
Full-System Critical Path Analysis
Ali Saidi, Nathan Binkert, Steve Reinhardt, Trevor Mudge

S

B0A0 C0

B1A1 C1

B2A2 C2

B3A3 C3

A B

C

S

S

B0

A1

B2

C3

S-B0

B0-A1

A1-B2

B2-C3

S

B0

A1

B2

C3

◆ State machines interact when one produces an
output the other consumes
◆ Can largely been seen as a series of queues
◆ Act of removing an item from a queue sets up a dependence

between the producer of items in queue and consumer
◆ Queue push/pop/empty/full operations explicitly annotated
◆ Edges between state machines weight is com latency
◆ Reduces global dependence graph generation to description

of local state machines and their local interactions

IP/TCP

backlog
queue

pre
queue

Socket
queueApp

Socket
queue

Socket/
TCP

TCP
Data

Ouput

Congestion
Window

Receive
Window

Socket
Receive

sk send
queue

Pendin
g ACKs

TCP
ACK

Output

device
queue

Nagle
Alg Q

packet
queue

TCP
Receive
Process

sk recv
queue

App

Driver

Driver

Send
MemQ

Used
Descriptor

queue

Ready
Descriptor

queue
NIC

Descriptor
Fetch

NIC
Writeback
Fetch

Cached
Descriptor

queue

Cached
Descriptor

queue

NIC TX
TX

FIFO

Used
Descriptor

queue

Ready
Descriptor

queue
NIC

Descriptor
Fetch

NIC
Writeback

Fetch

Cached
Descriptor

queue

Cached
Descriptor

queue

NIC TX
RX

FIFO

Fetch Desc →
Fetch Complete

Fetch Complete
→ Wait

Wait → Fetch
Desc

Desc Wait →
DMA Packet

DMA Packet →
FIFO Queue

FIFO Queue →
Desc Wback

Desc Wback →
DMA Packet

DMA Packet →
FIFO Queue

FIFO Queue →
Desc Wback

FIFO Wait →
FIFO Process

FIFO Process →
FIFO Dequeue

FIFO Dequeue
→ FIFO Wait

Time

FIFO Wait →
FIFO Process

1:FIFO Wait →
FIFO Process

1:FIFO Dequeue
→ FIFO Wait

1:FIFO Process
→ FIFO
Dequeue

1:FIFO Queue
→ Desc Wback

1:DMA Packet →
FIFO Queue

1:Desc Wait →
DMA Packet

1:Desc Wback
→ DMA Packet

1:Fetch
Complete →

Wait

1:Fetch Desc →
Fetch Complete

1:Wait → Fetch
Desc

1:Wait (1,55, 0)

1:Fetch Desc(2,20,5)

1:Fetch Complete(2,25,0)

1:DMA Packet(1,20,20)
1:FIFO Queue(2,20,20)

1:DMA Packet(1,30,30)

1:Desc Wback(2,30,15)

1:FIFO Process(2,35,10)

1:FIFO Dequeue(1,5,0)

1:FIFO Wait(2,60,0)

◆ Resulting graph is a fully connected DAG
◆ Critical path can be found with standard graph analysis
◆ Directly identifies performance bottleneck
◆ Predict performance improvement when problems fixed

◆ Software state machines
◆ Automatically convert functions (symbols) into states
◆ User must manually mark pieces of code as belonging to a

state machine
◆ Can be done iteratively

◆ Iterative Construction
◆ Complete, detailed decomposition not required
◆ A little work can be done and then the analysis can drive

future work
◆ Missing dependencies when states are occupied for a very long time
◆ Analysis program warns when interactions appear incorrect

FIFO
Wait

FIFO
Dequeue

FIFO
Process

TX FIFO State Machine

Wire Wait

Fetch
Complete

Fetch
Desc

Wait

Descriptor Fetch State Machine

FIFO
Queue

DMA
Packet

Desc
Wait

Desc
Wback

Transmit State Machine

Server Client

Ethernet link

◆ Evaluating performance of systems difficult
◆ End-to-end behavior is result of many interactions
◆ Concurrently operating hardware and software components
◆ When trying to improve performance, problem isn't clear

◆ Locating the bottleneck component is difficult
◆ Ad-hoc methods can be faulty
◆ State-space exploration infeasible

◆ Particularly problematic in networking
◆ Performances losses come from interactions between

protocol, software, memory system, and NIC
◆ End-to-end TCP bandwidth isn't as expected:
◆ Range of possible reasons from spanning application, kernel

TCP stack, driver, NIC, and network
◆ Simply observing snapshot of state is insufficient

Application
Socket
TCP
IP

Driver
NIC

Network

◆ Identify bottlenecks with Critical Path Analysis
◆ Prerequisite is a dependence graph representing timing

constraints
◆ Simple for small system with few events
◆ Becomes much harder for bigger systems

◆ Algorithmically map of state machines to dependence graph
◆ Execution of each state machine is converted to graph
◆ Dependencies between state machines are added manually

◆ Nodes represent a state change in the dependence graph
◆ Edge weight represent time spent in a state

◆ Visualizing the analysis
◆ Can't visualize full graph (millions of nodes)
◆ Compress the information in combination of state machines

and bottleneck graph

◆ Loose Loops
◆ Long loops in the critical path
◆ Source of performance problems
◆ Analysis can automatically identify them
◆ Predict performance if the paths are broken

◆ Example output
◆ TCP Stream between two systems with large link delay

Most critical edges (time spent) on critical path 0 (12902788000):
--
drivesys:RX Desc Wback:Queue__RX Used Desc->drivesys:E1000 RX:Dequeue__RX Used Desc 02.98 (00.00% waiting)
testsys:TcpSendMsg:__copy_user 03.80 (10.24% waiting)
testsys:RX Desc Wback:Queue__RX Used Desc->testsys:E1000 RX:Dequeue__RX Used Desc 04.02 (00.00% waiting)
testsys:TcpRcvProcess:Queue__sndmemQ->testsys:TcpSendMsg:Dequeue__sndmemQ 10.37 (00.00% waiting)
testsys:TcpSendMsg:tcp_push_one 14.45 (99.46% waiting)
drivesys:TXQ:Queue__WireQ->testsys:RXQ:Dequeue__WireQ 15.50 (00.00% waiting)
testsys:TXQ:Queue__WireQ->drivesys:RXQ:Dequeue__WireQ 19.42 (00.00% waiting)
drivesys:TcpRcvProcess:Queue__ackQ->drivesys:TcpAck:Dequeue__ackQ 24.09 (00.00% waiting)

Most critical edges (loose loops) on critical path:
--
3: testsys:TcpRcvProcess:Queue__sndmemQ -> testsys:TcpSendMsg:Dequeue__sndmemQ

Most critical edges (time spent) on critical path 1 (12600624500):
--
testsys:TcpSendMsg:tcp_push_one 03.18 (99.53% waiting)
testsys:RX Desc Wback:Queue__RX Used Desc->testsys:E1000 RX:Dequeue__RX Used Desc 04.30 (00.00% waiting)
drivesys:RX Desc Wback:Queue__RX Used Desc->drivesys:E1000 RX:Dequeue__RX Used Desc 04.49 (00.00% waiting)
drivesys:TcpRcvProcess:Queue__ackQ->drivesys:TcpAck:Dequeue__ackQ 24.70 (00.00% waiting)
drivesys:TXQ:Queue__WireQ->testsys:RXQ:Dequeue__WireQ 27.78 (00.00% waiting)
testsys:TXQ:Queue__WireQ->drivesys:RXQ:Dequeue__WireQ 31.82 (00.00% waiting)

Most critical edges (loose loops) on critical path:
--
6: testsys:TcpRcvProcess:Queue__wndQ -> testsys:TcpOutput:Peek__wndQ
1: testsys:TcpRcvProcess:Queue__cwndQ -> testsys:TcpOutput:Peek__cwndQ

Most critical edges (time spent) on critical path 2 (6909148000):
--
testsys:TcpSendMsg:kmem_cache_alloc 01.27 (00.00% waiting)
testsys:TcpSendMsg:alloc_skb 01.75 (11.26% waiting)
drivesys:RX Desc Wback:Queue__RX Used Desc->drivesys:E1000 RX:Dequeue__RX Used Desc 01.81 (00.00% waiting)
testsys:TcpSendMsg:__kmalloc 01.88 (21.72% waiting)
testsys:TcpSendMsg:tcp_sendmsg 02.67 (12.15% waiting)
testsys:TcpSendMsg:release_sock 05.96 (99.06% waiting)
testsys:TXQ:Queue__WireQ->drivesys:RXQ:Dequeue__WireQ 07.25 (00.00% waiting)
testsys:TcpSendMsg:__copy_user 16.87 (14.34% waiting)
testsys:TcpSendMsg:tcp_push_one 57.71 (99.48% waiting)

◆ Future Work
◆ Analysis currently limited to single streams
◆ Apply techniques to larger workloads

20 40 60 80 100 120 140 160 180

KB available in Queue

0

10

20

30

40

P
e

rc
e

n
t

o
f

ti
m

e

0 500 1000 1500 2000 2500

Communication Delay (ns)

0

10

20

30

40

50

P
e

rc
e

n
t

o
f
T

im
e

0 200000 400000 600000 800000

Time spent waiting on data (ns)

0.01

0.1

1

10

100

P
e
rc

e
n

t
o

f
T

im
e

