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◆ State machines interact when one produces an 
output the other consumes
◆ Can largely been seen as a series of queues
◆ Act of removing an item from a queue sets up a dependence 

between the producer of items in queue and consumer
◆ Queue push/pop/empty/full operations explicitly annotated
◆ Edges between state machines weight is com latency
◆ Reduces global dependence graph generation to description 

of local state machines and their local interactions 
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◆ Resulting graph is a fully connected DAG
◆ Critical path can be found with standard graph analysis
◆ Directly identifies performance bottleneck
◆ Predict performance improvement when problems fixed

◆ Software state machines
◆ Automatically convert functions (symbols) into states
◆ User must manually mark pieces of code as belonging to a 

state machine
◆ Can be done iteratively

◆ Iterative Construction
◆ Complete, detailed decomposition not required
◆ A little work can be done and then the analysis can drive 

future work
◆ Missing dependencies when states are occupied for a very long time
◆ Analysis program warns when interactions appear incorrect
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◆ Evaluating performance of systems difficult
◆ End-to-end behavior is result of many interactions
◆ Concurrently operating hardware and software components
◆ When trying to improve performance, problem isn't clear

◆ Locating the bottleneck component is difficult
◆ Ad-hoc methods can be faulty
◆ State-space exploration infeasible

◆ Particularly problematic in networking
◆ Performances losses come from interactions between 

protocol, software, memory system, and NIC
◆ End-to-end TCP bandwidth isn't as expected:
◆ Range of possible reasons from spanning application, kernel

TCP stack, driver, NIC, and network
◆ Simply observing snapshot of state is insufficient
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◆ Identify bottlenecks with Critical Path Analysis
◆ Prerequisite is a dependence graph representing timing 

constraints
◆ Simple for small system with few events
◆ Becomes much harder for bigger systems

◆ Algorithmically map of state machines to dependence graph
◆ Execution of each state machine is converted to graph
◆ Dependencies between state machines are added manually

◆ Nodes represent a state change in the dependence graph
◆ Edge weight represent time spent in a state

◆ Visualizing the analysis
◆ Can't visualize full graph (millions of nodes)
◆ Compress the information in combination of state machines  

and bottleneck graph

◆ Loose Loops
◆ Long loops in the critical path
◆ Source of performance problems
◆ Analysis can automatically identify them
◆ Predict performance if the paths are broken

◆ Example output
◆ TCP Stream between two systems with large link delay 

Most critical edges (time spent) on critical path 0 (12902788000):
------------------------------------------------------------------
drivesys:RX Desc Wback:Queue__RX Used Desc->drivesys:E1000 RX:Dequeue__RX Used Desc     02.98 (00.00% waiting)
testsys:TcpSendMsg:__copy_user                                                          03.80 (10.24% waiting)
testsys:RX Desc Wback:Queue__RX Used Desc->testsys:E1000 RX:Dequeue__RX Used Desc       04.02 (00.00% waiting)
testsys:TcpRcvProcess:Queue__sndmemQ->testsys:TcpSendMsg:Dequeue__sndmemQ               10.37 (00.00% waiting)
testsys:TcpSendMsg:tcp_push_one                                                         14.45 (99.46% waiting)
drivesys:TXQ:Queue__WireQ->testsys:RXQ:Dequeue__WireQ                                   15.50 (00.00% waiting)
testsys:TXQ:Queue__WireQ->drivesys:RXQ:Dequeue__WireQ                                   19.42 (00.00% waiting)
drivesys:TcpRcvProcess:Queue__ackQ->drivesys:TcpAck:Dequeue__ackQ                       24.09 (00.00% waiting)

Most critical edges (loose loops) on critical path:
------------------------------------------------------------------
3: testsys:TcpRcvProcess:Queue__sndmemQ -> testsys:TcpSendMsg:Dequeue__sndmemQ

Most critical edges (time spent) on critical path 1 (12600624500):
------------------------------------------------------------------
testsys:TcpSendMsg:tcp_push_one                                                         03.18 (99.53% waiting)
testsys:RX Desc Wback:Queue__RX Used Desc->testsys:E1000 RX:Dequeue__RX Used Desc       04.30 (00.00% waiting)
drivesys:RX Desc Wback:Queue__RX Used Desc->drivesys:E1000 RX:Dequeue__RX Used Desc     04.49 (00.00% waiting)
drivesys:TcpRcvProcess:Queue__ackQ->drivesys:TcpAck:Dequeue__ackQ                       24.70 (00.00% waiting)
drivesys:TXQ:Queue__WireQ->testsys:RXQ:Dequeue__WireQ                                   27.78 (00.00% waiting)
testsys:TXQ:Queue__WireQ->drivesys:RXQ:Dequeue__WireQ                                   31.82 (00.00% waiting)

Most critical edges (loose loops) on critical path:
------------------------------------------------------------------
6: testsys:TcpRcvProcess:Queue__wndQ -> testsys:TcpOutput:Peek__wndQ
1: testsys:TcpRcvProcess:Queue__cwndQ -> testsys:TcpOutput:Peek__cwndQ

Most critical edges (time spent) on critical path 2 (6909148000):
------------------------------------------------------------------
testsys:TcpSendMsg:kmem_cache_alloc                                                     01.27 (00.00% waiting)
testsys:TcpSendMsg:alloc_skb                                                            01.75 (11.26% waiting)
drivesys:RX Desc Wback:Queue__RX Used Desc->drivesys:E1000 RX:Dequeue__RX Used Desc     01.81 (00.00% waiting)
testsys:TcpSendMsg:__kmalloc                                                            01.88 (21.72% waiting)
testsys:TcpSendMsg:tcp_sendmsg                                                          02.67 (12.15% waiting)
testsys:TcpSendMsg:release_sock                                                         05.96 (99.06% waiting)
testsys:TXQ:Queue__WireQ->drivesys:RXQ:Dequeue__WireQ                                   07.25 (00.00% waiting)
testsys:TcpSendMsg:__copy_user                                                          16.87 (14.34% waiting)
testsys:TcpSendMsg:tcp_push_one                                                         57.71 (99.48% waiting)

◆ Future Work
◆ Analysis currently limited to single streams 
◆ Apply techniques to larger workloads
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