EECS 598: Integrating Emerging Technologies with Computer Architecture

Lecture 7: Dark Silicon

Instructor: Ron Dreslinski

Winter 2016
Non-Volatile Memory as a Compute Fabric

- Can use RRAM to perform analog computations
- Dot-Product calculation
 - Store variable resistance to represent matrix
 - Input voltage variable to represent vector
 - Sum currents down bitline
Non-Volatile Memory as a Compute Fabric

- Can use 1T1STTRAM to perform threshold digital logic

- AND
 - Enable wordlines to AND together
 - Current summation on the bitline can be thresholded to detect if all enables are High-Resistance
New Topic: Dark Silicon

- Arguably the term was coined by ARM in a Keynote talk based in ITRS-2008 projections

- Key Papers:
 - *Dark silicon and the end of multicore scaling*
 Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam, Doug Burger.
 ISCA 2011.
 - *A Landscape of the New Dark Silicon Design Regime*
 Michael Taylor.
 - *Is Dark Silicon Useful?*
 Harnessing the Four Horsemen of the Coming Dark Silicon Apocalypse
 Michael B. Taylor
 Design Automation Conference (DAC), June 2012.
Is Dark Silicon Useful?

Harnessing the Four Horsemen of the Coming Dark Silicon Apocalypse

Michael B. Taylor

Associate Professor (July 2012)
University of California, San Diego

Presented at DAC 2012 and DaSi 2012
Is Dark Silicon Useful?

Dark Silicon

Harnessing the Four Horsemen of the Coming Dark Silicon Apocalypse

Prof. Michael B. Taylor UC San Diego
This Talk

The Dark Silicon Apocalypse

Explaining the Source of Dark Silicon

The Four Horsemen
ISCA 2002 Session I:
We Had It All Figured Out

- The Optimum Pipeline Depth for a Microprocessor
 - IBM (22-36 pipeline stages)

- The Optimal Logic Depth Per Pipeline Stage is 6 to 8 FO4 Inverter Delays (~40 pipeline stages)
 - Dec/Compaq/HP

- Increasing Processor Performance by Implementing Deeper Pipelines (~50-60 stages)
 - Intel

Universal Conclusion: Frequency-Boosted Microarch == Future
2004: Santa Clara, we have a problem!

More pipeline stages, less efficient, more power.

Just can’t remove > 100 watts without great expense on a desktop.

All computing is now Low Power Computing!
The Famous Graph

Power doubles every 4 years
5-year projection: 200W total, 125 W/cm²!

From “New Microarchitecture Challenges in the Coming Generations of CMOS Process Technologies”
Widespread Assumption: *Microarchitecture was the cause of the power problem*

Back to the future ...

PPro/P3: 12 stages
P4 (b4 paper): 20 stages
P4/prescott: 31 stages
P5/Tejas: >> 31 stages

Oh P Pro, I’m sorry to have doubted you!
And forward to multicore...

PPro/P3: 12 stages
P4 (b4 paper): 20 stages
P4/prescott: 31 stages
P5/Tejas: >> 31 stages
The Scaling Promise of Multicore

- 4 cores
 - 1.8 GHz
 - 65 nm

- 8 cores
 - >=1.8 GHz
 - 45 nm

- 16 cores
 - >= 1.8 GHz
 - 32 nm

2x cores per generation, flat or slightly growing frequency
But actually, that’s not what’s happening

4 cores
1.8 GHz

65 nm

45 nm

8 cores
>= 1.8 GHz

32 nm

1.4x cores per generation, flat or slightly growing frequency

Dark or Dim Silicon ("uncore")
Energy Scaling of Process Technology is the Bigger Problem – microarch/multicore just gave us some breathing room.

Important
Really Important

0.1µ 0.07µ
apoc•a•lypse
noun

(Greek: ἀποκάλυψις apokálypsis; lifting of the veil or revelation)

A disclosure of something hidden from the majority of mankind in an era dominated by misconception …
apoc•a•lypse

noun

(Greek: ἀποκάλυψις apokálypsis; lifting of the veil or revelation)

A disclosure of something hidden from the majority of mankind in an era dominated by misconception …

dark sil•i•con apoc•a•lypse

noun

Us figuring out what the heck we should do in this new dark silicon design regime.
This Talk

The Dark Silicon Apocalypse

Explaining the Source of Dark Silicon

The Four Horsemen
Where does dark silicon come from? And how dark is it going to be?

The Utilization Wall:

With each successive process generation, the percentage of a chip that can switch at full frequency drops exponentially due to power constraints.

[Venkatesh, ASPLOS ‘10]
Scaling 101: Moore’s Law

90 65 45 32 22 16 11 8 nm

\[S = \frac{22}{16} = \sim 1.4x \]
Scaling 101:

Transistors scale as S^2

180 nm
16 cores

$S = 2x$
Transistors = 4x

90 nm
64 cores

MIT Raw

Tilera TILE64
Advanced Scaling:

Dennard: “Computing Capabilities Scale by $S^3 = 2.8x$”

If $S = 1.4x$ …
Advanced Scaling:
* Dennard: “Computing Capabilities Scale by $S^3 = 2.8x$”

If $S = 1.4x$ …

$S^2 = 2x$

More Transistors

S^3

S^2

S

1
Advanced Scaling:
Dennard: “Computing Capabilities Scale by $S^3 = 2.8x$”

If $S = 1.4x$ …

- S^3
- S^2
- S
- 1

$S = 1.4x$
Faster Transistors

$S^2 = 2x$
More Transistors
Advanced Scaling:

Dennard: “Computing Capabilities Scale by $S^3 = 2.8x$”

If $S=1.4x$ …

- $S = 1.4x$
 - Faster Transistors
- $S^2 = 2x$
 - More Transistors

But wait: switching $2.8x$ times as many transistors per unit time – what about power??
Dennard: “We can keep power consumption constant”

- $S = 1.4x$
 - Faster Transistors
- $S^2 = 2x$
 - More Transistors
- S^3
 - Lower Capacitance
- S^2
- S
- 1
Dennard: “We can keep power consumption constant”

- $S = 1.4x$
 - Faster Transistors
- $S^2 = 2x$
 - More Transistors
- $S^3 = 2x$
 - Lower Capacitance
- Scale Vdd by $S = 1.4x$
 - $S^2 = 2x$
Fast forward to 2005:

Threshold Scaling Problems due to Leakage Prevents Us From Scaling Voltage

- \(S = 1.4x \)
 - Faster Transistors
- \(S^2 = 2x \)
 - More Transistors
- \(S^3 \)
 - Scale Vdd by \(S = 1.4x \)
 - \(S^2 = 2x \)
- \(S^2 \)
- \(S \)
- \(1 \)

- \(S = 1.4x \)
 - Lower Capacitance
Full Chip, Full Frequency Power Dissipation Is increasing exponentially by 2x with every process generation

Factor of $S^2 = 2X$ shortage!!
We've Hit The Utilization Wall

Utilization Wall: With each successive process generation, the percentage of a chip that can actively switch drops exponentially due to power constraints.

- Scaling theory
 - Transistor and power budgets are no longer balanced
 - Exponentially increasing problem!

- Experimental results
 - Replicated a small datapath
 - More "dark silicon" than active

- Observations in the wild
 - Flat frequency curve
 - "Turbo Mode"
 - Increasing cache/processor ratio

[Venkatesh, ASPLOS ‘10]
Multicore has hit the Utilization Wall

Spectrum of tradeoffs between # of cores and frequency

Example:
65 nm → 32 nm (S = 2)

4 cores @ 1.8 GHz

4x4 cores @ .9 GHz
(GPUs of future?)

2x4 cores @ 1.8 GHz
(8 cores dark, 8 dim)

(Intel/x86 Choice, next slide)

4 cores @ 2x1.8 GHz
(12 cores dark)

[Skadron, IEEE Micro 2011]

[Hardavellas, IEEE Micro 2011]

[Esmaeilzadeh ISCA 2011]
Multicore has hit the Utilization Wall

Spectrum of tradeoffs between # of cores and frequency:

- 4 cores @ 1.8 GHz
- 2x4 cores @ 1.8 GHz
- (12 cores dark)
- 2x4 cores @ 2x1.8 GHz (8 cores dark, 8 dim)

Example:

65 nm → 32 nm (S = 2)

The utilization wall will change the way everyone builds chips.
This Talk

The Dark Silicon Apocalypse

Explaining the Source of Dark Silicon

The Four Horsemen
The Four Horsemen

What do we do with this dark silicon?

Four top contenders, each of which seemed like an unlikely candidate from the beginning, carrying unwelcome burdens in design, manufacturing and programming. None is ideal, but each has its benefit and the optimal solution probably incorporates all four of them…
The Shrinking Horseman (#1)

“Area is expensive. Chip designers will just build smaller chips instead of having dark silicon in their designs!”

(if you work on Dark Silicon research, you will hear this a lot...)
The Shrinking Horseman (#1)

“She is expensive. Chip designers will just build smaller chips instead of having dark silicon in their designs!”

First, dark silicon doesn’t mean useless silicon, it just means it’s under-clocked or not used all of the time.

There’s lots of dark silicon in current chips:
- On-chip GPU on AMD Fusion or Intel Sandybridge for GCC
- L3 cache is very dark for applications with small working sets
- SSE units for integer apps
- Many of the resources in FPGAs not used by many designs (DSP blocks, PCI-E, Gig-E etc)
The Shrinking Horseman (#1)

“Just build smaller chips!”

Possibly – but why didn’t we shrink all of our chips before the dark silicon days? This too would be cheaper!

- **Competition and Margins**
 - *If there is an advantage to be had from using dark silicon, you have to use it too, to keep up with the Jones.*

- **Diminished Returns**
 - e.g., $10 silicon selling for $200 today
 - *Savings* Exponentially *Diminishing*: $5, $2.5, $1.25, 63c
 - Overheads: packaging, test, marketing, etc.
 - Chip structures like I/O Pad Area do not scale

- **Exponential increase in Power Density →**
 - *Exponential Rise in Temperature* [Skadron]

- **But, some chips will shrink**
 - *Nasty low margin, high competition chips; or a monopoly* (Sony Cell)
The Four Horsemen

The Dark Silicon Apocalypse

Explaining the Source of Dark Silicon

The Four Horsemen
The Dim Horseman (#2)

“We will fill the chip with homogeneous cores that would exceed the power budget but we will underclock them (spatial dimming), or use them all only in bursts (temporal dimming) … “dim silicon”.

90

8
The Dim Horseman (#2)

Spatial Dimming

Gen 1 & 2 Multicores (higher core count → lower freqs)
Near Threshold Voltage (NTV) Operation
 • Delay Loss > Energy Gain
 • But, make it up with lots of dim cores
 • Watch for Non-Ideal Speedups / Amdahl’s Law
 • Manycore (e.g., Michigan’s Centip3de [ISSCC 2012])
 • SIMD (e.g., Synctium [CAL 2010])
 • Attack issues with Variability and synchronization
 • x86 [Intel, ISSCC 2012]
 • “Solar Powered x86”
The Dim Horseman (#2)

Temporal Dimming
- Thermally Limited Systems
 Turbo Boost 2.0 [Intel, Rotem et al., HOTCHIPS 2011]
 • Leverage Thermal Cap for DVFS – “overspend” if cold
 Computational Sprinting, [Raghavan HPCA 2012]
 • Phase Change, use surplus to power dark silicon instead of DVFS
 ARM A15 Core in mobile phone [DAC 2012]
 • A15 power usage way above sustainable for phone
 → 10 second bursts at most ->big.LITTLE

- Battery Limited Systems
 Quad-core mobile application processors

wall clock time
The Four Horsemen

The Dark Silicon Apocalypse

Explaining the Source of Dark Silicon

The Four Horsemen
The Specialized Horseman (#3)

“We will use all of that dark silicon area to build specialized cores, each of them tuned for the task at hand (10-100x more energy efficient), and only turn on the ones we need…”

[e.g., Venkatesh et al., ASPLOS 2010, Lyons et al., CAL 2010, Goulding et al., Hotchips 2010, Hardavellas et al. IEEE Micro 2011]
The Specialized Horseman (#3)
Ex: Conservation Cores (w/ Steven Swanson)

- Idea: Leverage dark silicon to “fight” the utilization wall

- Insights:
 - Power is now more expensive than area
 - Specialized logic can improve energy efficiency by 10-1000x

- C-cores Approach:
 - Fill dark silicon with Conservation Cores, or c-cores, which are automatically-generated, specialized energy-saving coprocessors that save energy on common apps
 - Execution jumps among c-cores (hot code) and a host CPU (cold code)
 - Power-gate HW that is not currently in use
 - Coherent Memory & Patching Support for C-cores
C-core Generation

Code to Stylized Verilog and through a CAD flow.

Synopsys IC Compiler, P&R, CTS

0.01 mm² in 45 nm TSMC runs at 1.4 GHz
Typical Energy Savings

- D-cache: 6%
- Datapath: 38%
- I-cache: 23%
- Fetch/Decode: 19%
- Reg. File: 14%

RISC baseline:
91 pJ/instr.

\(~11x~\) \rightarrow C-cores:
8 pJ/instr.

Energy Saved:
91%
"GreenDroid: A Mobile Application Processor for a Future of Dark Silicon"
HOTCHIPS AUG 2010
IEEE Micro Mar 2011
ASPDAC 2012

Android workload

Automatic c-core generator

C-cores

Placed-and-routed chip with 9 Android c-cores
Quad-Core
UCSD GreenDroid Prototype

- Four heterogeneous tiles with ~40 C-cores.
- Synopsys IC Compiler
- 28-nm Global Foundries
- ~1.5 GHz
- 2 mm^2
- In backend/verification stages
- Multiproject Tapeout w/ UCSC

November 2012
The Four Horsemen

The Dark Silicon Apocalypse

Explaining the Source of Dark Silicon

The Four Horsemen
The Deus Ex Machina Horseman

Latin [/dayus ex makeena/]
American [/duece ex mashina/]

deux ex machina /dayus ex makeena/
A plot device whereby a seemingly unsolvable problem is suddenly and abruptly solved with the unexpected intervention of some new event, character, ability or object.
The Deus Ex Machina Horseman

“MOSFETs are the fundamental problem.“

We can switch to FinFets, Trigate, High-K, nanotubes, 3D, for one-time improvements, but none are sustainable solutions across process generations.

Device physics (“thermionic emission of carriers across a potential well”) limit MOSFETS to 60 mV/decade subthreshold slope, which means the leakage problem is always there..”
The Deus Ex Machina Horseman

Possible “Beyond CMOS” Device Directions
(none are there yet, imho)

• Nano-electrical Mechanical Relays

Fig. 1. SEM, diagram, and operating states of the MEM relay device.

[e.g, Spencer et al JSSC 2011]
The Deus Ex Machina Horseman

“Beyond CMOS” Device Directions

- Tunnel Field Effect Transistors (TFETS) [e.g., Ionescu et al, Nature 2011]
- Use Tunneling Effects to overcome MOSFET Limits
The Deus Ex Machina Horseman
(“Before CMOS” Directions)

• **Human Brain**
 → 100 trillion synapses @ 20 W!
 → Very “dark” circuits
The Four Horsemen

The Dark Silicon Apocalypse

Explaining the Source of Dark Silicon

The Four Horsemen
Conclusion

- Dark Silicon is opening up a whole new class of exciting new architectural directions which many folks are starting to move into – which I have termed the “four horsemen”.
- Probably the final answers will be a heterogeneous combination of all of these.
- Excited to see even more new ideas today!