Full-System
Critical Path Analysis

April 21st, 2008

Ali Saidi, Nathan Binkert’, Steve Reinhardt®, Trevor Mudge

Advanced Computer Architecture Lab
University of Michigan

"Hewlett-Packard Labs
*Reservoir Labs

ISPASS April 2

Full-System Performance Analysis

- Today’s complex workloads may not be CPU limited
» E.g. webservers, databases, OLTP, etc
o Multiple layers of HW (disk, network) and SW (app, OS)
= No single metric to identify bottleneck

« No off-the-shelf tools analyze these systems

= Local per-component analysis fails to account for
overlapped latencies

> Ad-hoc methodologies are workload specific
o State-space exploration is slow

- How can we find bottlenecks across multiple layers?

e —

ISPASS April 21st, 2008

Solution: Global Critical Path

- Global critical path indicates non-overlapped latencies
o Directly identifying problem areas

- Used successfully in past in isolated domains
> Fields et al. developed a model for out-of-order CPU
= Barford and Crovella developed a critical-path model TCP

= Yang and Miller extracted critical path information from
message and synchronization calls

T

ISPASS April 21st, 2008

Solution: Global Critical Path

- Challenge: Create global dependence graph
» Requires detailed knowledge across many domains!

- Our solution: automatically extract dependence graph
from interacting state machines
» Extract underlying state machines from HW and SW
= Identify local interactions
» Build an execution graph that captures the interactions
= Find time where overlapping latencies not hidden

ISPASS April 21st, 2008

Contributions

- Methodology to convert cooperating state
machines into global dependence graph
s Only local understanding required
» Use dependence graph to find critical path

- Proof of concept implementation
= Locate both hardware and software bottlenecks

- Sample analysis of UDP protocol
s Found performance bugs in Linux 2.6.13

ISPASS April 21st, 2008

Outline

- Motivation

- Using critical path analysis
- Implementation

- Results

» Conclusion

il 21st, 2008

ISPASS Apr

Performance Analysis Challenge:
High-speed Networking

- Finding bottlenecks is particularly problematic
in end-to-end networking

» Performance losses come from a combination of
overheads and non-overlapped latencies

s s s s s s
ad 0= 0= at
*9' ; @ Y - 2 Y 2 @ J ;
LR 0 0 LR
— 3 e — = —
Kernel Hardware Hardware Kernel
Application « Protocol « NIC Network « NIC « Protocol Application
* Driver « Disk « Disk « Driver
K g’: Y - N S Y - Y - — M —~ Y -]! /

- —~—

ISPASS April 21st, 2008

Conventional Tools Don’t Work

- Why not use a profiler?

s Where most time spent # bottleneck

» Higher level dependence or protocol requirements
that limit performance

= Profilers only work on software

s e N/ / avVa avYa s ™
> U 0= 0> o
' @ q° ot @ \
L R : : L R
— v - A —— — —
Kernel Hardware Hardware Kernel
Application « Protocol « NIC Network « NIC « Protocol Application
 Driver « Disk « Disk Driver

ISPASS April 21st, 2008

Critical Path Analysis

- Powertul technique to find performance
bottlenecks in concurrent systems; However:
= Requires a dependence graph
= Detailed, domain-specific knowledge to create one

~ ‘ . e A
f"\' N ITE a AN A
-)‘I =T r v B "t
- P~ i R < N
— e — —
: Hardwere Kerne
Application Network « NIC « Prggicol Application
| Dis « Disk ver
Machine 1 " Machine>

ISPASS April 21st, 2008

Constructing a Dependence Graph

- Key insight: Systematically map state
machines into a global dependence graph
» Most HW is already specified as a state machines
= Extract implicit state machines from SW
* More on this later

P 25\%0 2525 20 24|29 2

App Protocol ‘Driver ~ NIC Network NIC Driver Protocol App

QIR Machine: QI Machinez

o

® « Nodes ‘Q: ph are transitions
state ine made.

A ate ma @ ecution individually
g nerate pige m feays ,
: " AD, L APIT me spent 1n
s Sye'll connegt thp 0% B
(sta hire
(°\ N, ' ‘\c ge weight
IOBOBO "v“*" veight = B)
801 1

s
“
O]
<
~;‘.
a

ém
e
e ’
L
Jié
Qé

(weight = t..)

.
2008

ISPASS April 21st,

State Machine Interactions

- Example illustrates conversion of single state
machine to dependence graph

- State machines interact when one SM induces a
transition in another SM
= Insert edge between transition nodes in graph
> Only way that subgraphs from different SMs interact

- SM transition plus inter-SM interaction events
sufficient for global dependence graph

H

ISPASS April 21st, 20

ldentifying State Machines

- HW design often based on state machine
= Mark interactions between state machines

- SW state machines typically implicit in code
= Automatic function-based decomposition
» Annotations for further refinement

- Interactions between SMs
- Multiple SMs in single code base (e.g., kernel)

- Incremental: analysis finds incorrect assertions
- Less than 100 annotations for results in this talk

Example: NIC Transmit =~ = =

Descriptor
Writeback FIFO Process
ietch FIFO Queue I i pior Wire Wait III FIFO Dequeue
Descriptor ‘ .
‘1"'1—1/\ Y.

Fetch
Conelpclete DMA Packet

Wi ait
Descriptor Fetch State Machine g \

Wire Wait r‘ FIFO Dequeue
Directly observed trace N b Desciin

Fetch Desc=> Fetch Complete « __ q
Fetch Complete = Wait f‘efp‘— 2

%, Interaction (070) FIFO Wait

FIFO Wait

TX FIFO State Machine

[

Desc Wait = DMA Packet = _.__ FIFO Queue ‘Bl Desc Writeback DMA Packet =
DMA Packet HIEOQuene a1 & >Desc Writeback ;{5 = DMA Packet FIFO Queue

\\Interaction

FIFO Wait = FIFO Process = FIFO Dequeue=>
FIFO Process FIFO Dequeue FIFO Wait

Time

T

ISPASS April 21st, 2008

Finding Global Critical Path

- Use standard graph analysis techniques

- Path will likely go through same state multiple times

o A state’s criticality is time spent in that state divided by
total critical path length

= Use criticality to guide optimizations

Desc=> Fetch Complete >
omplete > AVEE
S

" Desc Writeback " DMA Packet >
= DMA Packet FIFO Queue

FIFO Wi IFO Process = oo

I —r |

ISPASS April 21st, 2008

Result Visualization

- Analysis produces large graph
s Unbounded in size
= Fold traces back into “Combined Graph”
> No node is ever repeated

DMA Packet FIFO Process & '+
= FIFO Queue FIFO Dequeue Desc

Wait
= FetchDesc

Fetch Complete
2> Wait

I i Desc Wait = ‘ ' FIFO Queue '
Desc Waltl\ Fetch Desc Fetch P2chet DMA Packet e Desc Wril . ?Desc Writeback MA Packet DMA Pac!
DMA Pack.

Complete J Queue v riteback DMA Pac.c. = FIFO Queue = FIFO @ FIFF(‘)I 11735%1‘;2111:-)
FIFO Process . FIFO Dec: FIFO Wait >

~ FIFO . i
Fetch (\J]gl;;flete FIFC Deslgl\‘/ll\gllt’zbci%l; 2> FFO Dequeue FIFO (E}gg ‘lx'?)lg e;)s FIFO Process

17

April 21st, 2008

Example UDP Protocol Graph

.
'SAA R L™

L)
» ge0000
AR TS "y

.
’.' .
.
L2 » P
.
AR BPER e .
" *
"
2
(R Vi
Ve,
’
’ »
. oy AR R Y ",v:‘
1eeea0e3 ! e . 2 ¥
249
)] v ree e
ae 000080 .
o ’
see!
$ % ropear
N
+47 b s
- 'J.| P ™
atesae, vy
» . 0e0 0
29 P PP i PPV Voo

"00 -
et PO FINCLL

" .UQ:U

Started with ~1.5M nodes, this graph has 545

*e

*4

H
il 21st, 2008

ISPASS Apr

Evaluation Goals

- Artificially constrain the system

= Verify that the analysis program can find the
constrained resource

- Apply tools to an unconstrained system
= See what problems our tool can find

P

ISPASS April 21st, 2008

Methodology

» Used M5 simulator
= Provides deterministic results & visibility
= Technique is not restricted to simulation
- Separate recording and processing
= Allows for interactive analysis
- Records hardware state machine events directly
- Software state machine transitions are observed by
simulator

= Source code annotations used to capture other
required data

H

ISPASS April 2

Workloads

- Linux 2.6.13

» Netperf UDP stream test
= Metric is bandwidth produced

- Hardware Evaluation
= Artificially constrained system
= Technique identified constrained resource

- Software Evaluation
= Ran a variety of configurations
= Found some interesting results

e —1

ISPASS April 21st, 2008

Constrained |/0 Bandwidth

- Artificially made bottleneck I/0O bandwidth
= Limited I/O bus bandwidth to ~2Gbps
- Not all of which is available for DM Aing packets
- Unconstrained benchmark produces 2.2Gbps

Waiting for Dcscnptors

. ggme ctly identified bottleneek
O lt St at e ma Chln e DMA Packet — Updatc Desc

%\\

IDcsSp&mg)\E)% of critical path tineslir D MA@ ackebstate
o Sende '
. Quritechn G gidenti S

1:
1:Desc Fetch(960.,0,0) Desc i, 1:FIFO Queue (1297,23,22)
“ack(ye
213 3)
testsys:TXS _ 1:Desc Writeback(960,38,35) testsys:TXS
Desc Writeback — Desc Fetch - FIFO Queue — Desc Writeback
More descriptors needed Descriptor available for writeback

v v

H
il 21st, 2008

ISPASS Apr

Kernel Performance Bugs

- Ran a variety of different parameters

= Payload size = Netfilter
* 1480 bytes - Enabled
- 16KiB - Disabled

- Different paths through the kernel
= Resulted in different critical paths

- Expected UDP (user-to-kernel copy) to dominate
= However, IP layer sometime does

H

ISPASS April 21st, 2

UDP Sender w/Netfilter; 16KiB

IpSend:ip defrag 12.78% 4
IpSend:memcpy 9.50% 7
IpSend:ipt do table 6.94% 8
IpSend:ip copy metadata 6.90% 0
IpSend:ip fragment 6.51% 10
IpSend:ip fast csum 4.87% 13

- Analysis shows IP layer dominates

- IP code fragments and then immediately
defragments packet

e —4

ISPASS April 21st, 2008

UDP Sender w/Netfilter; 1480B

IpSend:ipt do table 11.36% 2
IpSend:csum partial 10.23% 3
IpSend:nf iterate 7.38% 4
IpSend: read unlock bh 3.61% 17
IpSend: read lock bh 3.56% 19
IpSend:memcpy 3.47% 20

- Here again IP layer dominates
- Netfilter erroneously assumes it needs to checksum

- Lots of time used walking table of 0 netfilter rules

ISPASS April 21st, 2008

Found Problems in Real Software

- All problems fixed in 2.6.16 kernel
» But we had no idea they existed

- When fixed, critical path returns to normal
location of user-to-kernel copy

H
il 21st, 2008

ISPASS Apr

Conclusion

- Shown how to find bottlenecks in complex
hardware and software systems

- Applied these techniques with a simulator
= Hardware issues
= Software issues
 Future
= Expand to more complex workloads
= Analyze software on real systems

ISPASS April 21st, 2008

Questions?

