Space, Time, Power:
Evolving Concerns for Parallel Algorithms

Quentin F. Stout

Computer Science and Engineering
University of Michigan

www.eecs.umich.edu/~qstout qstout@umich.edu

February 2008
Real and Abstract Parallel Systems

• **Space:** where are the processors located?

• **Time:** how does location affect the time of algorithms?

• **Power:** what happens when power is a constraint?
Some Real Systems: IBM BlueGene/L

212,992 CPUs

478 Tflops

#1 supercomputer since 11/04

At Lawrence Livermore Nat’l Lab

\approx 200 Million

3-d toroidal interconnect

Max distance $\left(\# \text{ proc}\right)^{1/3}$
Another Real System: ZebraNet

ZebraNet as Computing Research

Store-and-forward communications

Data

Data

Data

Tracking node with CPU, FLASH, radio and GPS

Base station (car or plane)

Research Questions
- Protocols and mobility?
- Energy-efficiency?
- Software layering design?

ZebraNet vs. Other SensorNets
- All sensing nodes are mobile
- Large area: 100's-1000s sq. kilometers
- "Coarse-Grained" nodes
- GPS on-board
- Long-running and autonomous
Location, Location, Location

- Processors may only be able to communicate with nearby processors
- or, time to communicate is a function of distance
- or, many processors trying to communicate to ones far away can create communication bottleneck

- Feasible, efficient programs need to take location into account
What if Space is actually Computers?

Cellular Automata

- Finite automata, next state depends on current state and neighbors’ states: location matters!
- ≈ 1950 von Neumann used as a model of parallelism and interaction in space
- Other research: Burks & al. at UM, Conway, Wolfram,…
- Can model leaf growth, traffic flow, etc.
Parallel Algorithms: Time

Maze of black/white pixels, one per processor in CA. Can I get out?

Nature-like propagation algorithm: time linear in area

CA as parallel computer, not just nature simulator
Model More Useful for Algorithms: Mesh-Connected Array

- Same model (fixed # words of memory, can exchange fixed # words at each time step)
- *But*: words $\Theta(\log n)$ bits, thus processors can store their coordinates
- *Many* algorithms known
- *Theory grounded in reality*: can make chips with 1000s of processors
Mesh Time Bounds and Algorithms

- For square 2-d mesh with n processors, time bounds determined by spatial layout:
 - Communication radius = $\Theta(\sqrt{n})$
 - Bisection bandwidth = $\Theta(\sqrt{n})$
- Thus $\Omega(\sqrt{n})$ lower bound for any nontrivial problem.
d dimensions: $\Omega(n^{1/d})$
- Sort, image labeling, matrix multiply, intersecting line segments, minimal spanning tree, etc. solvable this fast
What if Space is actually Switches?
Reconfigurable Mesh

- Mesh plus processors have switches to control how edges interconnect, i.e., dynamic circuits.
- Alternate rounds of compute, set switches, communicate
- Model ≈ 1985
- Have been built
Add \sqrt{n} Bits in Constant Time

- Bits initially in base
- Broadcast up
- 0 or 1 configuration
- Initiate signal at left
- answer at right
Reconfigurable Mesh vs. PRAM and Quantum

- **PRAM**
 - Parity, using poly # processors: $\Omega(\log n / \log \log n)$
 - implies summing, sorting have same bound

- **Quantum**
 - sort: $\Theta(n \log n)$ - no faster than serial

- **Reconfigurable mesh**
 - parity of \sqrt{n} bits $\Theta(1)$; n bits $\Theta(\log \log n)$
 - sort \sqrt{n} values: $\Theta(1)$
 - sort n values: $\Theta(\sqrt{n})$ \iff bisection band unchanged, spatial layout still relevant
NEC Earth Simulator

5120 Processors

41 Tflops

#1 supercomp
06/02 - 06/04

In Yokohama, Japan

> $500 Million

Power substation
≈ 20 Mw
Power Is a Concern

- Sensor networks
 - max power of any transmission
 - max power usage by any single processor
 - some work on abstract algorithms

- Supercomputers, GPUs, multicore
 - max total system power at any instant
 - abstract models, algorithms new research area
Power-Hungry Parallel Algorithms

- Previous algorithms for meshes, cellular automata, etc. assumed processors always on.

- Thus peak power = n.

- Often useful to write algorithms in terms of “data movement operations”, similar to data structures.

- Unfortunately, DMOs typically involve sorting.
Power - Time Bounds

To finish in time T, must have

$$\sum_{t=1}^{T} Power(t) = \Omega(Serial_time)$$

⇒ Peak Power * Parallel Time = Ω(Serial Time)

New, additional bound:

Peak Power * Parallel Time = Ω(Total Data Movement)

Spatial location matters once again.
Mesh Power Bounds

Sorting: Total data movement (power) required: \((n \text{ items}) \times (\text{dist} \sqrt{n}) = \Omega(n^{1.5})\)

\[\Rightarrow\] many problems with edge inputs, point sets, etc. also \(\Omega(n^{1.5})\)

\[\Rightarrow\] what if their input is presorted or other special arrangement?

Images, adjacency matrices: data movement and serial bounds: only bound known = \(\Omega(n)\)

\[\Rightarrow\] can this be achieved?
Example: Component Labeling of Image

Goal: label all pixels in each figure with a label unique to that figure

Standard parallel approach: divide and conquer

Partition image and label within each part

Reconcile local labels into global label
Power-Constrained Mesh Algorithms

Think of rats moving around image, collecting info, storing it, cooperating to solve problem.

Can carry a fixed number of words of info, can leave a fixed number at any one location.

Rat location indicates active processor, carrying info is communication.

Number of rats = number of active processors at any given time, i.e., peak power.
Initial Labeling

Depth-first search, linear time
Global Labeling

1. Bring edges to central square
2. Take global labels back to quadrants, update pixel labels
 - (2,4) (1,8)
 - (3,7) (6,8)
 - (6,4) (1,4)
3. Determine connected components of this graph using stepwise simulation of mesh algorithm
Recursive Stages: Collect Edge Info

Relative to previous stage:

4x rats/square
2x edges, move
2x distance

thus same time
Recursive Stages: Stepwise Simulate Mesh Algorithm

Relative to previous stage:

mesh:
\(\sqrt{2}x \) edgelength
\(\sqrt{2}x \) time
\(\sqrt{8}x \) power

simulation:
\(\frac{1}{\sqrt{2}}x \) time
Time

Standard mesh: peak power \(n \), time \(\theta(\sqrt{n}) \)

\(r \) rats, i.e., peak power \(r \)

- Initial labeling: \(\theta(n/r) \)
- Merging regions: \(\log_4(n/r) \) levels, each \(\theta(n/r) \), total \(\theta(n \log n / r) \)
- Thus with peak power only \(\sqrt{n} \), time \(\theta(\sqrt{n} \log n) \): nearly perfect speedup, nearly minimal mesh time
- Can the extra log term be eliminated?
Additional Results

• Similar approaches, yielding similar power reductions and times, for problems such as

• For each component in the image, find a nearest neighbor and the distance to it

• Given the adjacency matrix of a graph, label the connected components and find a minimal spanning forest
Sample Data Movement Operation

- Suppose just want to find top of each figure

- **map-reduce**: every proc creates record (figure label, y-value, proc_coord)
- Sort by label: map
- Find max within figure’s interval (**reduce**), add to record
- Sort on proc Coord, sending record back to original proc
- Total data movement: $\theta(n^{3/2})$: Power Hungry

- Power-lite: labeling approach, movement $\theta(n \log n)$

- Note: map-reduce used by Google, Yahoo
Some Research Directions

- Figure out how to stop people from being squeamish about rat algorithms
- Expand (currently small) set of power-constrained algorithms, characterize lower bounds, are there competitive algorithms, etc.
- Develop appropriate power model(s) for reconfigurable mesh
What if Space is actually Matter (Computers) + Light?

Optics: distance not as important: wormholes

Theory grounded in reality: experimental chips with optical waveguides

Mesh + single optic layer can achieve $\Theta(\log n)$ comm diameter
Basic Open Questions, Mesh + Optics

• How should the optics be layed out if have
 • only 1 layer, i.e., cannot cross
 • only 2 layers
 • computer is 3-dimensional

• Which problems can be solved
 • faster?
 • with less energy?

• What should they be called? Opmesh? Mesh +op (“meshpop”)?
References

• Material about BlueGene, ZebraNet, Earth Simulator, Game of Life, easily findable on web
• Collected mesh algorithms (and some for cellular automata), DMOs, and references: *Parallel Algorithms: Meshes and Pyramids*, R. Miller and Q.F. Stout, MIT Press, 1996
• Rat logo: www.ratfanclub.org
• Maze: en.wikipedia.org/wiki/Maze
• Power-constrained algorithms: contact author
• Mesh + optics: brand new area, no papers yet