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1. Functions

You understand what a function is by understanding what it does: it associates a single
output with one or many inputs, or (equivalently) a single value with one or many arguments.

We are most familiar with functions from mathematics. Doubling a number, or mul-
tiplying a number by 2, is a function f : f(3) = 6, f(47) = 92. Adding two numbers is
a function g: g(2, 5) = 7, g(5, 7) = 12. But wherever there are individuals of any kind,
there are functions. The relation h between people and their birthdays is a function;
h(George Washington) = February 22, 1732 and h(Abraham Lincoln) = February 12, 1809.

There is no reason, then, why functions can’t input and output functions. In fact, let f
be the function that inputs a number n and outputs the function that inputs a number m
and outputs the result of adding n to m: if f(n)=g then g(m)=n +m. For instance, f(2)
is the doubling function, so [f(2)](3)=6.

This breaks the addition function h, which takes two inputs, into two functions, each of
which takes just one input:

h(n,m) = [f(n)](m).

This trick will make it possible for us to confine our attention to one-place functions only.

2. Functional types

One of the standard solutions to the Russell Paradox insists that every function must
have a type, and that the types are layered, or arranged in a hierarchy. At the bottom of the
hierarchy, we have a domain of individuals ; these are things, that for purposes of the theory
at hand, are not treated as functions. It is also convenient to have a bottom-level domain of
truth-values: this consists of only two objects: ⊤ (true) and ⊥ (false).

Whenever you have domains D1 and D2, you also have a domain consisting of all the
functions that input elements from D1 and output elements in D2. And this is the mechanism
that creates the hierarchy. From the primitive domains of individuals and truth values,
we have a domain of functions from individuals to truth values. We then have a domain
of functions from functions from individuals to truth values to truth values. In fact, the
process yields an infinite family of functional domains, each of which is typed by the type of
its inputs and the type of its outputs.

This idea is captured by the following recursive definition of a type.1

1The use of ‘e’ for the type of individuals was introduced by Richard Montague. See [Montague, 1972,
Montague, 1973]. Montague called individuals “entities.”



(1) 1. e and t are types.
2. If σ and τ are types, then 〈σ, τ〉 is the type of functions from

type σ to type τ .

According to this definition, for example:

(2) 1 〈e, t〉 is the type of functions from individuals to truth-values.
2. 〈e, e〉 is the type of functions from individuals to individuals.
3. 〈〈e, t〉, t〉 is the type of functions from functions from individuals to truth values

to truth values. (As you can see, very quickly the English descriptions of these
types becomes harder to understand than the notation for them.)

4. 〈〈e, t〉, 〈e, t〉〉 is the type of functions from functions from individuals to truth
values to functions from individuals to truth values.

This type hierarchy consists of functions of various sorts: strictly speaking, there are no
sets. But in fact there is no important difference between a set of individuals and a function
of type 〈e, t〉. A set of individuals amounts to a separation of the individuals into those
that belong to the set and those that do not. A function f from individuals to truth values
provides a similar separation: if f(d)=⊤, d is “in” and if f(d)=⊥, d is “out.”

This makes it easier to understand some of the types listed in Example (2). 〈e, t〉 is the
type of sets of individuals. 〈〈e, t〉, t〉 is the type of sets of sets of individuals 〈〈e, t〉, 〈e, t〉〉 is
the type of functions from sets of individuals to sets of individuals. This makes it easier to
see which functional types might be appropriate for interpreting the syntactic types you find
in natural language. For instance, if you decide that semantically, adjectives correspond to
sets of individuals, then you will want to say that adjectives have the functional type 〈e, t〉.

Often, you can work out what type is appropriate for a syntactic category. Some adverbs,
for instance, modify adjectives. The natural structure for ‘very tall’, for instance, is this.

(3) ADJ

ADV ADJ

very tall

This picture suggests that an adjective-modifying adverb operates on an adjective meaning
and produces an adjective meaning. If we have decided that adjectives have type 〈e, t〉 then
adverbs like ‘very’ will have type 〈〈e, t〉, 〈e, t〉〉.

This arrangment allows us to use functional application to interpret the syntactic pictured
in (3). [[very]] will be a function f of type 〈〈e, t〉, 〈e, t〉〉. [[tall]] will be a function g of type
〈e, t〉. From the types of f and g, we can see that f must apply to g and will return an
output of type 〈e, t〉.

The interpretation of Rule (3), then, looks like this.
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(4) [[very tall]] = [[very]]([[tall]])

[[very]] [[tall]]

This simple and satisfying arrangement can work only if it makes sense to say that the
set of things that are very tall can be recovered from the set of things that are tall. One issue
here is how to deal with the vagueness in ‘very’ and ‘tall’. Even setting this aside, it turns
out that this assumption isn’t entirely plausible. This doesn’t mean that we need to give up
the idea of functional interpretations, but it does indicate that we can’t interpret adjectives
as sets of individuals, and need to look for an interpretation that carries more information.

3. Type assignments and semantic interpretation

We have been assuming that expressions belonging to the same syntactic category are
to have semantic interpretations of the same functional type: if α and β are both NPs, for
instance, then the types of [[α]] and [[β]] will be the same. This idea, it seems, can be carried
out without requiring any significant changes in familiar syntactic rules. It makes sense,
then, to suppose that each syntactic category is associated with one of the semantic types
produced by Definition (1).

As the example of ‘very tall’ indicates, we often can figure out how to assign functional
types to syntactic categories by looking at the syntactic rules that apply to these categories
and seeing what type assignments are needed in order to arrive at simple interpretations of
syntactic rules.

4. Lambda expressions and the logic of types

There is a logic that goes along with functional types; this logic was formulated by Alonzo
Church in [Church, 1940] and represents many years of simplifying the ideas behind the 1910
edition of Principia Mathematica, [Whitehead and Russell, 1910 1913]. Richard Montague
added an intensional component to Church’s 1940 type theory and used it in works like ,
which mark the beginning of formal semantics.

As well as the usual apparatus of boolean logic (negation, disjunction, conjunction, the
conditional) and identity, functional type theory has variables of each type. For instance,
since 〈e, t〉 is a type, there will be variables like x〈e,t〉. Universal and existential quantifiers
can be used with these typed variables. So the logic allows you to formulate things like (5),
which says that for each individual there is a set containing nothing but that individual.

(5) ∀xe∃z〈e,t〉∀ye[z(y)=⊤ ↔ y=x]

But this logic also has a distinctive and new logical construct: functional abstraction or
lambda abstraction, which provides a systematic way to construct expressions that denote
functions.

Let’s go back to numerical examples for a moment. When we write a term like x2 or
x2 + 3 we are expressing functional dependence. As the variable ‘x’ takes on various values,
‘x2’ and ‘x2 + 3’ take on values that systematically depend on these values. When we want
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to talk about these functions, we use the original terms: we say “x2 is the squaring function”
or (more awkwardly) “x2 + 3” is the operation of squaring a number and adding 3 to the
result.”

This way of talking produces an ambiguity: ‘x2’ can either refer to a number, the result
of squaring x, or it can refer to a function, the operation of squaring x. This ambiguity does
no great harm in informal mathematics, but logical formalisms need to dispense with it. In
type logic, ‘x2’ would unambiguously refer to the number we get by squaring x, and λx x2

would unambiguously refer to the function that inputs any number x and outputs x2.

If α is a logical expression of type τ and x is a variable of type σ, λx α is an expression
of type 〈σ, τ〉 and refers to the corresponding function from objects of type 〈σ, τ〉.

For instance, if f and g have type 〈e, t〉—the type of sets of individuals—then λxe[f(x)∧
g(x)] denotes the intersection of f and g, and λxe[f(x) ∨ g(x)] denotes their union. And
λf〈t,t〉λxt¬(x) denotes the function that inputs a one-place truth function and outputs its
negation.

Returning again to mathematical examples, recall that λx x2 is the squaring function.
So if we apply this function to a number, say 5, we get 52 or 25:

(6) [λx x2](5) = 52.

(6) is an instance of the principle of lambda conversion. On the left side of the equation is
a lambda expression, denoting a function, is applied to a constant, denoting an input to the
function. So [λx x2](5) denotes the output this function returns for the input 5. The right
side of the equation is obtained by substituting ‘5’ for ‘x’ in ‘x2’

The principle of lambda conversion generalizes this.

(7) Principle of Lambda Conversion:

Let α be an expression of type τ , so that λxσα has type 〈σ, τ〉. Let β be
an expression of type σ, so that [λxσα](β) has type τ . Finally, let α[β/x]
be the result of substituting βσ for xσ in α. Then the following equation
will be true:

λxσα = α[β/xσ].

5. NPs as generalized quantifiers

We are going to see how functional types can resolve an apparent mismatch between the
syntax and semantics of noun phrases.

Two sorts of expressions that from a semantical point of view look very different can
appear in noun phrase positions: (1) on the one hand, proper names, pronouns, demonstra-
tives, and definite descriptions, and (2) on the other hand, quantified NPs, such as ‘every
registered voter’, ‘a woman from Boston’, and ‘many elderly patients’.

There are very good reasons for thinking that, from a semantical standpoint, these two
kinds of expressions are very different. For one thing, the traditional logical formalizations of
the two are strikingly different. Compare, for instance, the way that ‘Jill voted’ and ‘Every
registered voter voted’ would be formalized.
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(8.1) Voted(Jill)
(8.2) ∀x[[Voter(x) ∧ Registered(x)] → Voted(x)]

The difference between (8.1) and (8.2) is accompanied by dissimilarities in the intuitive
meanings. (8.1) is a proposition about a single voting event, involving a single individual. If
there are 10,232 registered voters, (8.2) has to do with 10,232 voting events at various times
and maybe in various places, each with a different voter.

Finally, there are important inferential differences. For instance, (9.1) is a logical truth,
while we would expect (9.2) to be false in most elections.

(9.1) Jill voted or Jill didn’t vote.
(9.2) Every registered voter voted or every registered voter didn’t vote.

These differences seem to suggest that the “referential” NPs and the “quantificational”
NPs must have different functional types. However, it turns out that if we think things
through beginning with the apparently more complex case—the quantificational NPs—we
will then have an account that will also work for the simpler case—the referential NPs.
Logical differences like the one between (9.1) and (9.2) will follow from special properties
of referential NPs that do not, however, have to do with differences between the functional
types of these NPs and the types of quantificational NPs.

This solution was first proposed in [Montague, 1973] and accounts for the title of that
paper: “The Proper Treatment of Quantification in Ordinary English.”

To begin with, we need to decide what the functional type must be of an NP like ‘every
registered voter’. In subject position, such an NP combines with a VP to form a sentence.
Suppose sentences have the functional type t and VPs have the functional type 〈e, t〉. This
is natural enough: sentences are true or false, and VPs like ‘voted’ are true or false of single
individuals.

So, whatever the functional type of a quantified NP is, this type must combine with 〈e, t〉
to produce a truth value: an item of type t. We could achieve this simply by taking the type
of these NPs to be e, since functions of type 〈e, rt〉 applied to individuals (type e) output
items of type t. But to assign quantified NPs the type e would be to treat them as denoting
individuals, and this would be totally wrong, because of the semantic differences we have
just listed.

But there is another alternative. We can assign quantified NPs the type 〈〈e, t〉, t〉, the
type of sets of sets of individuals. We can then interpret subject-predicate combinations
functionally, but the function is now expressed by the NP and applied to the value of the
VP.

(10) [[every registered voter voted]] = [[every registered voter]]([[voted]]) t

[[every registered voter]] 〈〈e, t〉, t〉 [[voted]] 〈e, t〉

We have now arrived at the idea that quantified NPs should have the functional type
〈〈e, t〉, t〉. We can confirm this idea by seeing exactly what sets of sets these NPs should
denote. Take ‘every registered voter’, for instance. If this denotes the set of sets containing
every voter, then, according to the rule pictured in (10), we should get the sentence ‘Every
registered voter voted’ by testing whether the set of voters is a member of the set of sets
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containing every registered voter. But this amounts to saying that the set of voters contains
every registered voter, i.e. that every registered voter voted.

All this can be elegantly formulated using lambda conversion.

(11.1) [[every α]] = λf〈〈e,t〉,t〉∀xe[α(x) → f(x)].

(11.2) [[a α]] = λf〈〈e,t〉,t〉∃xe[α(x) ∧ f(x)].

(11.3) [[the α]] = λf〈〈e,t〉,t〉∃xe[f(x) ∧ ∀ue[α(u) ↔ u=x]].

Finally, we can capture the special characteristics of referring NPs by the postulates
like the following one for ‘Jill’. (This, and (11.1–11.3) are called meaning postulates by
semanticists.)

(12.1) ∃xe∀f〈e,t〉[[[Jill]](f) ↔ f(x)]

6. Intensional types

Throughout this discussion, we have ignored intensionality. Montague extended Church’s
functional type theory to include intensional types and showed how this extended theory
could deal with many intensional constructions. Perhaps we’ll return to this topic at a later
time.

7. Bibliography

[Church, 1940] Alonzo Church. A formulation of the simple theory of types. Journal of

Symbolic Logic, 5(1):56–68, 1940.

[Montague, 1972] Richard Montague. Pragmatics and intensional logic. In Donald Davidson
and Gilbert H. Harman, editors, Semantics of Natural Language, pages 142–168. D. Reidel
Publishing Co., Dordrecht, 1972.

[Montague, 1973] Richard Montague. The proper treatment of quantification in ordinary En-
glish. In Jaakko Hintikka, Julius M.E. Moravcsik, and Patrick Suppes, editors, Approaches
to Natural Language: Proceedings of the 1970 Stanford Workshop on Grammar and Se-

mantics, pages 221–242. D. Reidel Publishing Co., Dordrecht, Holland, 1973. Reprinted in
Formal Philosophy, by Richard Montague, Yale University Press, New Haven, CT, 1974,
pp. 247–270.

[Whitehead and Russell, 1910 1913] Alfred North Whitehead and Bertrand Russell. Prin-

cipia Mathematica. Cambridge University Press, Cambridge, England, first edition, 1910–
1913. Three volumes.

6


