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Motivation 

 Vast amounts of servers required 
 AOL, Google, Yahoo maintain large datacenters 
 General purpose processors not efficient to handle server workloads 

 Opportunities with 3D stacking technology 
 Extreme integration 
 Improved throughput and latency 

 Leverage 3D IC to build energy efficient Tier 1 servers 
 Tier 1 workloads require high memory throughput and modest ILP 
 CPU, Memory Controller, NIC, on-chip DRAM altogether in a single 

package 
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Behavior of Commercial Server 
Workloads 

Attribute Web99 SAP 2T TPC-H TPC-C 

Application 
Category 

Web 
Server ERP DSS OLTP 

ILP Low Med High Low 

TLP High High High High 

Working-set 
size Large Med Large Large 

Data-sharing Low Med Med High 

From S.R Kunkel et al, IBM J. R&D vol. 44 no.6, 2000 



What is 3D stacking technology? – using  
3D vias to connect multiple dies 
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3D stacking pros and cons 

 High bandwidth (throughput) 
 Millions of die to die connections 

 Reduces interconnect length 
 Interconnect becoming a problem as feature sizes shrink 

 Extreme integration of components manufactured from 
different process technology  
 DRAM, Flash Memory, Analog, RF circuits etc 

 Thermal problems 
 Power density limits the number of stacks 

 Chip verification & Yield 
 Verification at the die, wafer and post-package level is necessary 
 Overall Yield is a product of individual die yield and 3D stacking yield 



Roadmap for 3D stacking and DRAM - Where 
are we? 

2005 2007 2009 2011 2013 

Number of stack max. for 
low-cost / handheld - 3W 
power budget 

6 7 9 11 13 

Number of stack max. for 
high performance 2 3 3 4 5 

Cell Density of SRAM  
MBytes / cm2 11 17 28 46 74 

Cell Density of DRAM  
MBytes / cm2 153 243 458 728 1,154 

From ITRS 2005 Roadmap 
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PicoServer Architecture – Using simple cores 
with simple interconnect 

3D vias 

Logic to Memory – F2F via, Memory to Memory – TSV via 



Extreme integration and NUMA 
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PicoServer and 3D stacking 

 No need for L2 cache 
 Access latency and bandwidth of on-chip DRAM similar to a L2 cache 
 Additional cores can replace the L2 cache 

 High performance low power interconnect  
 High bandwidth memory to core interface 
 The added degree of freedom reduces interconnect length 

 Multicores clocked at modest frequency (500MHz) 
 Tier 1 server workloads are not computationally intensive 
 TLP more of an issue 

 On-chip memory 
 Server applications → on-chip DRAM 
 Hundreds of MB of DRAM can be integrated on-chip 

 Additional memory can be available externally 
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Conventional CMP CMP with 3D stacking 

Architecture of Logic Components 
- Core and NIC 

Using Scalar Cores and Intelligent NICs 

  Simple 5 stage pipeline clocked at low frequency – 500MHz 
  Maintain a reasonable power density to stack many die layers. 
  Opportunities to use low power process technology and DVS 

  Standard branch predictor 
  90 ~ 95% branch prediction 

  ISA support for multicores 
  Integrated DRAM controller per core to interface with on-chip memory 
  Intelligent NICs are required to do load balancing 

  Load balancing achieved with Microsoft RSS like methods 

IF DE EX MEM WB 
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Conventional CMP CMP with 3D stacking 

Architecture of Interconnect Shared simple interconnect 

 More than 70% of interconnect traffic is due to cache misses 
 Interconnect should handle cache miss traffic better than other 

types of traffic. 
 Low frequency wide bus provide high throughput & low 

transfer latency 
 3D stacking enables high throughput low frequency interconnect to 

on-chip DRAM 
 Simulations suggested a wide shared bus produced sufficient 

performance 
 Minimal queue delay in wide shared bus 



The role of on-chip DRAM 
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Conventional CMP CMP with 3D stacking 

R. Matick IBM 
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No address multiplexing 

- Niagara unloaded L2 cache access latency : 19ns 
- Xeon unloaded L2 cache access latency : 8ns 



The role of on-chip DRAM (cont.) 

 A large portion of main memory is used as disk cache 
 Less than 64MB occupied by application, OS 
 Similar memory usage also reported in many server applications 

 100’s of MB of on-chip DRAM is enough to hold code & data 
and a portion of disk cache 
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Methodology 

 Full-system simulator M5 
 Models client-server connection 
 Generated client requests that saturate processor utilization in 

the server 
 SURGE (static web), SpecWeb99 (dynamic web), Fenice 

(video streaming) and dbench (file serving) for Tier 1 
server workloads 

 Relied on empirical measurements from ISSCC, IEDM 
papers and datasheets to estimate power 

 Calibrate empirical measurements with ITRS roadmap 
predictions, scaling rules and analytical FO4 model (for 
processor) 
 Overestimate most values to be on the safe side 
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Specweb99 

Overall Network Bandwidth – Mbps 

Similar die area Similar die area 

33% better performance 
11% better performance 

80% better performance 

40% better performance 

Additional cores yield improvement in  
Network Performance while operating at half the frequency 



Overall Estimated Total Power  

Similar die area Similar die area 

95W 

PicoServers consume 2~3× less power 



Energy Efficiency Pareto Chart 

Optimal 

Specweb99 

10x more energy efficient than OO4-large 
PicoServers with similar die area are 
2~3x more energy efficient than 
conventional CMP 



Outline 

 Background 
 PicoServer Architecture 
 Methodology 
 Results 
 Conclusions and Future Work 



Conclusions & Future Work 

 3D stacking complements Tier 1 server workloads 
 High throughput memory bandwidth 
 More Processing Elements on die 
 Extreme integration for small form factors 

 Simple multicores generate acceptable network 
bandwidth while consuming low power 
 For a 3W budget, 0.6~1.4Gbps network bandwidth 

 Future Work 
 Investigate core architecture for computation intensive 

server workloads 
 Investigate energy efficient NUMA architectures for 

datacenter platforms 
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System Level Power consumption 

From Sun talk given by James Laudon 

Power-wise 
- Processor power 25% of total power 
- Memory power 22% of total power 
- I/O power (Mainboard, Gigabit Ethernet NICs,  
  I/O pad, PCB interconnect) 22% of total power 
- Misc. power (Fans + power supply) 25% of 
  total power 



3D via parameters  

Tezzaron 
2nd 

Generation 

Tezzron 
Face to Face 

RPI MIT 3D 

Size 1.2µ x 1.2µ 1.7µ x 1.7µ 2µ x 2µ 1µ x 1µ 

Minimum 
Pitch <4 µ 2.4 µ N / A N / A 

Feed 
Through 

Capacitance 
2~3fF << << 2.7fF 

Series 
Resistance <0.35Ω < < < 

Numbers from Tezzaron Semiconductor, RPI, MIT 

A 3D via delivers minimal delay overhead 
& about the size of a 90nm 6T SRAM cell.  
Via density exceeds 14,000/mm2 



Evaluation of a Wide shared Bus 

SURGE 

- Cacheline size = bus width 
   Increasing cacheline size reduced overall cache miss rates 
- A data bus width of 1024bits produced optimal results 



The role of on-chip DRAM 
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Improving word line delay 

 Word line delay depends on the resulting RC caused by 
the large number of gates 

 One solution in reducing RC delay is by dividing the word 
line into smaller sections and to add buffers.  
 However, additional drivers and buffers add area. 

 Another solution is to route the word lines in metal rather 
than polysilicon or silicide.  
 Independent studies show that aluminum word lines reduce 

wordline delay by 3x [Tanabe92] 
 On-chip DRAM enables one to reallocate die area that 

was previously assigned to I/O & address multiplexing to 
improving word line delay with the above solutions. 



Example timing diagram – DRAM read 

tRC = 5 cycles 



Commonly used configurations 

General Purpose 
Processor PicoServer Conventional CMP 

Syntax OO4-<small,large> w/ 
w/o 3D stacking 

Pico  
MP<# of cores> – 

<freq> 

MP <# of cores> w/o 
3D stacking 

Operating Frequency 4GHz 500MHz / 1GHz 1GHz 

Number of 
Processors 1 4, 8, 12 4, 8 

Processor Type Out-of-Order In-order In-order 

Issue width 
per core 

4 1 1 

L1 cache size 2 way 16KB or 128KB 4 way 16KB 4 way 16KB 

L2 cache size 8 way 256KB or 2MB 
25 cycle hit latency N/A 8 way 2MB 16 cycle 

hit latency 

Memory bus width 64 bit @ 400MHz / 
1024 bit 250MHz 1024 bit 250MHz 64 bit @ 333MHz 

NIC location PCIBus Memory Bus Memory Bus 



Specweb99 

Overall Network Bandwidth – Mbps 

Similar die area Similar die area 

33% better performance 
11% better performance 



Energy Efficiency Pareto Chart 
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Optimal 

Specweb99 


