-
low with a detailed description of our SINIC and V-SINIC designs
and a discussion of related work. We then describe our evaluation
methodology and present our results. Finally we offer conclusions
and a discussion of future work.

2. The Case for Simple Network Interfaces
In this section, we provide qualitative arguments for architecting
a simple, low-level network interface for high-bandwidth TCP/IP
servers. At the lowest level, a network interface controller is a pair
of FIFOs (transmit and receive) plus some control information. The
only components beneath this interface are the medium access con-
trol (MAC) and physical interface (PHY) layers, which are depen-
dent on the physical interconnect. Our basic proposal is to expose
these FIFOs directly to kernel software. Injecting programmability
at the lowest possible layer allows a common hardware platform to
adapt to a variety of external networks and internal usage models.
Just as software-defined radio seeks to push programmability as
close to the antenna as possible, we seek to push programmability
as close to the wire as possible to maximize protocol flexibility.

We first discuss the case for integrating the NIC on a processor
die, a prerequisite for our simple NIC structure. We then contrast
our approach with two alternatives: current conventional NIC de-
signs and the TCP offload engine approach that represents a con-
trasting vision of future NIC evolution.

2.1 The Case for NIC Integration
A high-bandwidth NIC requires significant amounts of closely cou-
pled processing power in any design. The key enabler for our
simple NIC approach is the ability to have one or more general-
purpose host CPUs provide that power. This coupling is eas-
ily achieved by integrating the NIC on the same die as the host
CPU(s). Although integrated Ethernet NICs are not found on high-
performance servers today, there are numerous examples in other
environments, including some embedded network processors [8]
and BlueGene/L [33], whose nodes use an integrated NIC for I/O.
Given available transistor budgets, the potential performance ben-
efits [5], and the importance and ubiquity of high-bandwidth Eth-
ernet, NIC integration is an obvious evolutionary step in the high-
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Figure 1. High-level block diagram of SINIC

performance domain as well. Future revisions of Sun’s Niagara
product line are rumored to include one or more integrated 10GigE
NICs [13].

For our simple NIC, only one end of each FIFO and its asso-
ciated control logic need be integrated on the die. As shown in
Figure 1, additional FIFO buffer space and the physical link in-
terface (PHY) can be off-chip. The on-chip to off-chip connection
could either use dedicated pins or be multiplexed onto one of the
CPU’s existing interfaces (e.g., a HyperTransport link). If the mem-
ory controller is also on the CPU die, as is increasingly likely in the
future, then network data must be routed onto the die in a con-
ventional DMA system as well, so the FIFO interface does not in-
cur any additional pin bandwidth. The off-chip PHY also enables a
single design with an integrated NIC to support different physical
media (e.g., copper or fiber). With the addition of a simple off-chip
mux/demux circuit, a single FIFO could also support multiple links
(e.g., a 40 Gbps FIFO connected to four 10 Gbps links).

2.2 Simple Versus Conventional NICs
Conventional Ethernet NICs are designed to reside on a standard
I/O bus (e.g., PCI) that is physically distant from and clocked much
more slowly than the CPU, such that uncached accesses to device
registers may require thousands of CPU cycles [5]. Due to these
overheads, requiring the CPU to interact frequently with the de-
vice is impractical. A conventional NIC thus uses DMA to man-
age large main-memory-based FIFOs, copying data to and from
these structures into its on-board FIFOs as needed. To provide flex-
ibility in memory allocation, these main-memory FIFOs are non-
contiguous, represented by lists of memory-resident DMA descrip-
tor data structures. Each descriptor contains the address and length
of a contiguous buffer.

To transmit a packet, the device driver creates a DMA descrip-
tor for each of the internal kernel buffers that make up the packet
(often one for the protocol header and one for the payload), writes
the DMA descriptors to the in-memory transmit queue, then writes
a NIC control register to alert it to the presence of the new descrip-
tors. The NIC then performs a DMA read operation to retrieve the
descriptors, a DMA read for each data buffer to copy the data into
the NIC-resident hardware FIFOs, then a DMA write to mark the



descriptors as having been processed. The device driver will later
reclaim the DMA descriptors and buffers.

Receive operations are similar, except that the device driver pre-
allocates empty buffers and places corresponding DMA descriptors
on a queue for the NIC to fill with received packets. After each
buffer is filled, the NIC marks its descriptor accordingly and inter-
rupts the CPU. The device driver then processes the filled buffers,
converting them to internal kernel format, and passes them to the
kernel’s protocol stack.

Though this process of fetching, processing, and updating DMA
descriptors is conceptually simple, it incurs a non-trivial amount of
memory bandwidth and processing overhead, both on the NIC and
in the device driver. Willmann et al. [39] analyzed a commercial
1 Gbps Ethernet NIC that implements DMA in firmware and deter-
mined that an equivalent 10 Gbps NIC must sustain 435 MIPS to
perform these tasks at line rate. Note that, other than possibly calcu-
lating checksums, this computational effort includes no inspection
or processing of the packets whatsoever.

In contrast, the reduced latency afforded by on-chip integration
allows the NIC to operate without the expanded buffer space pro-
vided by the DMA descriptor queues. A simple NIC that directly
exposes the hardware FIFOs to software does not require DMA de-
scriptors at all, avoiding all descriptor management overhead. A
further advantage of the simple NIC approach is that the payload
data buffer used on receive can be selected dynamically by the de-
vice driver based on the packet header, unlike the DMA descrip-
tor model where receive buffers must be populated by the driver
in advance.1 In Section 3.3, we describe a set of kernel modifica-
tions that take advantage of this feature to provide true zero-copy
receives—where data is copied directly from the NIC FIFO into
the user’s destination buffer—for unmodified socket-based appli-
cations.

2.3 Simple NICs Versus TCP Offload Engines
An alternative to coupling the NIC FIFOs with the central process-
ing unit is to leave the NIC on an I/O bus and add processing power
to it. An extreme example of this approach is a TCP offload engine
(TOE), in which the NIC itself is responsible for most or all of the
TCP and IP protocol processing [1, 7, 18].

A key disadvantage of TOEs is a lack of flexibility. Protocol
implementations are not accessible to system programmers and are
not easily changed. As existing protocols evolve and new proto-
cols are developed, users must wait not only for protocol support
from their operating system but also from their NIC vendor, and
for both of these to happen in a coordinated and compatible fash-
ion. Although the Internet seems stable, new protocols are not un-
common; consider IPv6, IPSec, iSCSI, SCTP, RDMA, and iSER
(iSCSI Extensions for RDMA). This situation will be particularly
problematic if the update in question is a fix to a security vulnera-
bility rather than a mere performance issue.

A corollary of this lack of flexibility is that TOEs are not eas-
ily customized for or tightly integrated with particular operating
systems. In fact because of the overwhelming number of changes
to the operating system code and the short-circuiting of other net-
work stack features (e.g. netfilter) it is extremely unlikely that TOE
support will make it into the mainline Linux kernel [10, 27]. In con-
trast, the kernel support for SINIC fits in the standard driver frame-
work, and requires no changes to the kernel network stack. Be-
cause SINIC’s intelligence lies within the driver and not in device
firmware, SINIC has direct access to kernel code and data struc-

1 Some higher-end NICs provide multiple receive queues and a hardware
packet classification engine that selects a queue based on protocol header
matching rules, but these NICs are more complex and limited both in the
number of queues and in the number of matching rules.

tures, a feature that is critical to achieving our zero-copy extensions
in Section 3.3.

Other arguments against this direction include the inability of
TOEs to track technology-driven performance improvements as
easily as host CPUs [28, 34], that TOEs dedicate processing power
to networking that cannot be used for other purposes when the
network is idle, and that TOEs provide significant speedups only
under a limited set of workload conditions [37].

The TOE trend of pushing more intelligence out to the NIC
brings to mind Myer and Sutherland’s “wheel of reincarnation”
[30]. They observe that a peripheral design tends to accrue more
and more complexity until it incorporates general-purpose process-
ing capabilities, at which point it is replaced by a general-purpose
processor and a simple peripheral, corresponding to a full turn of
the wheel. Our SINIC design can be seen as the next step past TOEs
around the wheel of reincarnation.

3. The Simple Integrated Network Interface
Controller (SINIC)

This section describes our integrated NIC designs in detail, along
with their associated device drivers. We begin with our simple
integrated NIC (SINIC). SINIC by itself is not intended to provide
higher performance than a similarly integrated conventional NIC.
Instead, its design provides comparable performance with added
flexibility and reduced implementation complexity. Because SINIC
adheres to a strict FIFO model, it limits the amount of packet-level
parallelism the kernel can exploit. We then describe V-SINIC, an
extension to SINIC that enables overlap in packet processing by
providing virtual per-packet registers. Finally we describe how we
use V-SINIC to implement zero-copy receives in Linux 2.6.

3.1 Base SINIC Design
As discussed in Section 2, conventional NICs provide a software
interface that supports the queuing of multiple receive and transmit
buffers via a DMA descriptor queue. Due to its close proximity to
the host CPUs, SINIC is able to achieve comparable performance
without a queuing interface and without scatter/gather DMA. In-
stead, SINIC consists of little more than a pair of FIFOs and a
pair of copy engines.2 The copy engines include adders to generate
packet checksums during the copy. The only additional logic is a
set of comparators on the RX side to identify the incoming packet
protocol and verify the packet’s checksum. The system-level view
of SINIC is shown in Figure 1. The receive half of SINIC is detailed
in Figure 2; the transmit half is nearly identical.

The core of the SINIC interface consists of four memory-
mapped registers: RxData, RxDone, TxData, and TxDone, illus-
trated in Figure 3. The CPU initiates a copy operation from the
receive FIFO to memory by writing to the RxData register, and con-
versely from memory to the transmit FIFO by writing to TxData.
In both cases, the address and length of the copy are encoded into
a single 64-bit data value written to the register. The TxData value
encodes two additional bits. One bit (MORE) indicates whether
this copy terminates a network packet; if not, SINIC will wait for
additional data before forming a link-layer packet. The other bit
(CSUM) enables SINIC’s checksum generator for the packet.

SINIC operates entirely on physical addresses. Because it is de-
signed for kernel-based TCP/IP processing, it does not face the ad-
dress translation and protection issues of user-level network inter-
faces. Instead, the driver code simply calls internal kernel functions
to translate virtual addresses to physical addresses when necessary.
Because a translation is only used for a brief period (while the copy

2 In our simulations, these engines share a single L2 cache port with the L1
caches, so only one can be transferring at any given time.
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Figure 3. Principal SINIC registers

engine is active), page invalidations on active pages can be handled
by delaying the response to TLB shootdown requests until the copy
completes (although we did not implement this feature).

The RxDone and TxDone registers provide status information
on their respective FIFOs. Each register indicates the number of
packets in the FIFO, whether the associated copy engine is busy,
whether the last copy operation initiated on the FIFO completed
successfully, and the actual number of bytes copied. (This last
value is useful as it allows the driver to provide the allocated buffer
size as the copy length to the receive FIFO and rely on SINIC to
copy out only a single packet even if the packet is shorter than the
buffer.) TxDone also indicates whether the transmit FIFO is full.
RxDone includes several additional bits. One bit indicates whether
there is more data from the current packet in the FIFO. Another
set of bits indicates whether the incoming packet is an IP, UDP, or
TCP packet, and whether SINIC’s calculated checksum matched
the received packet checksum for each protocol (the IPE, UDPE,
and TCPE bits in Figure 3).

Because SINIC implements a single copy engine per FIFO,
the CPU must let each copy complete before initiating another
copy. Individual buffer transfers are relatively fast, so the driver
just waits when it needs to perform multiple copies. Rather than
busy-waiting on RxDone or TxDone, SINIC enables more efficient
synchronization through two additional status registers, RxWait
and TxWait. These registers return the same status information as
RxDone and TxDone, respectively, but a load to either of these
registers is not satisfied by SINIC until the corresponding copy
engine is free. Thus a single load to RxWait replaces a busy-wait
loop of loads to RxDone, reducing memory bandwidth and power
consumption.

In addition to these six registers, SINIC has interrupt status and
mask registers and a handful of configuration control registers.

Like a conventional NIC, but unlike a TOE, SINIC interfaces
with the kernel through the standard network driver layer. SINIC’s
device driver is simpler than conventional NIC drivers because it
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Figure 4. V-SINIC block diagram (receive-side only)

need not deal with allocation of DMA descriptors, manage de-
scriptors and buffers (e.g., reclaim completed transmit buffers), nor
translate the kernel’s buffer structures (e.g., Linux sk buffs) into
the NIC’s DMA descriptor format. When a packet must be trans-
mitted, the device driver simply loops over each portion of the
packet buffer; for each portion, it initiates a transmit with a pro-
grammed I/O (PIO) write to TxData, then busy waits on the result
with a PIO read to TxWait. For the final portion of the packet, the
driver does not wait on the copy to complete; instead, it allows the
copy to overlap with computation, and verifies the engine to be free
before initiating the next packet transmission.

3.2 Virtualizing SINIC for Packet-Level Parallelism
As long as each packet is copied to or from memory in its entirety
before the next packet is processed, a single blocking copy engine
per FIFO is adequate. However, there are situations—such as the
zero-copy optimization described in the following section—where
it is useful to begin processing a packet before the preceding packet
is completely copied into or out of the FIFO. This feature is par-
ticularly desirable for chip multiprocessor systems, where packet
processing can be distributed across multiple CPUs.

We extend the SINIC model to enable packet-level parallelism
by providing multiple sets of RxData, RxDone, TxData, and Tx-
Done registers for each FIFO and dynamically associating different
register sets with different packets. We call this the virtual SINIC
(V-SINIC) model, as it gives each in-process packet its own virtual
interface. The receive half of V-SINIC is depicted in Figure 4. For
brevity, we will refer to a single set of virtual per-packet registers as
a VNIC. V-SINIC still has only one copy engine per direction, but
each engine is multiplexed dynamically among the active VNICs.
V-SINIC supports one outstanding copy per VNIC; once a copy is
initiated on a VNIC, that VNIC will be marked busy until it ac-
quires the copy engine and completes the copy.

Although the V-SINIC extensions to both the receive and trans-
mit FIFOs are conceptually similar, they differ slightly in details
and significantly in usage. On the transmit side, V-SINIC is used to
allow concurrent lockless access from multiple CPUs in a CMP.
Each CPU is statically assigned a VNIC. If two CPUs attempt
to transmit packets simultaneously, V-SINIC’s internal arbitration
among the VNICs will serialize the transmissions without any syn-
chronization in software. To avoid interleaving portions of different
packets on the link, once a VNIC acquires the copy engine it main-
tains ownership of the engine until a complete packet is transferred,
even across multiple individual copy requests (e.g., for the header
and payload). This policy applies to the transmit FIFO only; as will
be described shortly, the receive FIFO is specifically designed to



allow interleaving of headers and payloads from different packets
as they are copied out.

On the receive side, V-SINIC enables two optimizations. First,
the driver can pre-post buffers by initiating copy operations to
different buffers on multiple VNICs, even if the receive FIFO is
empty. As packets arrive, the copy operations are triggered on each
VNIC in turn. The driver then uses the per-VNIC RxDone registers
to determine the status of each packet.

The second receive-side optimization is deferred payload copy-
ing. Because VNICs are bound to packets, once part of a packet is
received via a particular VNIC, the remaining bytes of that packet
can only be retrieved by a subsequent copy request to the same
VNIC. For a given packet, the low-level driver can copy just the
header to memory, examine the header, then hand off the VNIC to
another CPU for further processing. At some later point in time,
the other CPU can initiate the copy of the packet payload out of
the FIFO. In the interim, the driver continues to process additional
headers from subsequent packets using other VNICs. If packets are
quickly copied into kernel buffers, the additional parallelism ex-
posed by deferred copying is minimal. However, the deferred copy
capability is critical for our implementation of zero-copy receives
described in the following section.

3.3 Implementing Zero-Copy Receives on V-SINIC
The overhead of copying packet data between kernel and user
buffers is often a significant bottleneck in network-intensive appli-
cations. In the normal case, an entire packet is DMAed into a driver-
provided buffer (e.g. an sk buff in the case of the Linux kernel).
Later, when the packet’s destination process is determined, the data
is copied out of the buffer into the receiving process’ memory (un-
less the kernel itself is the recipient). This copy can be avoided by
moving data directly from the NIC FIFO into the user buffer. This
“zero-copy” behavior is practically impossible to achieve with a
conventional DMA-descriptor-based NIC, as the driver cannot in-
spect the packet’s header to decide where it needs to go until the
entire packet has been copied to a pre-allocated DMA buffer.

V-SINIC’s deferred-copy capability enables a straightforward
implementation of zero-copy receives in the Linux 2.6 kernel. We
added a flag to Linux’s sk buff structure to indicate that the
referenced data is resident in the V-SINIC FIFO, and a field to
specify the VNIC index in that case. We also modified the two
kernel functions used to copy sk buff contents to recognize this
encoding (skb copy bits() and skb copy datagram iovec(),
which copy sk buffs to kernel and user buffers, respectively).
When either of these functions is called and the sk buff indicates
that the data is still in the V-SINIC FIFO, the code instructs the
VNIC to copy the data directly from the FIFO into the user buffer,
thus avoiding the intermediate copy described above.

4. Related Work
On-chip integrated network interfaces have appeared before in the
context of fine-grain massively parallel processors. Henry and Jo-
erg [21] investigated a range of placement options, including on-
and off-chip memory-mapped NIs and a NI mapped into the CPU’s
register file. Other machines with on-chip network interfaces in-
clude the J-Machine [11], M-Machine [15], and *T [32] research
projects, and IBM’s BlueGene/L [33]. Mukherjee and Hill [29] also
argue for tighter coupling between CPUs and network interfaces for
storage-area and cluster networks. They focus placing the NIC in
the coherent memory domain but not on physical integration with
the CPU. SHRIMP [6] also uses a memory-mapped copy engine for
their user-level DMA, though in conjunction with complex mecha-
nisms to allow protected user-level access via virtual addresses. In
all of these cases, the primary goal is low user-to-user latency using
lightweight protocols and hardware protection mechanisms. In con-

trast, TCP/IP processing has much higher overhead and practically
requires kernel involvement to maintain inter-process protection.
Our work continues in the spirit of this research, but focuses on
optimizing the NIC interface for the needs of the kernel’s TCP/IP
stack. SINIC’s close coupling of a processor to receive and transmit
FIFOs is similar to the coupling seen in many network processors
such as Intel’s IXP [25]. Our work differs in that we expose the FI-
FOs directly to kernel software running on the primary host CPU
rather than firmware running on dedicated packet engines.

In the TCP/IP domain, a few other groups have investigated al-
ternatives to offloading. Our earlier work [5] investigated the bene-
fit of integrating a conventional DMA-based NIC on the processor
die, but did not consider modifying the NIC’s interface to exploit
its proximity to the CPU. Intel announced an “I/O Acceleration
Technology” (I/OAT) initiative [26] that explicitly discounts TOEs
in favor of a “platform solution” [20]. Intel researchers proposed
a “TCP onloading” model in which one CPU of an SMP is dedi-
cated to TCP processing [34]. Our SINIC model is complementary
to this approach: the dedicated CPU would likely benefit from a
closely coupled flexible NIC. Another Intel paper describes “direct
cache access” I/O [24], in which incoming DMA data from an ex-
ternal NIC is pushed up into the CPU’s cache. Placing incoming
network data in the on-chip cache is natural when the NIC is on the
same chip, and we see similar benefits from this effect.

Zero-copy (more accurately single-copy) receives have been
implemented in other contexts [9]. The most common technique
is page flipping, where the buffer is copied from the kernel to the
user address space by remapping a physical page. Trapeze [19]
provided zero-copy in this manner, but has limitations such as
requiring page-size MTUs (much larger than the Internet standard
1500 bytes). The header and payload separation done by Trapeze is
very similar to the zero-copy mechanism that we use to demultiplex
packets, though we do not require that the extra intelligence for
this separation exist in the NIC. In addition, the required page-table
manipulations, while faster than an actual page copy, are not quick
in an absolute sense. Zero-copy behavior can also be achieved using
“remote DMA” (RDMA) protocol extensions, where the receiving
application pre-registers receive buffers in such a way that the NIC
can identify them when they are referenced in incoming packets. In
addition to requiring a sophisticated NIC, RDMA is a significant
change to both applications and protocols, and requires support on
both ends of a connection. V-SINIC does not preclude the use of
RDMA—in fact, V-SINIC’s flexibility allows adding an efficient
RDMA protocol implementation solely as a driver upgrade, with no
additional hardware needed. However, many of RDMA’s benefits
are realized in V-SINIC’s zero-copy optimization without requiring
modified protocols or applications.

Our V-SINIC approach is most closely related to that of Af-
terburner [12], an experimental NIC that combined significant on-
board buffering with a modified protocol stack such that copying
packet payloads off of the NIC could be deferred until the desti-
nation user buffer was known. Although Afterburner reduced copy
overhead much like V-SINIC, its low-level mechanisms were dif-
ferent. It exposed the NIC buffer memory to the CPU as a single,
flat memory region, shared with the NIC by using a three-port video
RAM. This buffer was managed in software, much like a conven-
tional set of DMA buffers. Copies to and from the buffer used a
special optimized software copy routine. V-SINIC differs by us-
ing single-ported buffer memory with a specialized control-register
interface. The buffer is managed in hardware as a FIFO, with addi-
tional logic for copying data, managing individual packet buffers,
and multiplexing between requests. V-SINIC’s specialized inter-
face paves the way for other optimizations not readily supported
by Afterburner, such as an efficient interface for virtual machines
or enabling direct user access in a secure way.



V-SINIC also differs from Afterburner in its placement on the
CPU die. (Afterburner plugged into systems via the graphics card
slot.) As a result, V-SINIC can place data directly in the on-chip
cache hierarchy. V-SINIC also needs less buffer space despite sup-
porting higher bandwidths, because the amount of buffering re-
quired is proportional to the product of the network bandwidth and
the CPU/NIC latency. Although Afterburner was relatively closely
coupled to the CPU, it had 1 MByte of on-board buffering for a
1 Gbps network. The extremely low latency afforded by on-chip in-
tegration allows SINIC to support a similar technique on a 10 Gbps
network with substantially less buffering. Our simulated implemen-
tation uses up to 380 KB of space in the receive FIFO—256 VNICs
times 1514 bytes per packet—but, as shown in Section 6, perfor-
mance may not suffer significantly until the buffer space drops be-
low 100 KB.

5. Methodology
We evaluated the SINIC design by running TCP/IP-based micro-
and macrobenchmarks on an appropriately modified full-system
simulator. The following subsections discuss the simulation envi-
ronment and the benchmarks in turn.

5.1 Simulation Environment
Conventional architecture simulators cannot adequately model the
performance of network-intensive workloads for two reasons. First,
much of the workload’s execution time is not spent running appli-
cation code, but rather kernel code such as device drivers and the
TCP/IP stack. As a result, simulators that merely emulate system
calls do not provide meaningful results for network benchmarks.
Second, achieving accurate timing results for I/O-intensive work-
loads requires detailed modeling of the main memory and I/O sub-
systems and relevant I/O devices, such as the NIC. Typical archi-
tecture simulators focus on modeling of the CPU microarchitecture
and first-level caches, but little beyond this scope.

To address these issues, our research group developed M5 [4],
a simulator targeted at research in TCP/IP network I/O. M5 is a
full-system simulator, modeling the Alpha Tsunami platform with
enough fidelity to boot an unmodified Linux 2.6 kernel and run Al-
pha PALcode. M5 uses a simple configurable bus model to provide
event-driven timing models for all levels of the memory hierarchy,
including the main-memory and I/O busses. I/O devices and their
interactions with the memory system are modeled in detail, includ-
ing both programmed I/O and DMA accesses. M5’s performance
models have been validated against a real Alpha Tsunami system
(a Compaq XP1000) [35].

For our conventional NIC, we use M5’s model of a National
Semiconductor DP83820 [31] Gigabit Ethernet device and scale its
performance to 10 Gbps. The model is accurate enough to support
the standard Linux driver for this device. However, our model fixes
a bug in the real hardware that prevents the NIC from issuing
DMAs to unaligned addresses, and we use a modified driver that
does not contain a workaround for this hardware bug. We use a
fixed delay in the NIC to bound the interrupt generation rate to
once per 10 µs.

All our experiments use a two-system client-server configura-
tion. In each case, only one system is of interest, while the other
merely serves as a stressor. The system of interest, whether the
client or the server, is modeled in detail. The stressor is modeled
purely functionally—using a 1 CPI CPU and a perfect 1-cycle
memory system—so as not to be a bottleneck. The simulated sys-
tems are connected directly using a lossless 10 Gbps Ethernet link.
Table 1 lists the other parameters we used for the detailed system
simulation. Since the memory system we are modeling is similar to
that of an Opteron system, we configured the latency memory, bus

Frequency 2 GHz or 4 GHz
Fetch Bandwidth Up to 4 instructions per cycle
Branch Predictor Hybrid local/global (e.g. EV6)
Instruction Queue Unified int/fp 64 entries
Reorder Buffer 128 Entries
Execution BW 4 insts per cycle
L1 Icache/Dcache 128KB, 2-way set assoc, 64B blocks,

16 MSHRs. 1 cycle inst hit; 3 cycle
data hit.

L2 Unified Cache Size varies, 8-way set assoc. 64B
block size, 25 cycle latency, 40
MSHRs.

L1 to L2 64 bytes per CPU cycle
L2 to Memory 4 bytes per CPU cycle
HyperTransport 8 bytes, 800 MHz
Main Memory 50ns

Table 1. Simulated System Parameters

bridges and peripheral devices to match numbers measured on an
AMD Opteron server.

5.2 Benchmarks
We evaluate network performance using receive and transmit tests
from the Netperf microbenchmark suite and two macrobechmarks
(a modified SPECweb99 and iSCSI).

Netperf [22] is a network microbenchmark suite developed at
Hewlett-Packard. We use the TCP stream benchmark and TCP
maerts benchmark. In either case, the client (the system under
test) connects to a server and sends or receives data as quickly as
possible over a single TCP connection. The stream benchmark is
a transmit benchmark, setting up a socket and calling send() in a
tight loop. Normally this call returns as soon as the data is copied
out of the user’s buffer. However, if the kernel socket buffer is full,
the call will block until space is available. This blocking behavior
makes the benchmark self-throttling. The maerts benchmark is the
reverse: the client receives data as quickly as possible from the
server. Naturally, it loops on receive() instead. In general, the
time spent executing the benchmarks code is minimal, and most of
the CPU time is spent in the kernel driver managing the NIC or
processing the packet in the TCP/IP stack.

SPECweb99 [38] is a popular benchmark that is used for eval-
uating the performance of web servers. The benchmark simulates
multiple users accessing a combination of static and dynamic con-
tent using HTTP 1.1 connections. In our simulations we used
Apache 2.0.52 [2] with the mod specweb99 CGI scripts. These
scripts replace the reference implementation with a more optimized
version written in C, and are frequently used in the results on the
SPEC website.

The standard SPECweb99 client is fairly heavyweight yet each
connection provides only a modest load on the server; the stan-
dard SPECweb99 score is based on the maximum number of si-
multaneous clients that the server can support while meeting some
minimum bandwidth and response time guarantees. Because of the
resources required to run a sufficient number of clients to generate
multiple Gbps of load, the client is not well suited for a simula-
tion environment. Since we are not concerned with the SPECweb99
score attainable by the machine under test, but rather are simply
interested in the performance characteristics of a web server work-
load, we chose to use a different client based on the Surge traffic
generator [3], Our client preserves the same statistical request dis-
tribution as the original client, but is able to scale its performance



Benchmark Warm-up Sampling
Netperf Single-stream 100M 50M
Netperf Multi-stream 500M 100M
SPECweb99 1B 400M
iSCSI 1B 100M

Table 2. Number of Instructions Simulated

up to a point that can saturate the server while still remaining fea-
sible to simulate.

iSCSI [36] is a new standard implementing the SCSI protocol
on top of a TCP/IP connection. This protocol allows an initiator
(client) to access a target (server) much like it would access a local
SCSI device. Because of its use of TCP/IP as a connection layer
protocol and Ethernet as a link layer protocol, iSCSI promises to
be much cheaper than previous network storage systems (e.g., Fi-
breChannel).

In our tests we used the Open-iSCSI initiator and the Linux
iSCSI Enterprise target. Because we are concerned with network
rather than disk I/O performance, the target does not have a real
I/O backing store, but instead returns data immediately. On top
of the iSCSI client we run a custom benchmark that uses Linux’s
asynchronous I/O (AIO) facilities to continuously maintain multi-
ple outstanding reads to the iSCSI disk in flight. As soon as a read
completes, a new location to read is selected and is issued to the
disk. We benchmark both the target and the initiator.

For the experiments in this paper we used a 1500 byte maxi-
mum transfer unit (MTU) as it is the standard on the Internet today.
Although increasing the MTU is reasonable in a dedicated envi-
ronment, larger MTUs are never used for commodity traffic on the
Internet.

Running these workloads to completion in simulation is infeasi-
ble due to the significant slowdown incurred. Thus we turn to stan-
dard fast-forwarding, warm-up and sampling techniques to gather
data on different NIC configurations. Our benchmarks have been
modified to inform the simulator when they reach a stable point in
their execution. We initially run the benchmarks in a purely func-
tional simulation until they reach this point, at which time the sim-
ulator checkpoints all program state. Experiments are run by restor-
ing this checkpointed state, warming up the caches and TLB, and
then switch to a detailed timing model to gather statistics. For our
experiments our warm-up and simulation periods were as listed in
Table 2. The warm-up period is of a lower effective performance
than the detailed simulation so that the TCP protocol can adjust
quickly to the effective performance change from simple to detailed
simulation [23].

6. Results
In this section, we investigate how SINIC and V-SINIC impact
overall performance, cache performance, and CPU utilization
across our benchmarks. In addition, we investigate the zero-copy
optimization that V-SINIC makes possible, and the impact of the
number of VNICs on the zero-copy optimization.

First, we look at the performance of SINIC when compared to
a conventional NIC with both an on-chip and off-chip attachment.
The off-chip conventional NIC is attached to a PCI Express-like
bus, which is in turn connected to the CPU by way of an I/O bridge
chip using a HyperTransport-like interconnect. We also investigate
the performance of the same conventional NIC in an on-chip con-
figuration with DMA engine access to the on-chip last level cache.
Comparing the on-chip CNIC to SINIC isolates the impact of the
SINIC design itself.
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Figure 5. Achieved bandwidth for a conventional NIC (CNIC) vs.
SINIC (8MB Cache)
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Figure 6. CPU utilization breakdown for a conventional NIC
(CNIC) vs. SINIC (8MB Cache)

Figure 5 shows the performance of these configurations. Com-
paring the two conventional NIC (CNIC) attachments clearly shows
that on-chip integration of the NIC in the system increases perfor-
mance significantly. There are two main reasons for this. First, the
CPU’s device register accesses have much lower latency. Second,
the device can place incoming DMA data directly into the on-chip
cache, reducing the amount of memory traffic and cache misses,
often dramatically [5, 24].

Though simplicity is the goal of SINIC, we see that SINIC
slightly outperforms the more complex CNIC attached at the same
position. SINIC’s simplicity leads directly to its increased perfor-
mance. As described in Section 2.2, the CNIC implements a DMA
descriptor mechanism for managing buffer transfers to and from
the network. SINIC avoids the overhead of managing DMA de-
scriptors at the cost of requiring the CPU to initiate data copies di-
rectly. The close attachment of an on-chip NIC to the CPU makes
the latency tolerance provided by the DMA descriptors unneces-
sary, making SINIC’s direct approach more efficient. SINIC’s in-
creased CPU overhead due to managing the FIFOs is more than
offset by the removal of the the descriptor management code from
the device driver. As a result, SINIC provides similar performance
to the on-chip CNIC even for complex CPU-bound workloads such
as SPECweb99.

In Figure 6 we show a breakdown of how the CPU spent its
time on each platform. Note the reduction in driver time seen
when comparing the off-chip NIC with the on-chip attachments.
This reduction is a direct result of the lower latency of device
register accesses for the on-chip NICs, providing more CPU time
for processing the data. The increased percentage of stack and user
time seen in the on-chip configurations correlates directly with the
increased bandwidth provided by these platforms.
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Figure 7. Achieved bandwidth for the receive micro-benchmark
using the zero-copy optimization
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for the receive micro-benchmark using the zero-copy optimization
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Figure 9. Breakdown of CPU utilization for the receive micro-
benchmark using the zero-copy optimization

Figure 7 compares the performance of SINIC with V-SINIC
with and without the zero-copy optimization on the receive mi-
crobenchmark, where we expect copy elimination to have the great-
est impact. Repeating the result shown in Figure 5, the non-zero-
copy SINIC is able to saturate the network with a large (4-8 MB) L2
cache. In this case, the direct cache placement of incoming network
data makes the buffer copies efficient cache-to-cache operations.
However, for smaller L2 cache sizes, the SINIC network buffers
overflow into main memory. The overhead of the resulting DRAM-
to-cache buffer copies causes significant bandwidth degradation
(a 40% reduction down to 6 Gbps with a 1 MB cache). Without
the zero-copy optimization, V-SINIC provides similar performance
characteristics, though at a slightly reduced performance level due
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Figure 10. Achieved bandwidth with an aggressive zero-copy op-
timization (1MB Cache)
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Figure 11. Achieved bandwidth with a conservative zero-copy
optimization (1MB Cache)

to additional overheads in the device driver.3 In contrast, the zero-
copy optimization eliminates the buffer copy entirely, making per-
formance insensitive to the cache size, and allowing the system to
saturate the network in every configuration.

Zero-copy V-SINIC is useful whenever network buffers do not
fit in the on-chip cache, which can occur even with large caches.
Our microbenchmark touches very little data other than the network
buffers, and the latency of our simulated network was extremely
low, meaning that network buffer space was relatively small. As a
result, we see a benefit from zero copy only on fairly small cache
sizes. Benchmarks with larger non-network working sets would
leave less room in the cache for network buffers, and larger network
delays will increase the amount of network buffering required. Both
of these situations are likely in real systems, leading to zero-copy
benefits even at larger cache sizes.

Figure 8 shows that the number of cache misses per kilobyte
transferred correlates strongly with network performance. While
SINIC’s cache data placement coupled with a sufficiently large
cache drives the cache miss rate of the buffer copies to zero, the
zero-copy V-SINIC model incurs practically no cache misses, re-
gardless of cache size, because network data is read directly from
the FIFO rather than from memory-resident kernel buffers. Figure 9
shows that, as a result of dramatically reduced copy time, the zero-
copy V-SINIC system can spend more time in the TCP/IP stack pro-
cessing packets. The copy time shown for the zero-copy V-SINIC
case corresponds to the time the CPU spends setting up and waiting
for the V-SINIC copy engine to copy data from the FIFO to the user
buffer.

3 We expect that it will be possible to reduce or eliminate these overheads
with more careful driver optimization.
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Figure 12. Performance of the receive micro-benchmark with var-
ied numbers of VNICs.

Figure 10 shows the performance of the zero-copy optimiza-
tion across our set of benchmarks. These results use a 1MB cache,
where the impact of the optimization is greatest (see Figure 7). Be-
cause the optimization only applies to received packets, the trans-
mit microbenchmark is unaffected. The iSCSI benchmark also sees
no impact. However, the SPECweb99 benchmark suffers a no-
ticeable performance degradation. We discovered that SPECweb99
has a very long latency from when a packet is received and pro-
cessed by the kernel until it is accessed by a read() call from
the application. This latency arises because Apache blocks in the
select() system call (rather than pre-posting a buffer and block-
ing in read()). The effect is exacerbated by the large number of
threads Apache uses, such that even once the process is notified
via select() that a packet has arrived, there may be a significant
delay before the relevant thread is scheduled for execution. The im-
pact of this latency is that the V-SINIC FIFO fills up with packets
waiting for read() calls to provide their final destination buffer
address.

In order to cope with the long latency between packet recep-
tion and read(), we have implemented a more conservative zero-
copy optimization that tries to only use zero-copy when the receive
FIFO is not full. Figure 11 shows the results of this optimization
for the 1MB cache size where it has been most effective. The opti-
mization does fix the problem with SPECweb99, but it prevents the
receive micro-benchmark from reaching its full potential, because
our heuristic disables the zero-copy optimization too quickly. We
believe that further refinements in our algorithm will lead to a sin-
gle policy that provides the best performance for each application.

For all of the results shown above, the receive FIFO was 512kB,
with 384kB being on-chip due to having 256 VNICs (each VNIC
can point to a 1514 byte packet). Figure 12 shows that for the re-
ceive micro-benchmark, only 64 VNICs and 96kB of on-chip FIFO
are needed. For this benchmark, the receive buffers are not pre-
posted, but the low CPU utilization keeps the latency low. Though
the number of VNICs necessary to achieve optimal bandwidth will
certainly vary from benchmark to benchmark, optimizations to the
kernel protocol stack to reduce the amount of queuing should re-
duce the number required.

7. Conclusion and Future Work
We have described a simple network interface—SINIC—designed
to take advantage of integration onto the processor die in support of
high-bandwidth TCP/IP networking. SINIC is simpler than conven-
tional NICs in that it avoids the overhead and complexity of DMA
descriptor management, instead exposing a raw FIFO interface to
the device driver. In spite of its simplicity, detailed full-system sim-
ulation results show that SINIC performs as well as a more complex
conventional NIC given the same level of integration. These results

show that SINIC’s simplicity does not incur a performance cost,
even when its flexibility is not exploited.

We also presented a novel approach to extending SINIC’s FIFO-
based interface to allow packet-level parallelism both on trans-
mit and receive. By associating a set of “virtual” FIFO registers
with each packet, the V-SINIC interface allows lockless concurrent
packet transmission on multiprocessors and enhanced parallelism
in receive packet processing. V-SINIC also enables a deferred-copy
technique that supports a straightforward implementation of zero-
copy receive handling, which we have implemented in the Linux
2.6 kernel. This zero-copy implementation can provide a more than
50% performance improvement on cache-constrained systems.

We believe that simple NICs closely coupled with general-
purpose host CPUs, as exemplified by SINIC and V-SINIC, provide
far more flexibility and opportunity for optimization than systems
in which dedicated processing capability is added to a NIC residing
on an I/O bus. In SINIC, the movement of packets into and out of
the network FIFOs is controlled directly by the device driver, mean-
ing that these critical operations can be optimized and customized
to work with specific operating systems, limited only by the inge-
nuity of kernel developers. Our Linux zero-copy implementation is
a significant optimization but we believe it is not likely to be the
only one enabled by SINIC-style interfaces.

Our future work includes evaluation of SINIC and V-SINIC
on additional networking benchmarks and further exploration of
the SINIC/V-SINIC design space, including sensitivity analysis of
the SINIC access latency. Open issues include how best to support
encryption and decryption of network traffic and how to virtualize
SINIC for virtual-machine systems.
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