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Full-System Performance Analysis 
• Today’s complex workloads may not be CPU limited 
▫  E.g. webservers, databases, OLTP, etc 
▫  Multiple layers of HW (disk, network) and SW (app, OS) 
▫  No single metric to identify bottleneck 

• No off-the-shelf tools analyze these systems 
▫  Local per-component analysis fails to account for 

overlapped latencies 
▫  Ad-hoc methodologies are workload specific 
▫  State-space exploration is slow 

• How can we find bottlenecks across multiple layers? 
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Solution: Global Critical Path 
• Global critical path indicates non-overlapped latencies 
▫  Directly identifying problem areas 

• Used successfully in past in isolated domains 
▫  Fields et al. developed a model for out-of-order CPU 
▫  Barford and Crovella developed a critical-path model TCP 
▫  Yang and Miller extracted critical path information from 

message and synchronization calls 
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Solution: Global Critical Path 
• Challenge: Create global dependence graph 
▫  Requires detailed knowledge across many domains! 

• Our solution: automatically extract dependence graph 
from interacting state machines 
▫  Extract underlying state machines from HW and SW  
▫  Identify local interactions 
▫  Build an execution graph that captures the interactions 
▫  Find time where overlapping latencies not hidden 
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Contributions 

• Methodology to convert cooperating state 
machines into global dependence graph 
▫ Only local understanding required 
▫ Use dependence graph to find critical path 

• Proof of concept implementation 
▫ Locate both hardware and software bottlenecks 

• Sample analysis of UDP protocol 
▫ Found performance bugs in Linux 2.6.13 
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Outline 

• Introduction 
• Motivation 
• Using critical path analysis 
• Implementation 
• Results 
• Conclusion 
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Performance Analysis Challenge: 
High-speed Networking 
• Finding bottlenecks is particularly problematic 

in end-to-end networking 
• Performance losses come from a combination of 

overheads and non-overlapped latencies 
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Conventional Tools Don’t Work 

• Why not use a profiler? 
▫ Where most time spent ≠ bottleneck 
 Higher level dependence or protocol requirements 

that limit performance 
▫ Profilers only work on software 
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Critical Path Analysis 

• Powerful technique to find performance 
bottlenecks in concurrent systems; However: 
▫ Requires a dependence graph 
▫ Detailed, domain-specific knowledge to create one 
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Constructing a Dependence Graph 

• Key insight: Systematically map state 
machines into a global dependence graph 
▫ Most HW is already specified as a state machines 
▫ Extract implicit state machines from SW 
 More on this later 
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• Trace each state machine’s execution individually  
▫ Generate piece of dependence graph 
▫ We’ll connect the pieces soon 

• Nodes of graph are transitions 
state machine made 

• Edges of graph are time spent in 
a state machine 
▫ Occupancy time is edge weight 
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State Machine Interactions 
• Example illustrates conversion of single state 

machine to dependence graph 

• State machines interact when one SM induces a 
transition in another SM 
▫  Insert edge between transition nodes in graph 
▫  Only way that subgraphs from different SMs interact 

• SM transition plus inter-SM interaction events 
sufficient for global dependence graph 
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Identifying State Machines 

• HW design often based on state machine 
▫ Mark interactions between state machines 

• SW state machines typically implicit in code 
▫ Automatic function-based decomposition 
▫ Annotations for further refinement 
 Interactions between SMs 
 Multiple SMs in single code base (e.g., kernel) 

•  Incremental: analysis finds incorrect assertions 
• Less than 100 annotations for results in this talk 
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Finding Global Critical Path 
• Use standard graph analysis techniques 
• Path will likely go through same state multiple times 
▫  A state’s criticality is time spent in that state divided by 

total critical path length 
▫  Use criticality to guide optimizations  
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Result Visualization 

• Analysis produces  large graph 
▫ Unbounded in size 
▫ Fold traces back into “Combined Graph” 
▫ No node is ever repeated 
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Example UDP Protocol Graph 
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Started with ~1.5M nodes, this graph has 545 



Evaluation Goals 

• Artificially constrain the system 
▫ Verify that the analysis program can find the 

constrained resource 

• Apply tools to an unconstrained system 
▫ See what problems our tool can find 
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Methodology 
• Used M5 simulator 
▫ Provides deterministic results & visibility 
▫ Technique is not restricted to simulation 

• Separate recording and processing 
▫ Allows for interactive analysis 

• Records hardware state machine events directly 
• Software state machine transitions are observed by 

simulator 
▫  Source code annotations used to capture other 

required data  
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Workloads 
• Linux 2.6.13 
• Netperf UDP stream test  
▫ Metric is bandwidth produced 

• Hardware Evaluation 
▫ Artificially constrained system 
▫ Technique identified constrained resource 

• Software Evaluation 
▫ Ran a variety of configurations 
▫ Found some interesting results 
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Constrained I/O Bandwidth 

• Analysis correctly identified bottleneck 
▫ NIC transmit state machine 

 Spent 96% of critical path time in DMA packet state 
▫  Sender generated ~1.8Gbps of bandwidth 

• Our technique is able to identify HW bottlenecks  
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• Artificially made bottleneck I/O bandwidth 
▫ Limited I/O bus bandwidth to ~2Gbps 

 Not all of which is available for DMAing packets 
 Unconstrained benchmark produces 2.2Gbps 



Kernel Performance Bugs 

• Ran a variety of different parameters 
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▫ Payload size 
  1480 bytes 
  16KiB 

▫ Netfilter 
 Enabled 
 Disabled 

• Different paths through the kernel 
▫ Resulted in different critical paths 

• Expected UDP (user-to-kernel copy) to dominate 
▫ However, IP layer sometime does 



UDP Sender w/Netfilter; 16KiB 
State Criticality Profiler Rank 

IpSend:ip_defrag 12.78% 4 
IpSend:memcpy 9.59% 7 
IpSend:ipt_do_table 6.94% 8 
IpSend:ip_copy_metadata 6.90% 9 
IpSend:ip_fragment 6.51% 10 
IpSend:ip_fast_csum 4.87% 13 
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• Analysis shows IP layer dominates 
• IP code fragments and then immediately 

defragments packet 



UDP Sender w/Netfilter; 1480B 
State Criticality Profiler Rank 

IpSend:ipt_do_table 11.36% 2 
IpSend:csum_partial 10.23% 3 
IpSend:nf_iterate 7.38% 4 
IpSend:_read_unlock_bh 3.61% 17 
IpSend:_read_lock_bh 3.56% 19 
IpSend:memcpy 3.47% 20 
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• Here again IP layer dominates 
• Netfilter erroneously assumes it needs to checksum 
• Lots of time used walking table of 0 netfilter rules 



Found Problems in Real Software 

• All problems fixed in 2.6.16 kernel 
▫ But we had no idea they existed 

• When fixed, critical path returns to normal 
location of user-to-kernel copy 
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Conclusion 

• Shown how to find bottlenecks in complex 
hardware and software systems 

• Applied these techniques with a simulator 
▫ Hardware issues 
▫ Software issues 

• Future  
▫ Expand to more complex workloads 
▫ Analyze software on real systems  
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