
Full-System
Critical Path Analysis

Ali Saidi, Nathan Binkert†, Steve Reinhardt‡, Trevor Mudge
April 21st, 2008 ISPASS

1

Advanced Computer Architecture Lab
University of Michigan

†Hewlett-Packard Labs
‡Reservoir Labs

Full-System Performance Analysis
• Today’s complex workloads may not be CPU limited
▫  E.g. webservers, databases, OLTP, etc
▫  Multiple layers of HW (disk, network) and SW (app, OS)
▫  No single metric to identify bottleneck

• No off-the-shelf tools analyze these systems
▫  Local per-component analysis fails to account for

overlapped latencies
▫  Ad-hoc methodologies are workload specific
▫  State-space exploration is slow

• How can we find bottlenecks across multiple layers?

April 21st, 2008 ISPASS

2

Solution: Global Critical Path
• Global critical path indicates non-overlapped latencies
▫  Directly identifying problem areas

• Used successfully in past in isolated domains
▫  Fields et al. developed a model for out-of-order CPU
▫  Barford and Crovella developed a critical-path model TCP
▫  Yang and Miller extracted critical path information from

message and synchronization calls

April 21st, 2008 ISPASS

3

Solution: Global Critical Path
• Challenge: Create global dependence graph
▫  Requires detailed knowledge across many domains!

• Our solution: automatically extract dependence graph
from interacting state machines
▫  Extract underlying state machines from HW and SW
▫  Identify local interactions
▫  Build an execution graph that captures the interactions
▫  Find time where overlapping latencies not hidden

April 21st, 2008 ISPASS

4

Contributions

• Methodology to convert cooperating state
machines into global dependence graph
▫ Only local understanding required
▫ Use dependence graph to find critical path

• Proof of concept implementation
▫ Locate both hardware and software bottlenecks

• Sample analysis of UDP protocol
▫ Found performance bugs in Linux 2.6.13

April 21st, 2008 ISPASS

5

Outline

• Introduction
• Motivation
• Using critical path analysis
• Implementation
• Results
• Conclusion

April 21st, 2008 ISPASS

6

Performance Analysis Challenge:
High-speed Networking
• Finding bottlenecks is particularly problematic

in end-to-end networking
• Performance losses come from a combination of

overheads and non-overlapped latencies

April 21st, 2008 ISPASS

7

Application
Kernel
• Protocol
• Driver

Hardware
• NIC
• Disk

Network
Hardware
• NIC
• Disk

Kernel
• Protocol
• Driver

Application

Machine 1 Machine 2

Conventional Tools Don’t Work

• Why not use a profiler?
▫ Where most time spent ≠ bottleneck
 Higher level dependence or protocol requirements

that limit performance
▫ Profilers only work on software

April 21st, 2008 ISPASS

8

Application
Kernel
• Protocol
• Driver

Hardware
• NIC
• Disk

Network
Hardware
• NIC
• Disk

Kernel
• Protocol
• Driver

Application

Machine 1 Machine 2

Application
Kernel
• Protocol
• Driver

Hardware
• NIC
• Disk

Network
Hardware
• NIC
• Disk

Kernel
• Protocol
• Driver

Application

Machine 1 Machine 2

Critical Path Analysis

• Powerful technique to find performance
bottlenecks in concurrent systems; However:
▫ Requires a dependence graph
▫ Detailed, domain-specific knowledge to create one

April 21st, 2008 ISPASS

9

Constructing a Dependence Graph

• Key insight: Systematically map state
machines into a global dependence graph
▫ Most HW is already specified as a state machines
▫ Extract implicit state machines from SW
 More on this later

April 21st, 2008 ISPASS

10

App Protocol Driver NIC Network NIC Driver Protocol App
Machine 1 Machine 2

• Trace each state machine’s execution individually
▫ Generate piece of dependence graph
▫ We’ll connect the pieces soon

• Nodes of graph are transitions
state machine made

• Edges of graph are time spent in
a state machine
▫ Occupancy time is edge weight

S

B A C

B A C

B A C

B A C

Ti
m

e

0:

1:

2:

3:

4:

S

B A C

B A C

B A C

B A C

April 21st, 2008 ISPASS

11

S

B A

C

S

B A

C

S

B (weight = tB)

A (weight = tA)

B (weight = tB)

C (weight = tC)

S

B A C

B A C

B A C

B A C

Ti
m

e

0:

1:

2:

3:

4:

B→C

A→B

B→A

S→B

State Machine Interactions
• Example illustrates conversion of single state

machine to dependence graph

• State machines interact when one SM induces a
transition in another SM
▫  Insert edge between transition nodes in graph
▫  Only way that subgraphs from different SMs interact

• SM transition plus inter-SM interaction events
sufficient for global dependence graph

April 21st, 2008 ISPASS

12

Identifying State Machines

• HW design often based on state machine
▫ Mark interactions between state machines

• SW state machines typically implicit in code
▫ Automatic function-based decomposition
▫ Annotations for further refinement
 Interactions between SMs
 Multiple SMs in single code base (e.g., kernel)

•  Incremental: analysis finds incorrect assertions
• Less than 100 annotations for results in this talk

April 21st, 2008 ISPASS

13

April 21st, 2008 ISPASS

14

Fetch
Complete

Wait

Fetch
Descriptor

Descriptor Fetch State Machine

Example: NIC Transmit

Descriptor
Wait FIFO Queue

DMA Packet

Descriptor
Writeback

Transmit State Machine

FIFO Dequeue Wire Wait

FIFO Wait

FIFO Process

TX FIFO State Machine

Fetch
Complete

Wait

Fetch
Descriptor

Descriptor Fetch State Machine

Descriptor
Wait FIFO Queue

DMA Packet

Descriptor
Writeback

Transmit State Machine

FIFO Dequeue Wire Wait

FIFO Wait

FIFO Process

TX FIFO State Machine

Fetch Desc
Fetch Complete

Fetch Complete
Wait

FIFO Wait 
FIFO Process

FIFO Process 
FIFO Dequeue

FIFO Dequeue
FIFO Wait

Time

Desc Wait 
DMA Packet

DMA Packet 
FIFO Queue

FIFO Queue
Desc Writeback

Desc Writeback
 DMA Packet

DMA Packet 
FIFO Queue

Interaction

Interaction

Directly observed traces:

Finding Global Critical Path
• Use standard graph analysis techniques
• Path will likely go through same state multiple times
▫  A state’s criticality is time spent in that state divided by

total critical path length
▫  Use criticality to guide optimizations

April 21st, 2008 ISPASS

15

Fetch Desc
Fetch Complete

Fetch Complete
Wait

FIFO Wait 
FIFO Process

FIFO Process 
FIFO Dequeue

FIFO Dequeue
FIFO Wait

Time

Desc Wait 
DMA Packet

DMA Packet 
FIFO Queue

FIFO Queue
Desc Writeback

Desc Writeback
 DMA Packet

DMA Packet 
FIFO Queue

Result Visualization

• Analysis produces large graph
▫ Unbounded in size
▫ Fold traces back into “Combined Graph”
▫ No node is ever repeated

April 21st, 2008 ISPASS

16

Fetch Desc Fetch
Complete

Fetch Complete
Wait

FIFO Wait 
FIFO Process

FIFO Process 
FIFO Dequeue

FIFO Dequeue
FIFO Wait

Time

Desc Wait 
DMA Packet

DMA Packet
 FIFO Queue

FIFO Queue
Desc Writeback

Desc Writeback 
DMA Packet

DMA Packet
 FIFO Queue

DMA Packet
 FIFO Queue

Wait
FetchDesc

FIFO Wait 
FIFO Process

Wait
FetchDesc

Fetch Complete
Wait

Fetch Desc Fetch
Complete

Desc Wait 
DMA Packet

DMA Packet
 FIFO Queue

FIFO Queue
Desc Writeback

Desc Writeback 
DMA Packet

FIFO Process 
FIFO Dequeue

FIFO Wait 
FIFO Process

FIFO Dequeue
FIFO Wait

Example UDP Protocol Graph

April 21st, 2008 ISPASS

17

Started with ~1.5M nodes, this graph has 545

Evaluation Goals

• Artificially constrain the system
▫ Verify that the analysis program can find the

constrained resource

• Apply tools to an unconstrained system
▫ See what problems our tool can find

April 21st, 2008 ISPASS

18

Methodology
• Used M5 simulator
▫ Provides deterministic results & visibility
▫ Technique is not restricted to simulation

• Separate recording and processing
▫ Allows for interactive analysis

• Records hardware state machine events directly
• Software state machine transitions are observed by

simulator
▫  Source code annotations used to capture other

required data

April 21st, 2008 ISPASS

19

Workloads
• Linux 2.6.13
• Netperf UDP stream test
▫ Metric is bandwidth produced

• Hardware Evaluation
▫ Artificially constrained system
▫ Technique identified constrained resource

• Software Evaluation
▫ Ran a variety of configurations
▫ Found some interesting results

April 21st, 2008 ISPASS

20

Constrained I/O Bandwidth

• Analysis correctly identified bottleneck
▫ NIC transmit state machine

 Spent 96% of critical path time in DMA packet state
▫  Sender generated ~1.8Gbps of bandwidth

• Our technique is able to identify HW bottlenecks

April 21st, 2008 ISPASS

21

• Artificially made bottleneck I/O bandwidth
▫ Limited I/O bus bandwidth to ~2Gbps

 Not all of which is available for DMAing packets
 Unconstrained benchmark produces 2.2Gbps

Kernel Performance Bugs

• Ran a variety of different parameters

April 21st, 2008 ISPASS

22

▫ Payload size
  1480 bytes
  16KiB

▫ Netfilter
 Enabled
 Disabled

• Different paths through the kernel
▫ Resulted in different critical paths

• Expected UDP (user-to-kernel copy) to dominate
▫ However, IP layer sometime does

UDP Sender w/Netfilter; 16KiB
State Criticality Profiler Rank

IpSend:ip_defrag 12.78% 4
IpSend:memcpy 9.59% 7
IpSend:ipt_do_table 6.94% 8
IpSend:ip_copy_metadata 6.90% 9
IpSend:ip_fragment 6.51% 10
IpSend:ip_fast_csum 4.87% 13

April 21st, 2008 ISPASS

23

• Analysis shows IP layer dominates
• IP code fragments and then immediately

defragments packet

UDP Sender w/Netfilter; 1480B
State Criticality Profiler Rank

IpSend:ipt_do_table 11.36% 2
IpSend:csum_partial 10.23% 3
IpSend:nf_iterate 7.38% 4
IpSend:_read_unlock_bh 3.61% 17
IpSend:_read_lock_bh 3.56% 19
IpSend:memcpy 3.47% 20

April 21st, 2008 ISPASS

24

• Here again IP layer dominates
• Netfilter erroneously assumes it needs to checksum
• Lots of time used walking table of 0 netfilter rules

Found Problems in Real Software

• All problems fixed in 2.6.16 kernel
▫ But we had no idea they existed

• When fixed, critical path returns to normal
location of user-to-kernel copy

April 21st, 2008 ISPASS

25

Conclusion

• Shown how to find bottlenecks in complex
hardware and software systems

• Applied these techniques with a simulator
▫ Hardware issues
▫ Software issues

• Future
▫ Expand to more complex workloads
▫ Analyze software on real systems

April 21st, 2008 ISPASS

26

April 21st, 2008 ISPASS

27

