
Tarski’s Idea Illustrated in a Little Language

Document for Linguistics 426 / Philosophy 426

Fall, 2016

Instructor: Richmond Thomason

Version of: September 26, 2016

1. The metalanguage

The metalanguage is English—but English supplemented with variables, and regimented
in the ways that mathematicians regiment their language. In particular, since we will be
talking about language, we will need variables ranging over expressions. Following the usual
practice, we use Greek letters for this. Example: “If φ is a formula, so is ¬φ” means that if
any expression is a formula, so is the result of appending ¬ to it.

2. Syntax of the object language

The object language L is a version of FOL (“First order logic”) designed to talk about a
single relation.

Here’s the inductive definition of the formulas of L.

Basis: A term of L is any member of the set {a, b, x1, x2, . . .}.
a and b are constants ; x1, x2, . . . are variables.
R is a (2-place) predicate letter.
If α and β are terms, then R(α, β) is an (atomic) formula.

Induction: (1) If φ is a formula, so is ¬φ;
(2) If φ and ψ are formulas, so is (φ → ψ).
(3) If φ is a formula and x is a variable, so is ∀xφ;

3. Building a syntactic structure

The above induction not only define the formulas, it shows how to construct them, and
it exhibits their structure. The following picture shows how the formula ∀x1(R(x1, a) →
R(a, x1)) can be built up, mechanically following the rules in the definition.

∀x1(R(x1, a) → R(a, x1)

x1 (R(x1, a) → R(a, x1))

R(x1, a) R(a, x1)

R x1 a R a x1

Figure 1



If you look at it from the bottom up, Figure 1 shows how pieces are assembled according
to the rules to build up formulas. For instance, in the lower left corner, we have three items.

R x1 a

The basis clause of the inductive definition tells us that x1 and a are terms, and that
R(x1, a) and R(a, x1) are (atomic) formulas. Clause (2) of the definition assembles R(x1, a)
and R(a, x1) into the formula (R(x1, a) → R(a, x1)), and clause (3) assembles the variable x
and R((x1, a) → R(a, x1)) into the formula ∀x1(R(x1, a) → R(a, x1)).

If you look at it from the top down, Figure 1 shows the constituent structure of the
formula at the top, by showing how it breaks down into components, and, in turn, how these
components break down.

4. Tarski’s semantic rules

The central notion of Tarski’s semantics is satisfaction in a model. This is a generalization
of the notion of truth to formulas that have free variables. He defines satisfaction by an
induction on syntactic complexity. This means that it’s defined first for atomic formulas,
and then the satisfaction conditions for complex formulas are characterized in terms of the
satisfaction conditions for its syntactic components. In terms of Figure 1, we work up the
tree attaching satisfaction conditions to expressions, until we work out the condition for the
formula at the top, ∀x1(R(x1, a) → R(a, x1).

Tarski interprets forumulas in relational structures, which you can think of as little worlds.
Since the language L has a very limited vocabulary—it can only talk about a single two-place
relation—we will work with relational structures that only involve one such relation.

There is a simple way to picture such a structure: represent its objects by points, and
picture the relation with arrows connecting points. Nothing is left to guesswork; if there is
no arrow from one point to another, or to itself, then the relation doesn’t hold.

Here is our first structure.

Structure 1

1 •

2 •

3 •a

The objects of this structure are 1, 2, and 3. You can think of them as numbers, but it
doesn’t matter what three things they in fact are.

We’ll illustrate how Tarski’s approach to semantics works for formulas containing no
terms other than a and x1. The dotted line from a to 1 is a word-world association, showing
that that the reference in Structure 1 of the constant a is 1.

First we need to define the reference of a term in a structure, relative to an assignment
of a value to the variable x1. If x1 is assigned the value n (this value may be 1, 2, or 3),

2



then a refers to 1 and x1 refers to n. This makes sense—the reference of a constant stays
the same, and the reference of a variable varies.

Tarski defines whether n satisfies a formula by an induction on the formula’s syntactic
complexity. The induction begins with atomic formulas, and says that R(α, β) is satisfied
by Structure 1 if the reference of α is related in the structure to the reference of β. For
instance, R(x1, a) is satisfied when x1 is assigned 3 (because of the arrow from 3 to 1 in the
diagram), and is not satisfied when x1 is assigned 2 (because there is no arrow from 2 to 1
in the diagram).

The induction continues with clauses for the three types of complex formulas: negations
(with ¬), conditionals (with →) and universal quantifications (with ∀).

An assignment of n to to the variables x1 satisfies:
(1) ¬φ if the assignment doesn’t satisfy φ;
(2) (φ→ ψ) if either the assignment doesn’t satisfy φ or it satisfies ψ;
(3) ∀x1φ if every assignment of a value 1, 2, or 3 to x1 satisfies φ.

So, for instance, the assignment of 2 to x1 satisfies ¬R(x1, a) because it doesn’t satisfy
R(x1, a), because there’s no arrow from 2 to 1.

Now, we’ll use the rules to work upwards through Figure 1, to determine whether the
assigment of 3 to x1 satisfies the formula at the top, (R(x1, a) → R(a, x1)). We start with
the atomic formulas R(x1, a) and R(a, x1). The assignment satisfies R(x1, a) (because there’s
an arrow from 3 to 1) and it satisfies R(a, x1) (because of the arrow from 1 to 3).

We now move up the diagram to (R(x1, a) → R(a, x1)). The assignment satisfies this
formula because it satisfies R(a, x1).

But when we come to ∀x1(R(x1, a) → R(a, x1)) we have to consider all assignments of
values to x1. This formula is not satisfied—by the assignment of 3 to x2 or in fact by any
assignment—because if we assign 2 to x1, R(x1, a) is satisfied and R(a, x1) is not satisfied.
This means that the conditional (R(x1, a) → R(a, x1)) is not satisfied.

Since there is an assignment that doesn’t satisfy (R(x1, a) → R(a, x1)), the universal
formula ∀x1(R(x1, a) → R(a, x1)) is not satisfied.

By changing the structure, of course we change the satisfaction conditions for formulas.
Removing the link from 1 to 2 in Structure 1 produces the following structure. See if you
can work out why now ∀x1(R(x1, a) → R(a, x1)) is satisfied (by any assignment of a value
to x1.)

Structure 2

1 •

2 •

3 •a

3



5. Type assignments and semantic interpretation

6. Lambda expressions and the logic of types

4


