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Abstract

In this paper, I will describe a formalism designed to integrate reasoning about desires with
planning. One motive for such a formalism is the need to create a framework for reasoning
about actions and change that provides for flexible reasoning about goals.

The ideas rely on a crucial distinction between prima facie and all-things-considered
attitudes. I model prima facie beliefs and desires as defaults, using the approach to non-
monotonic logic known as Default Logic. All-things-considered beliefs (representing actual
epistemic commitments) and all-things-considered desires (representing goals) are selected
by choosing an extension that is allowed by the logic.

I show in the paper how to integrate these ideas with a planning formalism. The resulting
logic, BDP, is capable of modeling a wide range of common-sense practical arguments, and
can serve as a more general and flexible model for agent architectures.



1. Introduction

In this paper, I will describe a formalism designed to integrate reasoning about desires with
planning. You can motivate the ideas from either direction: (1) by reflecting on the need
to extend planning formalisms to allow infererred goals, or (2) by explaining the need to
extend a bare logic of belief and desire to a true system of practical reasoning by adding
the capability to reason about actions. I actually followed the second path, but the first is
probably the best way to begin explaining things, since the starting point is more familiar.

In AI, the paradigm for deliberation about what to do conceives of planning as a search
for appropriate action sequences, given certain beliefs and desires—beliefs about the initial
state of affairs, and desires about the outcome state. The focus is on action dynamics, on
the way actions transform states. In particular, there is no provision for reasoning about
goals. Goals are given as part of a planning problem; they are never, for instance, judged to
be unworthy and discarded in the course of planning.

Commonsense planning is less constrained; goals are frequently discarded in the course of
many commonsense planning problems. Suppose, for instance, that I get down to planning
a long-anticipated vacation. Prior to this stage I have formed specific desires about my
itinerary. These are the things that I definitely would like to do, and these are the things
that would become the goals of an AI-style planning solution to the problem. But as I work
through the financial and scheduling details of the commonsense problem I discover that the
travel cost is excessive, and the proportion of travel time is too high. The reasonable thing
to do in that case is to adjust the itinerary by visiting fewer places, and that is what I do.

Goals come from desires, and desires can be impractical; they can also conflict with one
another. (See, for instance, [2].) To arrive at practical recommendations, we may need to
suspend some desires; but, as the travel example illustrates, we may not be able to judge
which desires to discard without integrating the process of goal selection into the planning
process.

To sum up: there are compelling reasons for supplementing traditional planning for-
malisms with a mechanism for reasoning about desires. Also, there are similarly compelling
reasons for supplementing a nonmonotonic logic of beliefs and desires with a mechanism for
planning. (See Section 2.5, below.) Both motives lead to the same sort of formalism: one
that supplements planning with general-purpose nonmonotonic reasoning about beliefs and
desires. The logic BDP presented below in Section 3 is intended as a system of this kind.
I have purposely kept it as simple and generic as possible, in the hope that it can serve
as a common starting point for developing more powerful and sophisticated formalisms for
practical reasoning.

2. A logic of belief and desire

2.1. Prima facie and all-things-considered beliefs

In [8], a distinction is introduced between skeptical and credulous approaches to nonmono-
tonic reasoning. In general, formalisms that provide for defaults will allow sets of premises
in which these defaults conflict; these cases are characterized by multiple extensions, theories
representing different conclusion sets that could be reached from these premisses. In many



reasoning applications, it is better to extract as much information from the premisses as pos-
sible, even at the risk of reaching some false conclusions. In these applications, a credulous
strategy may be appropriate, in which the reasoner chooses one of many extensions.

In this paper, I will use Raymond Reiter’s default logic (see [14]) as the framework for
nonmonotonic resaoning, In that framework, defaults are formalized as rules. I will only
consider normal defaults, rules having the form A→֒C, where A and C are formulas of first
order logic. In this framework, an axiomatization will consist of (1) a set M of formulas of
first order logic (the monotonic axioms), and (2) a set N of defaults (the nonmonotonic part
of the the axiomatization, i.e. the default rules). A theory for an axiomatization 〈M, N〉
is a triple 〈M, N, E〉, where E is an extension of 〈M, N〉.1 An extension E is a first order
theory—it is closed under logical consequence. But, unlike the set of consequences of a set
of monotonic axioms, it needn’t be unique; a single axiomatization 〈M, N〉 can have many
extensions.

The three components of a default theory can be mapped in a fairly natural way to
attitudes of an ideal agent. A formula in M corresponds to an immediate belief, one that—
at least, in the reasoning context under consideration—can’t be retracted. A default in N

corresponds to a prima facie belief, one that carries some conviction, but can be suspended
in certain cases. A conclusion in E (at least, a conclusion that is not logically implied by
M) corresponds to an all-things-considered belief, the outcome of a process of contradiction
resolution and selection of competing defaults.

The distinction between prima facie and all-things-considered beliefs makes good intuitive
sense. Take the following example, for instance.

Example 2.1. Beliefs about the porch light.

(i) I have a reason to believe the porch light is off, because I asked my
daughter to turn it off.

(ii) I have a reason to believe the porch light is on, because the last
time I saw it, it was on.

(iii) All things considered, I believe the porch light is off, because my
daughter is pretty reliable.

In this example, Prima facie beliefs (i) and (ii) conflict with each other. The conflict is
resolved by discarding (ii) and retaining (i) in reaching the all-things-considered belief (iii).
Note that, like an intention, the all-things-considered belief that the light is off acts as a
constraint on future deliberation; I will not form a plan to turn it off if I believe, all things
considered, that it is already off.

2.2. Wishes and wants

There are systematic similarities between beliefs and desires, which are reflected in the
language used to describe them and in commonsense reasoning. Of special importance for

1We will not repeat Reiter’s definition of an extension here; a generalization of the definition, for systems
with defaults for both beliefs and desires, is given in Section 2, below.



motivating the formalism that I am aiming for here is an analogy between prima facie and
all-things-considered beliefs on the one hand, and wishes and wants on the other.

Commonsense practical reasoning is concerned with the practicalization of desires. Im-
mediate desires needn’t be feasible, and typically will conflict with other immediate desires.
We do not expect all of these wishes to survive as practical goals. The ones that do survive
I will call wants.

This distinction seems to correspond to one important difference between the way ‘wish’
and ‘would like’ on the one hand and ‘want’ on the other are typically used. The following
example shows that wishes can conflict with beliefs.

Example 2.2. An infeasible wish.

I’d like to take a long vacation.
I’d need to get time off from work to take a long vacation.
But: I can’t get time off from work.

Also, wishes can conflict with each other, in light of background beliefs.

Example 2.3. Conflicting wishes.

I’d like to take a long vacation.
But: I’d like to save more money this year.
And: I can’t save more money this year and take a long vacation.

Finally, wishes can conflict with intentions, or more generally with adopted plans. This
point is made by Michael Bratman, David Israel, and Martha Pollack. See [4, 3].

Example 2.4. Conflicting wishes.

I’d like to take a nap.
But: I intend to catch a plane.
So: I can’t take a nap.

2.3. Modeling belief and desires with defaults2

Exploiting the analogy developed in Section 2.2, I propose to use default rules to formalize
both beliefs and desires. However, as we will see, it will be important to mark the difference
between belief-based and desire-based defaults. I will use

A
B
→֒ C

for the first sort of default rule, and

A
D
→֒ C

for the second sort of default rule.
An axiomatization in the logic BD, or a BD-basis, will now consist of (1) a set M of

formulas of first order logic (the nonmonotonic axioms), (2) a set NB of belief defaults, and

2These ideas have been presented in several conference papers. See [17].



(3) a set ND of desire defaults. A theory induced by a BD-basis 〈M,NB,ND〉 is a triple
〈M, N, E〉, where E is an extension of 〈M, N〉. Before defining the crucial notion of an
extension, we will consider some motivating examples.

Example 2.5. The Reasoning in Natural Language.

1. Coffee is available.

2. I’d like to have decaf coffee if decaf coffee is available.

3. Decaf coffee must be available if coffee is available.

4. To have decaf coffee, I’ll need to order decaf coffee.

5. So: I’ll order decaf coffee.

Example 2.5, continued. Formalizing the Premises

1. ⊤
B
→֒ Coffee-Available

2. Coffee-Available
D
→֒ Have-Decaf

3. Coffee-Available
B
→֒ Decaf-Available

4. Have-Decaf
B
→֒ Order-Decaf

Example 2.5, continued. Notes on the Formalization of Example 2.5

1. A premise of the form ⊤
B
→֒ C is a default with a vacuously true

antecedent. It represents a reason to believe C, which may or may
not result in an all-things-considered belief in C.

2. C, on the other hand, is a monotonic belief, which has to be part
of any extension.

3. Thus, Premise 1, above, is a default, representing a guess. If
Premise 1 had read Coffee-Available, it would have represented
an immediate, unretractable belief.

4. Intuitively, the premisses recorded in Example 2.5 should have only
one reasonable conclusion. (Recall that conclusions are generated
by a combination of beliefs and desires.) I should assume that
coffee is available and that decaf coffee is available. I should want
to have decaf, and I should order decaf. So the formal theory
should deliver only one extension in this case, the one which is
generated by the following choices:
{Coffee-Available, Decaf-Available, Have-Decaf,

Order-Decaf}

5. The above extension is the only one that is generated by Reiter’s
definition. (I am assuming here that the definition is applied in
the simplest way, treating both sorts of defaults similarly.)

6. Temporal reasoning is suppressed in the formalization. Explicit
temporal information will be represented in the extended formal-
ism of Section 3.



7. Premise 4, above, is a fairly crude way of compiling information
that would be more appropriately be inferred as part of a planning
process. The formalism of Section 3 will incorporate explicit end-
means reasoning.

In the next example, imagine a hiking scenario.

Example 2.6. The Reasoning in Natural Language.

1. I think it’s going to rain.

2. If it rains, I’ll get wet.

3. (Even) if it rains, I wouldn’t like getting wet.

4. So: I’ll get wet.

Example 2.6, continued. Formalizing the Premises

1. ⊤
B
→֒ Rain

2. Rain
B
→֒ Wet

3. Rain
B
→֒ ¬Wet

In the presence of Premise 1, there is a direct conflict between the defaults in Premises 2
and 3. The former premise represents a belief, the latter a desire.

In this case, there should be only one extension, which is generated by the following
choices:

{Rain, Wet.}

If I genuinely believe that it will rain, and that I will get wet if it rains, I should believe that
I will get wet, regardless of my preferences or likings. To do otherwise would be to indulge
in wishful thinking.

Note that wishful thinking is incorrect, regardless of whether the beliefs are defeasible.
To take another example, suppose that I am not at home now, that I believe my umbrella is
home now, and that I would like to have my umbrella in an hour. If wishful thinking were
not prohibited, and waiting is available as an action, nothing would prevent a plan in which
at I simply wait, achieving my goal by wish fulfillment.

To put it another way, if practical reasoning is to be practical, wishes can’t be fulfilled
simply because they are wishes, but have to be achieved by feasible actions. It is belief
that determines feasibility, not desire. So in a formalism that allows desire-based defaults,
belief-based defaults have to take precedence over desire-based defaults in cases when there
is any conflict between the two.

In the context of the formalism I am proposing, prioritization of belief over desire can be
achieved by using a more or less standard account of prioritized defaults. See, for instance,
[5]. Technical details are provided in Section 2.4, below.

With belief defaults prioritized over desire defaults, we obtain a single extension in Ex-
ample 2.6, the one generated by the following choices.

{Rain, Wet}

The next example elaborates the hiking scenario of Example 2.6.



Example 2.7. The Reasoning in Natural Language.

1. I think it will rain.

2. If it rains, I’ll get wet.

3. (Even) if it rains, I wouldn’t like to get wet.

4. If I get wet, I’d like to change into dry clothes.

5. If I change into dry clothes, I’ll have to walk home.

6. If I walk home, I’ll have to walk an extra two hours.

7. I wouldn’t like to walk an extra two hours.

Example 2.7, continued. Formalizing the Premises

1. ⊤
D
→֒ Rain

2. Rain
B
→֒ Wet

3. Rain
D
→֒ ¬Wet

4. Wet
B
→֒ Change-Clothes

5. Change-Clothes
B
→֒ Home

6. Home
B
→֒ Walk-Two-Hours

7. ⊤
B
→֒ ¬Walk-Two-Hours

In this case, there should be two extensions. The first is generated by the following
choices:

{Rain, Wet, Change-Clothes, Home, Walk-Two-Hours}

The second is generated by the following choices:

{Rain, Wet, Change-Clothes,¬Walk-Two-Hours}

These two extensions represent the two decision alternatives that the scenario of Exam-
ple 2.7 makes available; on the one hand getting dry, but walking two hours, and on the
other staying wet, but avoiding the extra walk.

In a purely epistemic version of default logic, multiple extensions represent equally rea-
sonable alternatives, and the logic itself provides no way to choose between them. (This
remains true, even if the number of extensions is reduced by prioritizing defaults; whatever
multiple extensions remain will be equally reasonable as far as the logic is concerned.) With
desire-based defaults added to the mix, multiple extensions are still equally reasonable as
far as the logic is concerned, but in many cases an agent will see some of these extensions
as obviously preferable, and will have no difficulty in choosing among them. An agent who
strongly dislikes being wet, but who enjoys walking, for instance, will prefer the second ex-
tension in Example 2.6. These are the sorts of choices that numerical utilities are designed
to resolve. I do not think that the logic should be expected to do more than to make the
choices apparent. See Section 3.7 for further discussion of this issue.



2.4. Characterizing the extensions of a BD-basis

Here is the idea behind the formal definition to be given below. A BD-extension E of a
BD-basis 〈M,NB,ND〉 is a mininal first order theory that is closed under all the defaults
that are applicable to it. Prioritization of B-defaults to D-defaults is ensured by allowing a
D-default to be applicable to E only if there is no set of conflicting B-defaults.

In the following definitions, S = 〈M,NB,ND〉, and ⊢ is the consequence relation of first
order logic; ThFOL(T ) = {A : T ⊢ A}. Following Reiter, we define applicability relative to
a set T of premises, and a “conjectured extension” T ∗ that is used to test consistency in
applying rules.

Definition 2.1. Applicability for B-defaults.

A default rule A
B
→֒ C is applicable to T relative to T ∗, where T and T ∗ are sets of

formulas, iff (1) T ⊢ A and T ∗ 6⊢ ¬C. A
B
→֒ C is vacuously applicable to T relative to T ∗

if it is applicable to T relative to T ∗ and C ∈ T .

Definition 2.2. B-conflictedness for D-defaults.

A
D
→֒ C is B-conflicted for T with respect to T ∗, S iff for some A1

B
→֒ C1, . . . , An

B
→֒

Cn ∈ NB, T ⊢ Ai for all i, 1 ≤ i ≤ n and T ∪ {C1, . . . , Cn} ⊢ ¬C.

Definition 2.3. Applicability for D-defaults.

A default rule A
D
→֒ C of 〈M,NB,ND〉 is applicable to T , relative to T ∗ and S, if (1)

T ⊢ A and T ∗ 6⊢ ¬C, and (2) A
D
→֒ C is not B-conflicted for T with respect to T ∗.

A
D
→֒ C is vacuously applicable to T relative to T ∗ if it is applicable to T relative to T ∗

and C ∈ T .

Definition 2.4. BD-closure.

T is BD-closed, relative to S, T ∗, iff (1) T = ThFOL(T ), (2) M ⊆ T , (3) for all A
B
→֒ C ∈

NB, C ∈ T if A
B
→֒ C is applicable to T relative to T ∗, and (4) for all A

D
→֒ C ∈ ND,

C ∈ T if A
D
→֒ C is applicable to T relative to T ∗.

Definition 2.5. BD-extension.

E is a BD-extension of a BD-basis S iff (1) E is BD-closed, relative to S, E, and (2) for
all E ′ such that E ′ is BD-closed, relative to S, E ′, we have E ′ = E if E ′ ⊆ E.

BD-extensions can also be characterized in a more constructive way, by conjecturing an
extension (a set T ∗) and using this set for consistency checks in a proof-like process that
applies defaults S successively to stages that begin with M ; such a process yields a BD-
extension if it produces T ∗ as its limit. The following definition invokes an “alphabetical”
ordering of NB ∪ ND. Any function from ω onto NB ∪ ND will serve the purpose.

Definition 2.6. BD-proof process.



P(S, T ∗) is the sequence {T
P(S,T ∗)
i : i ∈ ω} defined as follows:

1) T
P(S,T ∗)
0 = M .

2) T
P(S,T ∗)
i+1 = ThFOL(T

P(S,T ∗)
i ∪{C}) if there is a default in NB∪ND that is

nonvacuously applicable to T
P(S,T ∗)
i relative to S, T ∗, where the alpha-

betically first such default has the form A
B
→֒ C or A

D
→֒ C.

3) T
P(S,T ∗)
i+1 = T

P(S,T ∗)
i if no default in NB or ND is nonvacuously applicable

to T
P(S,T ∗)
i relative to S, T ∗.

Definition 2.7. Lim(P(S, T ∗))

Lim(P(S, T ∗)) =
⋃
{T

P(S,T ∗)
i : i ∈ ω}.

In this version, I will simply state the following theorems without proof.

Theorem 2.1. Let E be a BD-extension of S = 〈M,NB,ND〉. Then E = Lim(P(S, E)).

Theorem 2.2. Let E = Lim(P(S, E)), where S = 〈M,NB,ND〉. Then E is a BD-extension
of S.

In view of Theorem 2.2, we can show that T is a BD-extension by (1) using T for
consistency checks in a default reasoning process from 〈M,NB,ND〉, (2) taking the limit T ′

of this process, and (3) verifying that in fact T ′ = T .
In Examples 2.5–2.6, some instances of informal reasoning involving beliefs and desires

were formalized, along with remarks about the extensions that the examples seemed to
require. The characterization of BD-extension provided by Definition 2.5 matches the re-
quirements of these examples.

In particular, consider Example 2.6. This corresponds to the BD-basis 〈M,NB,ND〉,
where:

M = ∅;

NB = {⊤
B
→֒ Rain, Rain

B
→֒ Wet};

ND = {Rain
B
→֒ ¬Wet}.

It is straightforward to use Theorem 2.2 to show that {Rain, Wet} is a BD-extension. The
proof process generated by using ThFOL({Rain, Wet}) as a conjectured extension produces
ThFOL({Rain}) at the first step, ThFOL({Rain, Wet}) at the second step, and remains con-
stant thereafter. Theorem 2.2 can also be used to show that the unwanted “wishful thinking”
conclusion set, ThFOL(¬Wet), is not a BD-extension. The proof process generated by using
ThFOL(¬Wet) as a conjectured extension produces ThFOL({Rain}) at the first step, and re-

mains constant thereafter. The B-default Rain
B
→֒ Wet cannot be applied, because the

conclusion conflicts with the conjectured extension. The D-default Rain
D
→֒ ¬Wet cannot be

applied, because it is B-conflicted.
In Section 3, we will need the following definition.



Definition 2.8. B-closure.

T is B-closed, relative to S = 〈M,NB〉, T ∗, iff (1) T = ThFOL(T ), (2) M ⊆ T , and (3) for

all A
B
→֒ C ∈ NB, C ∈ T if A

B
→֒ C is applicable to T relative to T ∗.

Definition 2.9. B-extension.

E is a B-extension of S = 〈M,NB〉 iff (1) E is B-closed, relative to S, E, and (2) for all
E ′ such that E ′ is B-closed, relative to S, E ′, we have E ′ = E if E ′ ⊆ E.

A B-extension makes use only of D-defaults. The definitions, then, are equivalent to
those of [14].

2.5. A problem

Of course, the fact that the logic BD satisfies the intuitive requirements of a number of
examples is no guarantee that it is complete or even sound. In cases like this, it would be
desirable to have a formal criterion of soundness and completeness that is intuitively satis-
factory, and substantially different from the rather proof-theoretic formulations of Section 2.
I do not think it will be easy to devise a semantics of this kind for BD, and believe that
this is a side-effect of trying to formalize practical reasoning. I do not propose to throw
semantics to the wind; providing a useful model theoretic semantics for logics like BD is
certainly an appropriate long-range goal. But for the time being, I will continue to rely on
specific example-driven intuitions, and on the general logical intuitions that derive from the
close relationship of the logic BD to a familiar formalism for nonmonotonic reasoning.

Pursuing this method reveals a residual problem with BD. Depending on how you look
at it, it is either inadequate, or highly incomplete as a system of practical reasoning.

Recall the train of thought that disclosed the need to prioritize defaults in the logic BD.
(1) I decided at the outset to model practical reasoning by allowing both beliefs and desires
to act as defaults. (2) Then I noticed that this model induced intuitively invalid cases of
invalid “wishful thinking” in which desires were not properly constrained by beliefs. (3) To
solve this problem, I prioritized B-defaults over D-defaults.

There is a good reason to allow desires to license default conclusions—this provides a
natural way of modeling how goals are introduced into practical arguments. However, we
learned that the way in which desires can enter into practical arguments has to be limited.

The following example shows that we may need further limitations of this kind.

Example 2.8. The Reasoning in Natural Language.

1. I’d like to have decaf coffee.

2. I can only have decaf coffee if decaf coffee is available.

3. So: Decaf coffee must be available.

Example 2.8, continued. Formalizing the Premises.

1. ⊤
D
→֒ Have-Decaf

2. Have-Decaf
B
→֒ Decaf-Available

This example yields just one BD-extension, the one that is generated by the following
choices.



{Have-Decaf, Decaf-Available}

There are no prior beliefs in this example concerning the availability of decaf. The default

desire ⊤
D
→֒ Have-Decaf is not conflicted, and so produces the conclusion Have-Decaf.

Since I believe that Decaf-Available is a necessary condition for Decaf-Available, the
additional conclusion is produced.

This reasoning is clearly a case of unsound, wishful thinking, but given what has been
said so far, there is no evident criterion for separating the apparently sound reasoning of
Examples 2.5–2.7 from the fallacious reasoning of Example 2.8.

You might conclude from this exercise that the system BD is unsound. I think it is more
accurate to say that it is sound, as far as the examples that have been discussed here are
concerned, and also sound as far as I know. But, without a mechanism for formalizing action
and change, the system can only deliver an account of what extensions maximize desires,
without contradicting any beliefs. There is nothing wrong with the conclusion reached in
Example 2.8, as long as we think of it as representing an outcome that is maximally desirable,
within the limits of what is believed. The fact that this is not very useful information—it
does little good to know what outcomes are preferred, if we have no information about how
to achieve these outcomes—simply shows that BD is expressively incomplete as a system of
practical reasoning.

Planning formalisms of the sort that have been developed by AI-minded logicians—
systems for reasoning about action and change—provide exactly what is needed to remedy
this defect. In the next section, I will show how natural constraints that can be formulated
in the extended logic BDP for belief, desire, and planning can eliminate extensions of the
sort that BD produces in Example 2.8.

3. A formalism for belief, desire, and planning

In this section, I correct the deficiencies of BD by adding mechanisms for temporal reasoning
and plan formation.

The general motives for this project were presented in Section 1; two of these are worth
repeating at this point. (1) The primary goal is to produce a formalism for practical reasoning
that can deal with inferred desires as well as beliefs. (2) A secondary goal is to keep the
system as simple and generic as possible, so that there will be a starting point for work in
this area that many people can accept and work with.

Although the system BD introduced in Section BD provides for inferred desires, it doesn’t
really represent a fully developed system for practical reasoning, because it makes no pro-
vision for a conclusion that tells the reasoner how to do something. To do that, we need
to add to BD the capability for reasoning about feasible action; i.e., we need to extend BD
to include a planning formalism of the sort discussed in [15, 16]. Because of the secondary
goal, the simpler and more familiar the planning formalism, the better. For that reason, I
will choose a simplified version of the Situation Calculus, [11, 9, 10].

3.1. Representing change and plans in BDP

BDP is an extension of BD incorporating a specialized first-order language containing an
apparatus for reasoning about actions and change; it will also use a refined extension def-



inition. The Situation Calculus uses a predicate Holds to formalize this sort of reasoning:
Holds denotes a relation between fluents (i.e., dynamic properties) and situations; a func-
tional constant result denotes a function from actions and situations to situations. Suppose
that s0 denotes an initial situation s0, that a1 and a2 denote actions a1 and a2, and that f

denotes the fluent f. Then
(3.1) Holds(f, result(a2, result(a1, s0))

is the standard way of expressing in the formalism that performing a1 and a2 in s0 will yield
a situation in which f holds. There is no reasoning about goal selection in the Situation
Calculus, and no way of distinguishing the fluents that are goals from the others. And there
is no way of distinguishing adopted plans from the others; one can only say what goals a
plan will achieve, in a given initial situation.

BDP is intended to formalize reasoning that results in the formation of plans. Since
extension-construction is the sole reasoning mechanism of BDP, we will allow extensions
to determine not only all-things-considered beliefs and desires, but sequences of actions,
or plans. In choosing an extension, an agent commits not only to beliefs and desires, but
to actions. Therefore, I will have to modify the Situation Calculus to provide for explicit
commitment to plans. There are three ingredients to the modification. (1) BDP has a family
step1, step2, . . . of individual constants; stepi denotes ith step of the selected plan. (2)
There is a sequence Planlengthi, i ∈ ω, of designated propositional constants; Planlengthi

means that the designated plan has i steps. There is a special constant null; stepi =null

means that the ith step of the selected plan is undefined. (3) BDP has a family Holds0,
Holds1 . . . of 1-place predicates, rather than a single Holds relation.3 With this apparatus,
we can make a further simplification; there is no need to represent situations explicitly.
The initial situation is represented implicitly, by Holds0; the situation that results after the
performance of i steps of the designated plan is represented implicitly by Holdsi.

We will need to formulate desires about the future. Realistic desires are seldom associated
with a specific time; for purposes of this paper I will introduce a predicate Eventually. For
practical purposes, this predicate can be defined in terms Planlength and Holds.

The resulting formalism is expressive enough to allow the formalism of many examples.
But it is easy to think of natural examples that could not be formalized without enriching
the language. For instance, a “standing desire” will involve a universal quantifier over future
times; there is no way to express such desires in BDP. Other desires may involve temporal
contraints on events; for instance I may want to be home before my guests arrive. This
can’t be expressed in BDP. Many other natural, BDP-inexpressible desires can be imagined.
Enriching the temporal expressivity is one very natural way to extend the initial version of
BDP that I present here.

Actions are treated as individuals in BDP. There is a set of designated action constants
and action functions. A closed action term is a term having the form t, where t either is
an action constant, or is f(t1, . . . , tn), where t1, . . . , tn are terms containing no individual
variables and f is an action function letter. AT is the set of closed action terms.4

3There are, of course, more direct ways to represent plans; we could add a type of sequences, or add a
theory of arithmetic or a theory of actions and events. I chose this method because it seemed to me to be
about the simplest way to explicitly represent commitment to plans. Remember, I am trying to construct a
generic theory, that can be refined in a number if ways.

4It may be useful to impose type restrictions on the terms t1, . . . , tn.



I will illustrate how BDP works with two sorts of examples: (1) blocks-world examples,
and (2) reformalizations of the reasoning examples from Section 2. The former examples
are unrealistic, but their simplicity and familiarity makes it relatively easy for me to present
detailed formalizations. When I come to the latter examples, I will not try to formalize the
domains entirely, but will rely on common intuitions.

To illustrate how plans are formed in BDP, take a blocks world with just two blocks,
a and b, denoted respectively by a and b; there is a table, denoted by a constant table.
Actions are denoted by terms of the form move(t1, t2). Suppose that in the initial situation
b is on a. Then a theory selecting the simplest plan to get a on b will contain (among other
formulas):

Example 3.1. A blocks-world plan extension.

step1 =move(b, table)
step2 =move(a, b)
Planlength2

Holds0(on(b, a)), Holds0(on(a, table))
Holds1(on(b, table)), Holds0(on(a, table))
Holds2(on(a, b)), Holds2(on(b, table))
¬Planlength3

step3 =null

3.2. Formalizing action and change in BDP

It is straightforward to translate the usual policies for formalizing action and change in the
Situation Calculus to BDP. This can be illustrated by elaborating Example 3.1, making the
axiomatization of the fluent dynamics explicit.

The axioms for a BDP domain are divided into five groups: (1) plan axioms, (2) general
domain axioms, (3) causal axioms for actions, and (4) frame axioms. Information about
initial conditions is also needed, and in familiar planning formalisms it is provided by axioms
concerning the initial situation. In BDP, this information could be given by monotonic
axioms, or by belief defaults, or by a combination of the two.

The plan axioms are common to all BDP-bases. They apply, for instance, to Example 3.1,
so that this extension contains, for instance, Eventually(on(a, b)) and step3 =null.

The remaining axioms given below are for a blocks world with three blocks. I believe
they are adequate for generating a collection of plans that is neither too large nor too small;
I have not tried to produce a complete axiomatization, one that would enable all formulas
that intuitively hold in the domain to be proved.

Some axioms are meant to hold at every step of any plan. Since I am using a stripped-
down formalism that does not allow quantification over situations, such axioms will have
to be presented as schemes. Ax3i is a scheme in which a Holdsi predicate figures; there is
an instance of the scheme for each i ≥ 0. Similarly, there is an instance of Ax1i,j for each
i, j ≥ 0. Properties (like Block) that are change-invariant are represented using first-order
predicates rather than fluents.

Useful definitions



‘Object(t)’ =df ‘Block(t) ∨ t=table’
‘Cleari(t)’ =df ‘Block(t) ∧ ∀x¬Holdsi(on(x, t))’

Plan axioms

Ax1i,j: Planlengthi → ¬Planlengthj , for i 6=j

Ax2i,j: Planlengthi → stepj =null, for i < j

Ax3i: Planlengthi → ∀x[Eventually(x) ↔ Holdsi(x)]

General domain axioms

Ax4: Block(table)
Ax5: ∀x[Block(x) ↔ [x=a ∨ x=b ∨ x=c]]
Ax6: a 6=b ∧ b 6=c ∧ c 6=a

Ax7i: ∀x∀y[Holdsi(on(x, y)) → [Block(x) ∧ Object(y)]]
Ax8i: ∀x∀y∀z[[Holdsi(on(x, y)) ∧ Holdsi(on(x, z))] → z=y]
Ax9i: ∀x∀y∀z[[Holdsi(on(x, y)) ∧ Holdsi(on(z, y))] → z=x]
Ax10i: ∀x∀y[Holdsi(on(x, y)) → Holdsi(on(y, x))]
Ax11i: ∀x∃y[Holdsi(on(x, y))

Causal axioms

Ax12i: ∀x∀y∀z[[stepi+1 =move(x, y) ∧ Cleari(x) ∧ Holdsi(on(x, z))
∧ y 6=z ∧ [y=table ∨ Cleari(y)]]
→ [Holdsi+1(on(x, y))) ∧¬Holdsi+1(on(x, z)))]

Frame axioms

To keep things simple, I will use monotonic frame axioms. Of course, familiar formalisms
for reasoning about action and change will typically incorporate a nonmonotonic solution
to the frame problem; but in these formalisms the nonmonotonic apparatus is usually con-
fined to this one application. In typical applications of BDP, several components will be
nonmonotonic, and it will be necessary to think carefully about interactions between these
components. I will discuss these matters briefly in Section 3.6, below.

The frame axioms are as follows.

Ax13i: ∀x∀y∀z[[stepi+1 =move(x, y) ∧ Holdsi(on(u, v) ∧ u 6=x]
→ Holdsi+1(on(u, v))]

Ax14i: ∀x∀y∀z[[stepi+1 =move(x, y) ∧¬Holdsi(on(u, v) ∧ u 6=x]
→ ¬Holdsi+1(on(u, v))]

3.3. Informal description of BDP extensions

As in BD, a basis will consist not only of monotonic axioms, but of belief and desire defaults.

As before, belief defaults have the form A
B
→֒ B. Any desire default of the form A

D
→֒ B

is allowed, but in realistic cases we are interested in desires that are future-directed. As



I explained above, in the context of the present paper, that means desires of the form

A
D
→֒ Eventually(f).
We wish extensions to choose feasible options—ones that are not only desirable and

compatible with beliefs, but that can be secured by acting on a plan. We ensure this by
first constructing BD extensions. Assuming that the beliefs and desires have to do only with
world states (i.e., with whether or not fluents hold), and not with plan length or selection
of actions, a BD extension will present a picture of things as the planning agent would like
them to be, but without any specific information about actions that would realize it.

I do not exclude prima facie beliefs such as ⊤
B
→֒ Holds3(f), or prima facie desires such

as ⊤
D
→֒ Planlength5 or ⊤

D
→֒ step1 = move(a, table). In the simplest case, though, all

belief defaults have conclusions of the form Holds0(f), and all desire defaults have conclusions
of the form Eventually(f). In this case (assuming that the monotonic theory M provides
only general domain information) a BD extension will provide initial conditions and goals—
precisely the sort of input that a classical planning algorithm would need.

A BDP plan-description over a set of closed action terms AT is a set of formulas consisting
of a choice of a plan length and a selection of plan steps up to the plan length. For any BDP
plan-description PG , then, there will be an n and a set of terms {t1, . . . , tn} ⊆ AT , such
that:

PG = {Planlengthn, step1 = t1, . . . , stepn = tn}.

A BDP proto-plan over a BDP-basis S = 〈M,NB,ND,AT 〉 is a consistent set of the form
ThFOL(E1∪PG), where E1 is a BD extension of S and PG is a plan-description over PG .
A solved planning problem will involve a means, a series of actions calculated to achieve
certain goals; and, of course, it will involve the goals or ends themselves. BDP proto-plans
determine a means, in the form of a plan-description; they determine ends, in the form of
the desires activated in a BD-extension.

But a proto-plan needn’t correspond to a feasible plan; it may involve wishful thinking.
There is nothing to ensure that the means of a proto-plan cause the ends; a goal may belong
to a proto-plan simply because it is the conclusion of a default desire in ND.

Therefore, we filter out the proto-plans that involve wishful thinking. A BDP extension
of a BD-basis S = 〈M,NB,ND〉 is a BDP proto-plan E over S with plan-description PG

such that E is a B extension of 〈M ∪PG ,NB〉. Thus, every formula in E—including the
formulas that represent desires or ends—follows merely from beliefs, given the steps of its
plan-description.

The technical definitions are given below, in Section 3.5; before turning to these, I will
illustrate the ideas with examples.

3.4. Examples of BDP reasoning and extensions

Blocks-world examples

All blocks-world examples use the blocks-world axioms given in Section 3.2. In the first
example, the agent has unconflicted prima facie beliefs about the initial conditions, and an
unconflicted prima facie desire to have block a on block b. In BDP, this case works like a



traditional planning problem in which the default beliefs give the initial conditions, and the
desire gives the goal.

Example 3.2. Simple, unconflicted beliefs and desires.

Defaults:

NB = {⊤
B
→֒ Holds0(on(a, table)),

⊤
B
→֒ Holds0(on(b, table)),

⊤
B
→֒ Holds0(on(c, table))}

ND = {⊤
D
→֒ Eventually(on(a, b))}

Example 3.2, continued. BDP extensions.

There are in fact many BDP plans, corresponding to the various sequences of
moves that will get a on b. The shortest such plan is generated by the
following formulas:

(Pl1): {Planlength1, step1 =move(a, b)}

In this case, default beliefs act like initial conditions, the desire acts like a goal.
Extensions correspond to plans that produce the desired goal.

To go into the matter in more detail, why exactly does (Pl1) generate a BDP
plan? First, note that

(BD-Ext1): {Holds0(on(a, table)), 4
Holds0(on(b, table)),
Holds0(on(c, table)),
Eventually(on(a, b))}

generates a BD-extension in this example. (In fact, this is the only BD-
extension.)

Second, note that Pl1 is a BDP plan-description. Since BD-Ext1∪Pl1 is consis-
tent, its logical closure, PG1, is a BDP proto-plan. It is easy to check that
PG1 is a B-extension of the information given in the example; all that is
involved is verifying that Holds1(on(a, b)) follows from the initial conditions
and Ax120, the appropriate causal axiom for move. Therefore, PG1 is a
BDP extension.

In the next example, the agent has the same unconflicted prima facie beliefs about the
initial conditions, and conflicted prima facie desires: a desire to have block a on block c
and a desire to have block b on block c. This yields two sorts of BDP extensions: those
corresponding to plans for putting a on c and those corresponding to plans for putting b on
c. Since these goals are incompatible, there are no BDP extensions in which both goals are
satisfied.

Example 3.3. Conflicted desires, unconflicted beliefs.

Defaults: like Example 3.2, except that:



ND = {⊤
D
→֒ Eventually(on(a, c)), ⊤

D
→֒ Eventually(on(b, c))}

Example 3.3, continued. BDP Extensions.

The simplest BDP extensions (corresponding to the shortest plans) are gener-
ated by the following choices:

BDP-Ext3.31: {Planlength1, step1 =move(a, c)}

BDP-Ext3.32: {Planlength1, step1 =move(b, c)}

In this sort of case, the best way to choose among the alternative BDP extensions
would be to use plan evaluation methods that somehow combine criteria
having to do with the simplicity of the plan and with the utilities of the
outcomes.

In the next example, the agent has contradictory prima facie beliefs about the initial
conditions: that block a is on block c and that block b is on block c. There is one prima

facie desire: to have both c clear. Here, there are two sorts of extensions: those corresponding
to plans for getting a on the table, assuming that a is on b, and those corresponding to plans
for getting b on the table, assuming that b is on a.

Example 3.4. Unconflicted desires, conflicted beliefs.

Defaults:

NB = {⊤
B
→֒ Holds0(on(a, c)),

⊤
B
→֒ Holds0(on(b, c)),

⊤
B
→֒ ¬Holds0(on(a, b)),

⊤
B
→֒ ¬Holds0(on(b, a)),

⊤
B
→֒ Holds0(on(c, table))}

ND = {⊤
D
→֒ Eventually(Clear(c))}

Example 3.4, continued. BDP extensions.

The simplest extensions (corresponding to the shortest plans) are generated by
the following choices:

BDP-Ext3.41: {Planlength1, step1 =move(a, table)}
BDP-Ext3.42: {Planlength1, step1 =move(b, table)}

Remember, this is a case in which the agent has a reason to believe that a is on
c and a reason to believe that b is on c. It would not be at all appropriate
to choose between the two extensions according to utilities, since the plan
with the higher utility could rest on a false assumption and be infeasible.



Nor is this quite the same as a case of inadequate information, as in Example 3.7.
When beliefs conflict, the information is overdetermined, by a clash between
opposed reasons for belief. In cases of inadequate information, information
is underdetermined. The two cases are easy to confuse because in practice,
we may switch between them. In cases when we lack information about a
crucial alternative, we may reason by cases, considering the consequences
of pretending we believe each alternative. And in cases where our beliefs
conflict, we may suspend belief concerning the outcome. Nevertheless the
two cases are different. One way to see the difference is to notice that the
cure for inadequate information is to acquire more beliefs, whereas the cure
for belief overdetermination is to remove beliefs.

In a model of practical reasoning according to which agents act on all-things-
considered beliefs, the role of prima facie beliefs is to enable action by
precipitating all-things-considered beliefs. Since the reasoning process is
defeasible, the resulting plans may fail, so an agent has to be prepared
to react appropriately when plans fail because they are based on false all-
things-considered beliefs. As a corollary, an agent has to avoid acting on
prima facie beliefs when the adverse consequences of acting on a false belief
would be disastrous.

When no adverse consequences attach to trying and failing, and choosing and
acting on one BDP extension does not remove the opportunity for acting on
other BDP extensions, the best solution may be to choose one arbitrarily
and act on it. The other choices can be remembered, and invoked as fallback
procedures in case of failure.

In Example 3.4, for instance, an agent could arbitrarily choose BDP-Ext3.41.
This would entail assuming that a is on b, and acting on a plan to move a
to the table.

In case the assumption that a is on b is incorrect, the agent will attempt to
move a to the table, and the attempt will fail. If this failed attempt leaves
the situation unchanged, BDP-Ext3.42 can be invoked, and (assuming that
at least one of the prima facie beliefs in the example is correct), this plan
will now succeed.

In order to assess the risks of following this strategy, the agent will need to
reason about the consequences of failed attempts to perform an action. This
sort of reasoning, which seems to be critical in planning that is based on
fallible beliefs, has—as far as I know—been neglected in the literature on
planning formalisms. The standard formalisms concentrate on the effects
of actions when the preconditions for the performance of these actions are
met, but say nothing about the effects of attempted actions which the fail
because their preconditions are not met. To formalize strategic planning,
this deficiency will need to be addressed.

Example 3.5. Conflicted desires, conflicted beliefs.



Defaults: like Example 3.4, except that:

ND = {⊤
D
→֒ Eventually(on(a, b)), ⊤

D
→֒ Eventually(on(b, a)), }

Example 3.5, continued. BDP extensions.

The simplest extensions are generated by the following choices:

BDP-Ext3.51: {Holds0(on(a, c)), Planlength1, step1 =move(a, b)}
BDP-Ext3.52: {Holds0(on(a, c)), Planlength2, step1 =move(a, table), step1 =
move(b, a)}
BDP-Ext3.53: {Holds0(on(b, c)), Planlength2, step1 =move(b, table), step2 =
move(a, b)}
BDP-Ext3.54: {Holds0(on(b, c)), Planlength1, step1 =move(b, a)}

In this case, the extensions are a sort of cross-product of the alternatives pre-
sented by the conflicting beliefs and those presented by the conflicting de-
sires. In the absence of any opportunity to gather information, the best way
to attack this would be to first choose the most plausible or likely beliefs,
and then to choose the plans that, within these, BDP extensions, maximize
utility.

Aristotle noted a constraint on practical deliberation; it only concerns what is in an
agent’s power.5 It is worth asking whether the apparatus of BDP extensions enforces this
constraint on practical deliberation. We can’t ask this question directly, since the BDP
formalism doesn’t represent ability explicitly; but we can look into special cases. One of the
most interesting of these cases is deliberation about the present. We would hope to see the
constraint enforced as follows: any desire regarding the present (i.e., any default having the

form A
D
→֒ Holds0(f)) will have no effect whatever on plan formation in BDP.

In cases where a BD extension E1 provides complete information about the initial situa-
tion, Holds0(f) will either be a logical consequence of E1 or will be inconsistent with it, so

the inefficacy of A
D
→֒ Holds0(f) is trivial. The following example illustrates a case where

there is incomplete information.

Example 3.6. Deliberation about the present.

Defaults:

NB = {⊤
B
→֒ Holds0(on(b, table))},

⊤
B
→֒ Holds0(on(c, table))}

ND = {⊤
D
→֒ Holds0(on(a, b))}

Example 3.6, continued. BDP extensions.

5See [1], 1112a18ff.



To understand this example, it is useful to consider what happens when an agent
has no desires, i.e., when ND = ∅. In that case, any plan that is consistent
with the agent’s beliefs will precipitate a BDP extension. This makes good
sense; desires act as constraints on plans, so the more desires, the fewer the
plans. In the limiting case where there are no desires, any feasible plan is
allowed.

The only desire in the example is ⊤
D
→֒ Holds0(on(a, b)). And the only B

extension is the logical closure E1 of the axioms and

{Holds0(on(b, table))}, Holds0(on(c, table))}.

Now, we can show by induction on n that adding a plan-description of length
n to E1 will have a model satisfying ¬Holds0(on(a, table)). Therefore,
Holds0(on(a, table)) is in no BDP extension. So, in this case, the BDP
extensions include all the possible plan-descriptions—in fact, the set of BDP
extensions is exactly the same as the set that would be induced if NB were
empty. Desires about the present have no effect on planning.

It would be desirable to generalize Example 3.6. But there is no very easy way to do
that. The fact that proving in general that desires about the present are inefficacious is a
challenge is, I think, one of the more interesting features of BDP. Like the Yale Shooting
Problem and the suite of similar challenges that evolved from work on the frame problem,
it seems to me—at a very early stage in thinking about the issues—that progress on the
problem is possible, and that it could yield new insights into commonsense reasoning about
causes and actions.

There are anomalous BDP-bases that will allow desires about the present to play a role
in plan construction. Suppose, for instance, that we add the following axiom scheme to the
ones listed in Section 3.2.

Ax99i: stepi+1 =move(a, table) → ¬Holdsi(on(b, a))

Note that any instance of this axiom scheme is true in the intended domain. (I am assuming
that stepi =move(a, table) means that the action of moving a to the table actually occurs,
rather than an attempt to perform the action.) However, if we let NB = ∅ and ND = ⊤ →
¬Holds0(on(b, a)), there will be a BDP plan, there will be a BDP extension in which the
plan-description

{Planlength1, step1 =move(a, table)}

is adopted, in order to achieve the goal Holds0(on(b, a)).
A crude solution to the problem would disallow axioms of the sort that create the problem.

Probably, there is a way of restricting axioms about actions to ones resembling the causal
axioms in Section 3.2 that would eliminate anomalies of this kind. But this approach, and
any approach that disallows true axioms for purely syntactic reasons, strikes me as ad hoc

and unenlightening.
It seems to me that the intuitive reason that Ax99i doesn’t support planning is that this

axiom is not causal. A solution to the problem that relies on an explicit representation of



causality is more likely to shed light on practical reasoning and on the role of causality in
commonsense reasoning. Independent work on the foundations of reasoning about action
and change has also led at least some people to explicit representations of causality, and it
seems to me that one of the major successes of this research program has been the light it
has shed on commonsense causality. Perhaps BDP could shed light on these matters from
another angle.

Example 3.7. Inadequate information.

Defaults:

NB = {⊤
B
→֒ Holds0(on(a, table))}

ND = {⊤
B
→֒ Eventually(on(a, b))}

Example 3.7, continued. BDP extensions.

There are no BDP extensions in this case.

There is only one BD extension of 〈M,NB,ND,AT 〉, where M is the set of the
blocks-world axioms given in Section AC. This is the logical closure E1 of

M ∪ {⊤
B
→֒ Holds0(on(a, table)), ⊤

B
→֒ Eventually(on(a, b))}.

There is only one B extension of 〈M ∪PG , NB〉, where PG is a plan-
description over AT . This is the logical closure E2(PG) of

M ∪ PG ∪ {⊤
B
→֒ Holds0(on(a, table))}.

It can be shown by induction on plan length that for every plan-description
PG over AT , E2(PG) has a model that satisfies

Eventually(on(a, table)) and Eventually(on(b, c))

and a model that satisfies

Eventually(on(a, table)) and Eventually(on(c, b)).

It follows from this that for every plan-description PG over AT , E2(PG) 6⊢
Eventually(on(a, table)).

This feature depends on the fact that the axioms make the performance of
actions whose preconditions fail entirely unconstrained. So the example is a
bit unnatural. But it does indicate that in cases of incomplete information,
we are liable to wind up with few plans, or perhaps with no plans at all. In
this case, BDP works in much the same way as classical planning formalisms.

This inadequacy can be addressed in various ways. (1) The experimental approach men-
tioned in connection with Example 3.4, above. But experimentation is not of much use unless
you can gather some information—at least, enough information to be able to tell whether the
goal has been achieved. So this approach should be combined with the capability to reason
about information-gathering events. (2) This leads naturally to an extension of BDP to deal
with sensory actions, an idea that has been explored in connection with classical planning
formalisms. (See, for instance, [7].) (3) One could also try to integrate some probabilistic
form of reasoning with BDP. These are all open-ended research projects.



Reformalization of commonsense reasoning examples

We now turn to the examples of commonsense reasoning given in Section 2. I will not
try to axiomatize the domains, but in each case will try to give enough of the formalization
to create a sense that BDP could deliver a reasonable account of the reasoning.

Example 3.8. Reformalizing Example 2.5.

1. NB = {⊤
B
→֒ Holds0(Coffee-Available),

Holds0(coffee-available)
B
→֒ Holds0(decaf-available)}

2. ND = {Holds0(coffee-available)
D
→֒ Eventually(mthave − decaf)}

3. There is one action, order-decaf. Its only precondition is decaf-available,
its only effect is have-decaf.

The BDP extensions correspond to plans that use the action order-decaf to secure the
goal have-decaf. The simplest such extension, of course, describes the following one-step
plan.

Planlength1

step1 =order-decaf

Example 3.9. Reformalizing Example 2.7.

1. NB = {⊤
B
→֒ Holds1(rain), Holds1(rain)

B
→֒ Holds1(wet)}

2. ND = {Holds1(rain)
D
→֒ ¬Holds1(wet),

Holds1(wet)
D
→֒ Eventually(change-clothes),

⊤
D
→֒ ¬Eventually(two-hours-walking)}

3. There are three actions:

(a) walk-home has no preconditions. It has at-home and two-hours-walking

as its effects.

(b) change-clothes has at-home as a precondition and has wet

as a negative effect.

(c) hike-on has no preconditions and no effects.

Here, there are two kinds of BDP extensions: the ones that satisfy the desire to not be
wet by performing a walk-home, change-clothes sequence, but frustrate the desire to avoid
two hours of walking, and the ones that perform hike-on and so satisfy the desire to avoid
walking two hours but frustrate the desire to not be wet.



3.5. Formal description of BDP extensions

Definition 3.10. BDP-basis

A BDP-basis is a package S = 〈M,NB,ND,AT 〉, where 〈M,NB,ND〉 is a BD-basis and
AT is a set of action terms.

Definition 3.11. BDP plan-description.

PG is a BDP plan-description of length n over AT if for some t1, . . . , tn ∈ AT :

(1) Planlengthn ∈ PG ,

(2) t1, . . . , tn ⊆ PG .

Definition 3.12. BDP proto-plan.

T is a BDP proto-plan over a BDP-basis 〈M,NB,ND,AT 〉 iff for some BD extension E1

of 〈M,NB,ND〉 and plan-description PG over AT , T = E1 ∪ PG

Definition 3.13. BDP extension.

E is a BDP extension of a BDP basis S = 〈M,NB,ND,AT 〉 iff (1) E is a proto-plan over
S with plan-description PG , and (2) E is a B extension of 〈M ∪ PG ,NB〉.

3.6. Interacting defaults

In applications of nonmonotonic logic that are at all complex, one has to be on the lookout
for interactions between defaults that may call for prioritization. In this case, I have not
come up with any obvious examples of that sort, even in more complicated domains where
the nonmonotonic apparatus is used to solve the frame problem.

If we were to have inertial defaults, of the form

Holdsi(f)
B
→֒ Holdsi+i(f)

and

¬Holdsi(f)
B
→֒ ¬Holdsi+i(f),

these defaults could certainly conflict with other prima facie beliefs.

Example 3.10. Conflicts between prima facie beliefs and inertial defaults.

Defaults:

NB = {Holdsi,f(f)
B
→֒ Holdsi+i(f) : i ∈ ω f ∈ FT}

∪ {¬Holdsi,f(f)
B
→֒ ¬Holdsi+i(f) : i ∈ ω f ∈ FT}

∪ {⊤
B
→֒ Holds0(on(a, b)),

⊤
B
→֒ Holds0(on(b, table)),

⊤
B
→֒ Holds0(on(c, table)),

step1 =move(a, table)
B
→֒ Holds1(on(c, b))}



In evaluating the B extensions of these defaults, with respect to a basis that includes

Planlength1 and step1 = move(a, table)
B
→֒ Holds1(on(c, b)), there is a conflict between

the prima facie belief step1 = move(a, table)
B
→֒ Holds1(on(c, b)) and the inertial default

¬Holds0(on(c, b)
B
→֒ ¬Holds1(on(c, b)).

This is an artificial case, so maybe there are no clear intuitions. But there are natural
cases in which inertial defaults conflict with prima facie beliefs, and there seems to be no
simple way to adjudicate the conflicts. One example is Example 2.1, the case of the porch
light. Another is a case in which I park my car by a fire hydrant. Inertial defaults will
suggest that my car is where I left it. The rule that cars parked by fire hydrants are ticketed
and towed suggests that my car is not where I left it.

Without any logical criterion for separating such conflicts, I will assume that in the
general case there are no logical priorities among B defaults. Further reflection may disclose
general priorities, and special priorities may arise in special domains.

3.7. Extension evaluation

BDP leaves conflicts between desires unresolved if they are not removed by feasibility consid-
erations. This is illustrated by the two extensions generated in Example 3.9; the reasoning
provided by BDP does not solve the hiker’s dilemma. Although it does focus the practical
problem by providing two alternatives, it provides no mechanism for choosing between (i)
remaining wet and (ii) getting dry but having a longer walk. To resolve dilemmas like this,
we will have to make a direct comparison between the costs of the two alternatives.

In the hiking example, this means that—if we wish to resolve the problem generally—
we will need to find some way to balance the discomfort and inconvenience of wearing
wet clothes against the discomfort and inconvenience of extra walking. The appropriate
analytical methods for such problems are those of multiattribute utility theory (see, for
instance, [6]). These methods work best on cases where there are recurrent, similar decision
problems, where there are appropriate scales for measuring the attributes, and where the
tradeoffs under consideration are relatively context-independent. This means that analytical
methods are unlikely to yield a satisfactory resolution of the hiker’s dilemma. Nevertheless,
utility analyses can be usefully applied to a broad range of phenomena, and the combination
of qualitative reasoning of the sort provided by BDP seems to be a potentially useful one—
BDP can eliminate some alternatives as excluded incompatible with feasible maximization of
desires, and perhaps in some cases it could deliver a limited range of alternatives appropriate
for utility analysis. It remains to be seen, of course, whether this sort of reasoning can be
carried out efficiently in cases of practical interest.

In all of the cases considered so far, the element of risk is negligable. BDP does not
rely on probabilistic reasoning; its nonmonotonic approach to belief simply excludes alter-
natives from practical consideration that are incompatible with beliefs. This approach is
appropriate in cases where it is important to focus the reasoning, and the consequences of
acting inappropriately on false assumptions are bearable. I haven’t begun to think through
the details of how to extend BDP to cases where risk needs to be reasoned about explicitly;
I am sure, however, that this extension would have to involve an integration of some sort
of probabilistic and default reasoning; it would certainly require a major reworking of the



treatment of belief, and for the moment I think it is best to concentrate on the case in which
risk can be neglected.

4. Agent Architectures

Ideas from the AI planning paradigm, together with the popularity of agent design, have
inspired the development of BDI architectures: frameworks for designing agents that take
the attitudes of belief, desire, and intention to be central.6

A BDI agent is practical; it performs actions, in the real world or a simulated one. These
actions are determined by plans, which are formed on the basis of beliefs (beliefs about the
initial state, and about the preconditions and effects of actions) and goals. If we identify
adopted plans with intentions and goals with desires, we have the three elements of the BID
trio.

Although planning is the central reasoning process that gave rise to the BDI architecture,
any agent worth the name must do more than plan. Intentions have to be maintained; at the
very least, they have to be removed from the agent’s agenda once they have been achieved.
And in a more flexible agent, they may need to be revised or abandoned in the light of
experience. Goals have to be maintained; like intentions, they need to be dropped when
they have been satisfied. And new goals have to come from somewhere. Finally, beliefs have
to be maintained; the agent will need to modify beliefs in light of experience, and these
modifications may at times involve retractions of existing beliefs.

These key functions will have to be performed by a BDI agent, but it is not clear how
the procedures that perform them fit into a model of reasoning that is narrowly based on
planning. In an implementation of a BDI agent they would either need to be realized by
ad hoc procedures, or auxiliary procedures could in some cases be based on independent
theories of the reasoning tasks. (The most promising opportunity for such a development is
belief revision; there is an extensive literature on this particular reasoning process.)

But to the extent that we want to respect the idea of an agent architecture, it is preferable
to integrate core functions into the central reasoning processes on which the architecture is
based. And there are more practical considerations that make it desirable, in the case of a
planning agent, to integrate reasoning functions into the planning process. Here is a brief
list of such considerations.

1. Belief revision only becomes nontrivial when the reasoning that produces
beliefs is nonmonotonic; typically, beliefs that need to be discarded in the
course of belief revision will be ones that are created by fallible reasoning
processes, and a belief revision policy that fails to take these processes into
account will neglect crucial information.7 This suggests that nonmonotonic
reasoning should be an important component of planning. However, al-
though nonmonotonic logics are often integrated into inertial constraints on
state dynamics in planning formalisms (i.e., they are often used to address
the frame problem), nonmonotonic domain reasoning is generally ignored

6See [4, 13, 12]. The ideas behind BDI architectures also have a philosophical dimension; see [3].
7Much of the literature on belief revision ignores the relationship to nonmonotonic domain reasoning, so

this claim has to be regarded as controversial.



in planning formalisms. The BDP formalism takes nonmonotonic domain
reasoning into account explicitly.

2. For replanning in light of revised beliefs, it could be useful to record the
dependencies of plans on beliefs.

3. These plan dependencies could also be invoked in qualitative assessments
of risk. A plan can be tested for riskiness by comparing the value of the
expected outcome with the value of the outcomes that ensue if various fal-
lible beliefs on which the plan depends fail. These comparisons would be
facilitated by a nonmonotonic logic of belief that provided some qualitative
assessment of the reliability of beliefs.

4. In a further development of this line of thought, risk assessment could be
integrated into planning by seeking to avoid risky plans.

5. Goals come from desires, and—as I pointed out and illustrated in Section 2,
desires can be mutually inconsistent in light of beliefs. This provides strong
motives for the commonsense planning strategy of planning with flexible
goals, and discarding desires that prove to be too costly in light of feasi-
bility considerations. (The vacation planning example from Section 1 was
intended to illustrate this point.)

6. A similar point applies to intentions. Agents may need to cut their loses.
It is unreasonable to cling to an intention when it becomes too costly to do
so, even though the intention remains feasible in principle. By carrying out
the planning process in such a way that dependencies on fallible beliefs are
recorded, as well as correlations of these beliefs to cost factors, it may be
possible to provide in advance for a flexible readjustment of intentions.

The logic BDI suggests an agent made up of attitudes that, after all, are not such a radical
departure from the BDI model; you could call it a B2D2I agent. Intentions, as before, are
the actions that make up adopted plans. Beliefs and desires are divided into two varieties:
prima facie and all-things-considered. Practical reasoning, which is a generalization of AI-
style planning, consists in converting prima-facie into all-things-considered attitudes, and in
providing a means in terms of feasible actions of satisfying the all-things-considered desires.

5. Conclusion

I think it would be premature at this stage to write a real conclusion. In an AI article, you
expect that concluding sections will discuss future work. At this point, things are a little
too programmatic for that.

I can think of ways in which the logic BDP could usefully be developed. Except in
simple, small-scale cases, the number of potentially relevant prima facie desires could be very
large—certainly, too large to enter them all by hand. Here, we run up against a fundamental
limitation of Default Logic; it treats defaults as rules, and provides no mechanism for inferring
rules. If we want to infer desires, we will have to adopt a stronger nonmonotonic logic. But
also, we will need to mobilize some intuitions about how desires are inferred, if they are
inferred at all (in many cases, desires seem to be felt, rather than concluded). Results and



ideas from several areas, including deontic logic, conditional logic, nonmonotonic logic, and
the logic of preference, can be helpful here, but there is still much to be done.

To put it another way, the most obvious weakness in the program proposed here is
the absence of good ideas about how to implement the formalism for practical reasoning
that is proposed here. It would be misleading for me to characterize this as future work.
What I hope to do at this point is to get comments on the theoretical ideas, to improve
the formulations in this version, and to see whether there seems to be interest in the AI
community in pursuing the program. If there is interest in doing that, it will be time to
think about implementations; and I hope that I won’t have to do that alone.
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