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Full-System Performance Analysis

- Today’s complex workloads may not be CPU limited
» E.g. webservers, databases, OLTP, etc
o Multiple layers of HW (disk, network) and SW (app, OS)
= No single metric to identify bottleneck

« No off-the-shelf tools analyze these systems

= Local per-component analysis fails to account for
overlapped latencies

> Ad-hoc methodologies are workload specific
o State-space exploration is slow

- How can we find bottlenecks across multiple layers?
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Solution: Global Critical Path

- Global critical path indicates non-overlapped latencies
o Directly identifying problem areas

- Used successfully in past in isolated domains
> Fields et al. developed a model for out-of-order CPU
= Barford and Crovella developed a critical-path model TCP

= Yang and Miller extracted critical path information from
message and synchronization calls
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Solution: Global Critical Path

- Challenge: Create global dependence graph
» Requires detailed knowledge across many domains!

- Our solution: automatically extract dependence graph
from interacting state machines
» Extract underlying state machines from HW and SW
= Identify local interactions
» Build an execution graph that captures the interactions
= Find time where overlapping latencies not hidden
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Contributions

- Methodology to convert cooperating state
machines into global dependence graph
s Only local understanding required
» Use dependence graph to find critical path

- Proof of concept implementation
= Locate both hardware and software bottlenecks

- Sample analysis of UDP protocol
s Found performance bugs in Linux 2.6.13
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Outline

- Motivation

- Using critical path analysis
- Implementation

- Results

» Conclusion
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Performance Analysis Challenge:
High-speed Networking

- Finding bottlenecks is particularly problematic
in end-to-end networking

» Performance losses come from a combination of
overheads and non-overlapped latencies
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Conventional Tools Don’t Work

- Why not use a profiler?

s Where most time spent # bottleneck

» Higher level dependence or protocol requirements
that limit performance

= Profilers only work on software
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Critical Path Analysis

- Powertul technique to find performance
bottlenecks in concurrent systems; However:
= Requires a dependence graph
= Detailed, domain-specific knowledge to create one
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Constructing a Dependence Graph

- Key insight: Systematically map state
machines into a global dependence graph
» Most HW is already specified as a state machines
= Extract implicit state machines from SW
* More on this later
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State Machine Interactions

- Example illustrates conversion of single state
machine to dependence graph

- State machines interact when one SM induces a
transition in another SM
= Insert edge between transition nodes in graph
> Only way that subgraphs from different SMs interact

- SM transition plus inter-SM interaction events
sufficient for global dependence graph
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ldentifying State Machines

- HW design often based on state machine
= Mark interactions between state machines

- SW state machines typically implicit in code
= Automatic function-based decomposition
» Annotations for further refinement

- Interactions between SMs
- Multiple SMs in single code base (e.g., kernel)

- Incremental: analysis finds incorrect assertions
- Less than 100 annotations for results in this talk
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Finding Global Critical Path

- Use standard graph analysis techniques

- Path will likely go through same state multiple times

o A state’s criticality is time spent in that state divided by
total critical path length

= Use criticality to guide optimizations
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Result Visualization

- Analysis produces large graph
s Unbounded in size
= Fold traces back into “Combined Graph”
> No node is ever repeated
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Example UDP Protocol Graph
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Evaluation Goals

- Artificially constrain the system

= Verify that the analysis program can find the
constrained resource

- Apply tools to an unconstrained system
= See what problems our tool can find
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Methodology

» Used M5 simulator
= Provides deterministic results & visibility
= Technique is not restricted to simulation
- Separate recording and processing
= Allows for interactive analysis
- Records hardware state machine events directly
- Software state machine transitions are observed by
simulator

= Source code annotations used to capture other
required data
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Workloads

- Linux 2.6.13

» Netperf UDP stream test
= Metric is bandwidth produced

- Hardware Evaluation
= Artificially constrained system
= Technique identified constrained resource

- Software Evaluation
= Ran a variety of configurations
= Found some interesting results
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Constrained |/0 Bandwidth

- Artificially made bottleneck I/0O bandwidth
= Limited I/O bus bandwidth to ~2Gbps
- Not all of which is available for DM Aing packets
- Unconstrained benchmark produces 2.2Gbps
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Kernel Performance Bugs

- Ran a variety of different parameters

= Payload size = Netfilter
* 1480 bytes - Enabled
- 16KiB - Disabled

- Different paths through the kernel
= Resulted in different critical paths

- Expected UDP (user-to-kernel copy) to dominate
= However, IP layer sometime does
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UDP Sender w/Netfilter; 16KiB

IpSend:ip defrag 12.78% 4
IpSend:memcpy 9.50% 7
IpSend:ipt do table 6.94% 8
IpSend:ip copy metadata 6.90% 0
IpSend:ip fragment 6.51% 10
IpSend:ip fast csum 4.87% 13

- Analysis shows IP layer dominates

- IP code fragments and then immediately
defragments packet
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UDP Sender w/Netfilter; 1480B

IpSend:ipt do table 11.36% 2
IpSend:csum partial 10.23% 3
IpSend:nf iterate 7.38% 4
IpSend: read unlock bh 3.61% 17
IpSend: read lock bh 3.56% 19
IpSend:memcpy 3.47% 20

- Here again IP layer dominates
- Netfilter erroneously assumes it needs to checksum

- Lots of time used walking table of 0 netfilter rules
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Found Problems in Real Software

- All problems fixed in 2.6.16 kernel
» But we had no idea they existed

- When fixed, critical path returns to normal
location of user-to-kernel copy
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Conclusion

- Shown how to find bottlenecks in complex
hardware and software systems

- Applied these techniques with a simulator
= Hardware issues
= Software issues
 Future
= Expand to more complex workloads
= Analyze software on real systems
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Questions?



