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1 Introduction

An n-dimensional hypercube computer n-cube is a parallel computer with” processors and
network topology that of an-dimensional binary cube. Each node of the cube is assdaidth a
processot” while each edgéP;, P;) of the cube represents the direct communication link batwee
processors’; and P;. Hypercube computers have been studied since 1962 [35]aredrecently
become the focus of intense commercial and research it 16, 17, 18, 19].

One of the attractive features of thecube topology is its behavior in the presence of faulty pro-
cessors or links. Depending on the number and location sétfaults it is possible that the network
still contains large subcubes which are fault-free. Sinostralgorithms for thex-cube specify the
dimension of the network as a parameter, these algorithmstikbe used in the presence of faults,
although with some degradation. Assuming some minimumpabke level of degradation, it is
natural to consider the following question:

In an n-dimensional hypercube, what is the minimum numbéauwfy processors
(or faulty links) that cause all m-dimensional subcubesddaulty?

This question can also be considered as part of the subdobatain problem. In multi-tasking
on ann-cube, the problem of dynamically assigning subcubes ofengilimension to a given task
can be thought of as allocating subcubes in the presencellts,favhere the busy processors and
dedicated communication links can be considered “faulty”.

The above question arises from problems in resource difitsib [28] as well. To illustrate,
suppose disks are to be attached to some of the processarswetudbe in such a way that every
m-dimensional subcube contains a processor with a disk. (e for example, be in a multi-user
environment and want to ensure that each user has a diskiimatlodted subcube.) For a given
n andm, the minimum number of disks necessary is the same as thenomiminumber of faulty
processors needed to guarantee that evegube is faulty. A solution to this resource distribution
problem, however, requires not only the number needed,lboitaaconstruction of a minimum set
of nodes of(),, that has a node in common with eaehdimensional subcube.

In order to facilitate our discussion we need to introducmeaotation. Let(), denote a
labeledn-dimensional binary cube, where the nodesXafare all thern-bit strings and two nodes
are adjacent if and only if their corresponding stringsatif exactly one position. Defin®(n, m)
as the collection of all sets of nodes @f, whose removal leaves M@,,, and letx(n, m) be the
minimum size of a set i¥(n, m). Analogously,7 (n, m) denotes the collection of all sets of edges
of @Q,, whose removal frond),, leaves na@y,,, and\(n, m) is the minimum size of a set A (n, m).
When the context is clear, the informal term “fault set” vii# used to mean a setdi{n, m) or a
setin7 (n,m). Figure 1 illustrates minimum node and edge fault sets:.fer 4 andm = 2.

There are many alternative methods of fault tolerance netsored by the: and A functions.
Two basic graph-theoretic approaches are to provide additiedges and/or nodes, or to weaken
the notion of a subcube. In the former, hardware is added actlie system still has @,, as a
subsystem after a fault occurs [8, 33, 36]. This approacht ineigaken at the time of hardware
design, and can tolerate relatively few faults without dinate expense. In the latter approach,
the notion of edge is weakened to allow paths of length greatan one in order to route around
faults. This implementation is via software, perhaps togetvith hardware modifications to permit
use of links to and from faulty processors. Generally, mamyenfaults can be tolerated with
this approach and it is frequently possible to provide amégared subcube of the desired size in



8 faulty edges destroying every 2-cube

Figure 1: Minimum fault sets fon = 4, m = 2

the presence of several faults [14]. This solution suffepgeidiormance penalty, however, because
each communication step in a reconfigured subcube takegrldhgn a communication step in
the original hypercube. Neither of these approaches hasegst implemented in any commercial
hypercube, and we will not pursue these methods here.

The fault tolerance approach we analyze assumes no hardvealiication, incurs no commu-
nication penalties, and it can be easily utilized on all eatrcommercial hypercubes. Further, the
x and X functions are of interest for a variety of reasons beyongkrfault tolerance. This will be
shown below, where ties are exhibited between these fursctiad problems in resource allocation,
exhaustive testing, andindependent sets.



1.1 Prior Work

A family F' of sets isk-independenif for every pair of disjoint subsetS; and.S; of F' such that
|S1] + |S2| = k there is at least one element common to all the set§ ibut which is in none of
the sets inS,. In Section 2 we show the direct relationship betwgeandependent sets and The
earliest published work relevant to evaluatingand X is apparently that of Schonheim [34], and
Brace and Daykin [6], who determined the maximum size of ad&pendent family, and Kleitman
and Spencer [26], who considered the general problem ofrdetimg the maximum size of families
of k-independent sets. Kleitman and Spencer used a probbdigfument to establish a lower
bound for the maximum size of a family &tindependent subsets of a set, proved an upper bound
for this maximum, and determined the maximum size of 2-iedelent sets by constructive means.
These results yield the value efn, n — 2) and bounds for(n, n — k). Chandra, Kou, Markowsky,
and Zaks [7] studied the problem of finding the minimum numifdbooleann-vectors such that
everyk-projection of them yields all possible-vectors. In our notation this is(n,n — k). They
determineds(n,n — 2), gave a construction for sets &#(n,n — 3) of non-optimal size, and used
essentially the same probabilistic argument as in [26] taioban upper bound fat(n,n — k).
Becker and Simon [3], apparently unaware of the work in [@peaated many of these results fgr
and used the same methods to establish bounds dimey also gave a construction, based on the
work of Friedman [12], which yields an upper bound fdm,n — k) that has the correct growth
behavior for fixedn — k. In [27], Levitin and Karpovsky considered the problem ohawstive
testing of combinational devices withinputs, where each output is a boolean function of at most
k binary input variables. They used MDS codes to construstie€l(n, m), although the sets were
not of optimal size.

Several persons have worked on a problem complementarygmuaingx(n, m). Some time
ago, Erdos asked for the maximum size of any set of nodég,dbr which the induced subgraph
contains no 4-cycle. Johnson and Entringer [24] found thasimum size and characterized the
extremal graphs for this case. Lgtn, m) denote the maximum size of any set of node€)pf
for which the induced subgraph contains ®g,, andg(n,m) denote the corresponding number
for edges. Notice thaf(n,m) = 2" — k(n,m) andg(n,m) = n2"~! — X(n,m). Thus, the
Johnson and Entringer result determings, 2). In [20, 21, 23], Johnson has considerga, m)
and obtained bounds for the cases= 3,4, 5, and in [22] has evaluateg(5,2). Responding to
a related question of Erdos [9] (see Section 3.4), F. Chpegsonal communication, July 1988)
established an upper bound fgm, 2), thus providing a lower bound fox(n, 2).

1.2 Organization

The following sections contain our new resultsoand A\ as well as an extensive survey of related
work. In view of the fault-tolerance applications on the dvand, and the exhaustive testing and
resource distribution applications on the other, we addbegh the problem of determining the
values ofx and A and the problem of the construction of small fault sets. IatiBa 2 we derive
several bounds fok. We establish new bounds for the maximum size of 3-indep&nidenilies
by using the non-constructive methods of Erdos, Franld, Biiredi [10]. These bounds yield an
improved upper bound fot(n,n — 3).

We also give a construction for small setsSitr, n — 3) which yields a new recursive inequality
for k(n,n —3), producing the best known upper bounds for it witbf any practical size. We make



use of the results obtained by Kleitman and Spencer [26kfmdependent subsets to establish a
new lower bound fok(n,m).

Many of the techniques of Section 2 are easily modified to giveesponding results fox.
These results are described in Section 3 and include an vegnapper bound foA(n,m) for m
small relative ton, a new lower bound foA(n,m) that is the best known for large, and a new
lower bound for\(n,m) that is the best whem is small. Here, as in Section 2, all but one of the
bounds are established by constructive methods.

The asymptotic behavior @f(n, m) andA(n, m), discussed in Section 4, is not well understood
for generaln andm. However, the new bounds we establish in Sections 2 and 3waogw
information for the cases when is small relative ta» and whem — m is small. In Section 5, we
use a combination of the results of earlier sections togetlith computer programs to construct
optimal or near optimal fault sets, thereby determiningcexalues or tight bounds fot(n, m),
for0 < m < n < 10, andA(n,m), for1 < m < n < 7. In Section 6 we describe techniques
for constructing fault sets whemis large. Section 7 contains a discussion of various relapesh
problems and some generalizations.

Because of the large number of results and techniques ilb8s@ and 3, the reader may prefer
to initially skim these sections, proceeding to Section$,4and 6. These latter sections help to
put the various inequalities into perspective. The readsy tihen return to the initial sections for a
more careful reading.

Throughout)g denotedog, andln denotedog, .

2 TheValuesof s

The theorems in this section are organized according to tekhads employed in their proofs.
Theorems 1 and 2 are proved by quite elementary means. Arghtelchnique is used to prove
Theorem 3, whereas Theorem 4 is proved by the use of levelysetding a good upper bound
for k(n,m) for fixed m. The results in Theorems 8 through 11 rely on the connectewden
x and independent sets mentioned in Section 1. A partitiotesgnique which can be viewed as
an extension of the 2-independent set construction yieldarsive inequality fok(n,n — 3).
The final theorem of this section uses a construction someselaed to the partitioning method
to establish a second recursive upper boundsfer,n — 3). Whenever we establish a recursive
inequality, the proof shows how to combine minimum faulsdet the larger side to get a fault set
for the smaller side satisfying the inequality.

For a node; in @, theweight of gwill denote the number of 1s in its string. Extending our
notation ofn-bit strings for nodes, we will denote the subcubeg)qfby strings from{0, 1, «}",
where the number of *s in the string is the dimension of thecabb.

2.1 Elementary Bounds
The theorems in this section are proved by quite elementatycanstructive means.
Theorem 1 Forn > 1,

(i) k(n,n) =1

(i) k(n,n—1)=2



(iii) w(n,0) =27
(iv) k(n,1) =271

Proof. Parts (i) and (iii) follow directly from the definitioof x(n, m).

For (ii), note that at least one node must be removed from efitho disjoint copies ofY,,_;
in Q,,. Moreover, if we remove any pair of antipodal node£)f, the remaining graph contains no
Qn—1. Thus (i) holds.

For (iv), letQ’ andQ"” denote two disjoint copies @,,_; in ,,, and consider those edges with
one node iR’ and the other i)”. Since at least one node of each of these edges must be removed
in order to remove all th€);’s from Q,,, we must have:(n, m) > 2"~1. On the other hand, if we
remove from@),, all nodes of even weight then i@, can remain since every edge contains exactly
one node of even weight. Part (iv) now follows.

In the next theorem we give recursive upper and lower boumds(f., m).
Theorem 2 Forn,m > 1,
() k(n,m) < kK(n—1,m —1)+ k(n—1,m).
(il) k(n,m) > max{2k(n —1,m), k(n —1,m — 1)}.

Proof. Let)’ andQ” be two node-disjoint copies @},,_1 in Q,,.

For (i), letS; C @', S; C Q" be sets of size(n —1,m — 1), k(n —1,m)in S(n —1,m — 1),
S(n —1,m). ClearlyS; U Sy is in S(n,m). For (i), note that at least(n — 1, m) nodes must be
removed from each af)’ and@” so that na@,,, remains in eithefn — 1)-cube. Thus«(n,m) >
2k(n — 1,m). To prove the second of the implied inequalities in (i), $ebe a set inS(n, m) of
sizex(n,m) and letS’, S” be the nodes of in Q’, Q". Denote byl” the set of nodes af’ that are
adjacent to the nodes 6f’. If Q' contains an(m — 1)-cube A’ that is disjoint fromS’ U 77, then
Q" contains a correspondir(g: — 1)-cube A” which combines withd’ to form anm-cube disjoint
from S. Since this contradicts the choice ®f we may conclude that’ U 77 must contain at least
k(n —1,m — 1) nodes and, therefore(n,m) > k(n — 1,m —1). O

Table 1 shows that sometimes the first term on the right hatedddithe inequality in Theorem
2 (i) is the largest (for example, at= 7 andm = 2) and sometimes the second term is the largest
(for example, ak = 6 andm = 4). Part (i) of Theorem 2 shows thai(n, m) is strictly increasing
in n. Further, given any fault s&t in S(n, m), removal of any single node ¢f gives a fault set’
in S(n,m + 1), since any(m + 1)-cube consists of two disjoint:-cubes, at least one of which is
still faulty in S’. Thereforex(n, m) is strictly decreasing im.

The next theorem generalizes part (i) of Theorem 2. Congiigdr — 1)-dimensional subcubes
A =0x...xandB = 1x...xof Q,. We may visualiz&),, as a 1-cube with “supernoded’andB,
where we label with 0 andB with 1. LetS; be a subset oft whose removal fromi leaves non-
cubes, and;, a subset o3 whose removal fronB leaves nqm — 1)-cubes. Part (i) of Theorem 2
was proved by observing th8{ U Ss isin S(n, m). As afirst step in generalizing this idea, visualize
@» as a 2-cube with supernodds, Ag1, Aip, and A1, whereA;; = ijx...xis an(n — 2)-cube
of @, fori,j € {0,1}. Assign label;; to supernoded;; as follows:log = l11 = 0, l1p = 1, and
lor = 2. Next, for eachi,j € {0,1}, choose a minimum se;; of nodes of4;; whose removal
from A;; leaves nqm — I;;)-cube. We see that; ;¢ 1.5;; is in S(n,m) and so

k(n,m) < 2k(n—2,m)+k(n—2,m—1)+k(n—2,m—2). 1)

5



A labeling of a 1-cube Recursive application An optimal labeling
of 1-cube labeling of the 2-cube

A good labeling of the 3-cube

Figure 2: Labelings of small hypercubes

This result is not a consequence of iterating the inequalipart (i) of Theorem 2, for one iteration
yields
k(n,m) < k(n—2,m)+2k(n—2,m—1)+ k(n —2,m — 2) 2

which is weaker than inequality (1). Figure 2.1 illustratigis labeling.

Theorem 3 Letr be a non-negative integer. Label the node@pfvith integers in the intervdD,r |
such that for every j i ... r each j-cube of), has a node with label at least as large aslf ()
is the label of node q i@, then

"i(nv m) < Z H(Tl -rm- Z(Q)) (3)

qEQr

forn>m >r.

Proof. For each node = aqas .. .a, in Q,, letQ,(a) be the(n — r)-dimensional subcube @},
given bya; ...a,*...*. LetS(a) be a set of(n — r,m — I(a)) nodes of@,,(a) whose removal
from Q,,(a) leaves ngm — i(a))-cube. We claim that the removal of the set

S=J S(a)

CLEQT
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from @, leaves nom-cube. For, supposé' is anm-cube ofQ,, sayT = w;...w,, where
wiy = * for 1 < (1) < ... < i(m) < n. Lett = max{j|i(j) < r} and consider the-
dimensional subcub@’ of Q,. given byT” = w; ... w,. (ConceptuallyI can be thought of as a
product of at-dimensional subcube @, and an(m — t)-dimensional subcube @p,,_,..) By our
assumption on the labeling 6f,, there is some node € 7" whose label(v) is at least. Thus,
the (n — r)-dimensional cub&),,(v) has no(m — [(v))-dimensional subcube after the removal of
S(v). SinceT N Qp(v) = v1...v,wrt1 ... w, has dimensionn — ¢, which is at leasin — [(v),
this subcube must contain at least one elemest of

In the theorem just proved, if we take= 1 and choose the labelsand 1, then inequality (3)
reduces to the statement in pajtqf Theorem 2. An iteration of this inequality correspondseé-
lecting the label®, 1 (from 0) and1, 2 (from 1) for Q2 which yields inequality (2). However, with
r = 2 and labeld), 1, 1, 2 assigned to the appropriate nodeslf we obtain the stronger inequal-
ity (1). For each value of, it is clear that there is a labeling @f,. which gives an inequality for
x(n, m) which is stronger than that supplied by using a labelingiobthby iteration corresponding
to a smaller value of.

The results expressed in Theorem 3 are most useful in thérootien of near optimum sets
in S(n,m) based on good constructions for near optimum setS(im,m — j) for0 < j < r
for somer < m. In applying Theorem 3, the actual choiceroWvill be determined by what is
known about the optimum or near optimum setsSifn, m — j) for 0 < j < m. In addition,
since determining optimum labelings . for larger is a challenging combinatorial problem in
itself, usually only near optimum labelings would be aJaliga Consider, for example, the following
construction. For eachin O, ...,r, pick a setS; of x(r, j) nodes ofQ), that containg) - - -0 and
whose removal frond),. leaves ngj-cube. Define a labeling as follows: forq a node of@,., let
h(q) = max{k|q € Si}. Clearly, for each collection of sefs, Ss, ..., .S;, the resulting labeling
h satisfies the requirements set forth in Theorem 3, but toiloi@ar optimum labelings by this
method, one would want to choose the sets so$hawerlapsS;, for j < i, as much as possible.
Whatever the selectiofi,- - - 0 will have labelr, and those nodes with label 0 will not be$h. In
the worst case, we would construct by this method &setS(n, m), where

r—1

|IR| < k(r,r)k(n —r,m —r)+ [k(r,0) — k(r,1)]k(n —r,m) + Z[I{(T,j) —1]r(n —r,m —j).
j=1

2.2 Levd Sets

Our next upper bound or is established by the simple device of removing all nodesiveang
distances from the origifi- - - 0 of Q,,. An example of such a fault set appears in Figure 1.

Theorem 4 If n,m > 1 anda is any integer, then

k(n,m) < Z (Z) .

k=amod m+1

Further, this sum is minimized when= |(n —m — 1)/2].



Proof. The nodes af,, can be partitioned inttevels where level consists of all nodes of weight

0 < w < n. Any m-dimensional subcube @j,, must include nodes fromn + 1 consecutive levels.
Consequently, if all the nodes are removed from at leastere in every set ofn 4+ 1 consecutive
levels, then n@),,, will remain. This can be accomplished by removing all nodbsse weights are

in a fixed congruence clagsmodulom + 1. Furthermore, we can minimize the number of nodes
removed in this way by judicious choice @f The level size is monotone decreasing away from the
center level (or levels, for odd). Selectingt = [(n — 1 —m)/2] results in the removal of levels
as far from the center level(s) as possible. A straightfovtarm-by-term comparison shows the
optimality of this value ofi. O

While many authors [3, 7, 20, 21, 22, 24] utilize the approaftihe theorem just proved, most
choose to express their result in the following simpler baaier form.

Corollary 4.1 Forn > m > 1,
2TL
m4+1

k(n,m) <

Proof. The desired result follows from the identity

i 3 <Z> =", 0

a=0 k=amodm+1

The bound given by Theorem 4 in the case- 2 is sharp according to the results of Johnson
and Entringer [24], who used constructive methods to deterif(n, 2), the complement of(n, 2).
We state their result in terms af

Theorem 5 ([24]) For n > 2,
k(n,2) = |2"/3]. O

Before further discussion concerning the use of level detajs simplify notation by letting
C(n,m,a) =Y j—amodmi1 (1), @nd setting”*(n, m) = min{C(n,m,a) : 0 < a < m}. In[21,
28] it was noted that, for fixeeh, C*(n, m) satisfies a recursive equation, and this was later solved
for m = 3,4,5in [20, 21, 23]. These results yield upper bounds«t, m) for m = 3,4, 5 which
are improvements over those provided by Corollary 4.1. Warsarize these in the following.

Theorem 6 ([20, 21, 23]) Forn,m > 1,
(i) K(n,3) < 27/4 —2ln/2 /2,
(it)
08 < {503 (1) rss  oven
whereL,,, thenth Lucas number, i$(1 + v/5)" + (1 — v/5)"]/2".
(iii)
) < {0 a1l o



Johnson [21] suggested that the bouritin, m) given by Theorem 4 may be sharp, and for-
mally conjectured equality in the case = 4. However, for any fixedn > 2, equality between
k(n,m) and C*(n,m) cannot hold for all. > m. Form = 3 this follows from the fact that
k(7,3) = 24, from Table 1, Section 5, where&$'(7,3) = 28. Form > 3, we see that equality
fails betweens(m + 2, m), whose value is given by Theorem 9, afit(m + 2, m), whose value is
m+ 3.

For fixedm and largen, C*(n,m) is the best upper bound known fefn,m), but it may still
be far from optimal, for, as we shall see in Section 4, theeel&ge gap betweefi*(n, m) and the
known lower bounds in these cases.

2.3 Independent Sets

We now turn to the theory of independent sets to help us in tualyof <. A family F of sets is
k-independenif for every pair of disjoint subsetS; and.S, of F' such thatS;| + |S2| = k, there is
at least one element common to all the setS4irwhich is in none of the sets ifi,. The following
lemma shows the close relationship betwéendependent sets and setsSfn,n — k). To state
it, we first need some additional notation. LE(r, k) denote allk-independent sets of subsets of
{1,...,r}. Forany sefl" of i elements, by therderingsof 7" we mean the set af i-tuples which,

when viewed as unordered sets, are equdl.td_et ]:'(r, k) denote the set of all orderings of alll
elements ofF (r, k), and letS(n, n— k) denote the set of all orderings of all elementsS6f,, n.— k).

Lemma7 Given positive integers, r, n, there is a natural bijection between thetuples ot7:“(r, k)
and ther-tuples ofS(n,n — k).

Proof. LetF = (Fy,..., F),) be ann-tuple Of]:'(r, k). F can be used to construct artuple in

S(n,n — k) as follows. LetM = (m;;) be ther x n matrix defined by

)1 ifieF;
™ij =\ 0 otherwise

Then, for eachl < j < n, thejth column of M represents the characteristic function of the/Set
Moreover, for each < i < r, theith row of M can be associated with the eleménf {1,...,r},
and also represents a node(@f, where thejth entry of the row is thath bit of the node’s label.
We denote byS,, the r-tuple of nodes represented by the rowsidf and claim thatSy, is in

S(n,n — k). To see why this is the case, lét= a;as ... a, be an(n — k)-cube in@,, and define
S = {E Lap = 1} andS; = {Fz La; = 0} SinceA is an(n — k,’)-CUbe,|Sl| + |SQ| =k, and
sinceF is k-independent there is at least one elementasdlyat is in each set i; and is in none
of the sets inS,. Thus the node represented by ravis in both A and Sy, proving thatS,, is in

S(n,n — k).
It is clear that the above mapping fromtuples of]:'(r, k) to r-tuples ofS‘(n,n — k) is 1-1.

To see that it is onto, le$ be anr-tuple in S‘(n,n — k). Create the: x n matrix M by setting
m;; equal to thejth bit of theith element ofS, and construct an-tuple F' = (Fy, Fs, ..., F;,) of
subsets of 1, ..., 7} by interpreting thejth column of M as the characteristic function of the set
F;. We claim thatF' is k-independent. To prove this, suppa$eandS; are disjoint subsets df,

9



where|S;| + |S2| = k, and.J;, J, are their index sets defined by = {i : F; € S,} forp =1,2.
Let B = b1by ... b, be the(n — k)-dimensional subcube described by

1 ifie;
b; = 0 ifieJy
*  otherwise

SincesS is in S(n,n — k), B must contain at least one element, sayjtieelement, ofS. This
means thay € F; for eachi € J; andy ¢ F; for i € J,, which allows us to conclude thdt is
k-independent

The correspondence established in the lemma, used in [J@rglves the following result.

Theorem 8 ([3, 7]) Let F'(r, k) denote the maximum size of a k-independent family of subisets
set of r elements. Then
k(n,m) = min{r | F(r,n —m) > n}. O

Schonheim [34], Brace and Daykin [6], and Kleitman and $peifi26] determined the maxi-
mum size of a family of 2-independent sets. Kleitman and 8peproved that’(r,2) = (Lr;z‘Jl_l),

observing that this maximum is attained by taking all subsétsize|r/2| that contain a fixed
element ofX. Using this result and the above theorem, one immediatehirubthe following.

Theorem 9 k(n,n — 2) is the minimum positive integer r such tt(zﬁl;;il_l) > n. O

Chandra et al. [7] rediscovered this result and the follgndorollary, as did Becker and Si-
mon [3].

Corollary 9.1([3,7]) w(n,n—2) =1gn+ % lglgn 4+ O(1), where theD(1)term is non-negative.
O

Kleitman and Spencer also obtained bounds Kgr, k). They proved an upper bound for
F(r k) for k > 3 ([26] , inequality (17)), from which we deduce the followingpre convenient but
slightly weaker form

1 T T 1/(k-2)
F(r,k) < 5{(k_2)!2<p>/<p>} + (k — 3), (4)

wherexr = |r/2F=2| + 1 andp = |x/2] 4+ 1. When we combine this result with Theorem 8, we
obtain the following.

Theorem 10 Forn > k > 3,

k(n,n —k) > k-2

Z Ty — 1z Bk +3) —klgk —2lglen,

whereH (z) = —[zlgz + (1 — z)lg(1 — x)]. ]
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At present, the lower bound just obtained is the best knowr (o, n — k) for k fixed and large
n, k. Rewriting it in the following slightly weaker form,

k(n,n—k) > 2k1 <:—:§ +lge) lgin—k+3)—klgk—2lglgn, 5)

it is easy to compare the improvement gained over the bouma [f8]
k(n,n —k) > 2"2[lg(n — k4 2) +0.1251glg(n — k + 2)],

which is the result of applying Theorems 2 and 9.
Now, in the other direction, Kleitman and Spencer [26] usata-constructive probabilistic
argument to prove that

F(r,k) > (1/2) (k1) (28 /(28 — 1))/~ (6)
When this inequality is combined with Theorem 8, it is sthaiigrward to show that
ﬁ(nn—k)<—Ll n (7)
’ = Tg(1— 2k 8T

This inequality, first established in [7] and later in [3]ppides the best known upper bound for
fixed k and largen, k. 1t will be discussed further in Section 4.

Using the non-constructive methods of Erdos, Frankl, aimedi [10], we next derive a new
upper bound for(n,n — 3) that, forn large, is superior to any other known bounds. The best upper
bound known previously, given by inequality (7) with= 3, is k(n,n — 3) < 15.5711g n.

Theorem 11 For n sufficiently larges(n,n —3) < 7.571gn.

Proof. Letr be an even positive integer and Jétbe a set of- elements. We will prove that there is a
3-independent family of subsets &fthat contains at lea$t.0959)" elements when is sufficiently
large. From this we will be able to conclude thdt,n — 3) < lgn/lg1.0959 for n sufficiently
large, which will complete the proof of the theorem.

Let X’ be the set of all subsets &f of sizer/2, and letp be a real numbef) < p < 1, whose
value will be determined later. Denote Bya random collection of subsets obtained by choosing
independently and with probability each of the subsets ik’. Using S, we form a 3-independent
family by successively deleting any sétfrom .S for which there are set8 andC in S that satisfy
either:

QACBUC, or
(2)BNnC C A.

For a fixedA € X', let b;(A,r) denote the number of paif®3,C) € X’ x X’ for which (1)
holds and leb, (A, ) be defined analogously for (2). Settib@) = > 4cx/[b1(A4,7) + b2 (A, )],
we see that the expected number of members deleted $ravat mostp? (7«;2)5(7”)- By choosing

p = (2b(r))"/2, the existence of a 3-independent set with at I¢a&2)(2b(r))~/2( ") members

r/2
can be guaranteed.
We need an upper bound fofr), but it will suffice to determine an upper bound far A, r)
becauseé; (A,r) = ba(X' — A,r) for A € X’ andb(r) =2 4y b1 (A, r). To this end, suppose
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A is a given set inX’. The pairs(B,C) € X’ x X’ for which condition (1) holds can be put
in one-to-one correspondence with the four-tuples of @étsUs, V1, V) which satisfy the set of
restrictions:

R: V1 CU CA,

U, Vo C X — A,
U] + |Us| = 1/2,
Vil + |Va| = |Ui].

To illustrate the intended correspondence, if we are gitenpair(B, C') for which condition (1)
holds, takd/; = ANB,U; = B—A,V; = U;NC,andV, = C — A. Itis straightforward to check
that(Uy, Us, V4, V) does satisfy each condition &. Conversely, if the four-tuplél; , Us, Vi, V3)
satisfies all of the conditions listed iR, then withB = U; U Uz andC = V; U (A — Uy) U Vs,
the pair(B, C) satisfies condition (1). It follows that (A, r) is the number of such four-tuples
satisfying the conditions i®. Hence,

_ 7”/2>< r/2 ) <x><r/2>
bi(A,r) = ‘
( ) 0<;(,Z<:r/2< €T T’/Q—Z’ Oggyim Yy r—vy

Since the ratio of consecutive terms in the sum#afA, r) is monotone decreasing, the maxi-
mum term occurs where this ratio is approximately 1, nametyxf ~ 0.309r. Using Stirling’s
approximation,n! ~ (n/e)"(2rn)'/2, we find thatb(r) < (3.3302)" and so(2b(r))~"/2(,/,) >
2(1.0959)" for r sufficiently large.C

2.4 Partitions

We now introduce another technique for obtaining upper bedar x(n, m). While the results of
this section are asymptotically weaker than those of theigue section, they provide good recur-
sive constructions for small values afwhich are not available from the probabilistic arguments
employed.

Consider a collectio;, P» ..., P. of partitions of{1, 2, ..., n} with the following property.

PropertyP(n, k): for every pair of disjoint subsef$ andV of {1, 2, ...,n} for which
|UUV| = k, there is some partitio; such that no cell of; contains both an element
of U and an element df".

A collection of r partitions satisfying propertf(n, k) can be used to constructkaindependent
family of sizen as well as a set i5(n,n — k). In view of the correspondence described at the
beginning of Section 2.3 betweérindependent sets and setsdfv, m), it suffices to show how a
collection of partitions satisfying proper®(n, k) can be used to construct a setSfn, n — k).

Let P be a partition of{1,2,...,n} with non-empty cells4;, A,,..., A,, and for each,
1 < i < n, let¢(i) be the unique integer for whichi € A;. Further, ifJ C {1,2,...,n}, let
o(J) = {¢(i) : i € J}. We will use P, and thereforeb, to construct a functiorr from {0, 1}? to
{0,1}™ as follows:

T(al, as, ... ,ap) = (a¢(1), a¢(2), e ,a¢(n)).

12



That is, for each subsét” of {1,2,...,p}, 7 maps the characteristic function @f to the char-
acteristic function ofJ;cy A; as a subset of1,2,...,n}. Now, suppose;, Ps, ..., P, is a col-
lection of partitions of{1,2,...,n} satisfying propertyP(n, k), where P; hasc; non-empty cells
A1, Aia, . .., Aic,. Further, letr; and¢; be the functions obtained frof; as described above. For
eachi, 1 < i < r, choose a minimum size sbt € S(c;,¢; — k) and letX; = {7;(s) : s € S;}.
Since we can always choose a minimum sef {n, m) that containgo, . .. ,0), we will do so, and
then modify eachX; for i > 1 by removing then-tuple (0, ...,0). We claim that the resulting set
X = Ul_,X;isinS(n,n — k). To prove this, suppos€ = wujus...u, is a subcube of),, of
dimensionn — k, and letJ; andJ; be the index sets determined by

1 ifieJ;
w; =< 0 ifieJy
* otherwise

We want to show that there is some elemenfofhat is inU. Since propertyP(n, k) is satisfied
by the collectionP;, P, ..., P,, at least one of these partitions, sBy, is such that none of its
cells contains both an element &f and an element of,. Thus, we can define the subculde=
V102 ... Ve, of ch by
1 ifie ¢U(J1)
vi =13 0 ifi€ ()
* otherwise

and conclude thaV is of dimensionc,, — k. Furthermore, sincé,, € S(cy,c, — k), there is an
elementr = zyz5 ... 2., € (VNSy,), which shows that, (z) € (X NU). We formalize this result
in terms ofx in the following.

Theorem 12 Letn > k > 1. Suppose’,, P, ..., P, is a collection of partitions of1,2,... ,n}
satisfying propertyP(n, k), whereP; hasc; non-empty cells fot < i < r. Then

k(n,m—k) < Z/ﬁ(cz-,c,-—k) —r+1. O
i=1

This inequality is very useful when a small collection oftgams satisfying property(n, k)
can be found, as illustrated in the following for= 3.

Corollary 12.1 For all integerss andt such thatst > n > s >t > 3,
k(n,n —3) <2k(s,s —3) + k(t,t —3) — 2.

Proof. Choose the integessandt in the given range. LeP; denote the partition of1,2,...,n}
with cells
Ajj={m:1<m<n, m=jmods},

for 0 < j < s — 1; let P, denote the partition with cells

m .
Agj={m:1<m<n, L;JZ]L
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for 0 < j < t; and letP; denote the partition with cells
m )
Azj={m:1<m<n, L?J +m = jmod s},

for0 < j < s—1. Itis relatively easy to check that this collection of péotis P, P», P; does
indeed have propert(n, 3). O

Although Corollary 12.1 gives an upper bound fgrn, n — 3) which isO((Ign)'&3), its results,
when combined with Theorem 13 and the exact valuesiofTable 1, actually give a better upper
bound than that provided by Theorem 11 foK 1600.

Friedman [12] showed how to construct, for any fixeandn, a collection ofO(lg n) partitions
of {1,2,...,n} such that for any subsé&t of {1,2,...,n} of sizek, there is a partition in which
each of its cells contain at most one elemeni'oBecker and Simon [3] used Friedman'’s result to
construct sets i (n, n — k) of size at mostg n(k*/ 1g k)22¢18k+3k "While this construction yields
sets of the right order of magnitude, namélylg n), for smallk they are impractically large. For
example, ift = 3 andn = 40, they are of siz&? g 40, whereas the above corollary with= 9
andt = 5 yields a set of size 32.

The next theorem contains an upper bound#t, n — 3) which is also established by con-
structive means. Although its methods yield sets of €iz@g n)?), as pointed out earlier, when it is
combined with Corollary 12.1 and Table 1, it yields supelounds forx(n,n — 3) for n < 1600.

A similar construction was used by Chandra et al. [7] to aomstsets inS(n,n — k) of size
O((1gn)*1), but for specificn andk, their sets are somewhat larger than ours because they could
not utilize the results in Table 1.

Theorem 13 Forn > 5,
k(n,n —3) < k(In/2],[n/2] —3) + k([n/2],[n/2] —2).

Proof. Ifn is odd then the bound given fa(n, n — 3) is the same as the one fefn + 1,n — 2).
Since part (ii) of Theorem 2 shows thatn,n — 3) < k(n + 1,n — 2), it suffices to only consider
the case when is even.

For arbitrary positive integetn, let x andy be two binarym-bit strings and denote hyy the
2m-bit string formed by the concatenationofindy. The complement of will be denoted by,
that is,z’ is the stringz . .. ], wherez, = 0 if ; = 1 andz), = 1 otherwise,1 < i < m.

Now, letS;, S, denote sets iS5 (n/2,n/2—3),S(n/2,n/2—2), respectively, of minimum size.
Define the sef by

S={zx|zeSi}u{yy |ye S}

To complete the proof, we show théitis in S(n,n — 3).

Suppose, j, andk are integers i{1,...,r} anda, b, c, € {0,1}. LetT =T (r;i,j,k : a,b,c)
denote thegr — 3)-cube ofQ, given by, ...u, where u; = a,u; = b,u, = ¢, and up, = * for
all h #4,j,k, 1 < h < r. Analogously, we denote bW (r;i,j : a,b) the (r — 2)-cube ofQ,
given byu ... u, whereu; = a,u; = bandu, = x forallh # 4,5k, 1 < h <.

LetT be an(n — 3)-cube of@Q,,, sayl’ = T'(n;i,j, k : a,b, c), where we may suppose, without
loss of generality, that < j < k. We divide the proof into cases and show, in each case Tthat
contains an element ¢f. The details of the proof in the case where both n/2 andn/2 < j are
omitted since they are handled almost identically to thisted below.
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kE<n/2orn/2 <i. lfk<n/2,thenT(n/2;i,j,k : a,b,c)NS1 # ¢, whereas, ifr/2 < i,
thenT(n/2;i —n/2,j —n/2,k —n/2:a,b,c) NSy # ¢. In either case, if is an element
of this intersection, themz € TN S.

Jj<n/2,n/2 < k,andk —n/2 #i,j. SinceT(n/2;i,j,k —n/2 : a,b,c) NSy # ¢, it
follows, as in the previous case, than S # ¢.

j<n/2,k—n/2=1i,andc=aorif j <n/2, k—n/2 = j, andc = b. Choose an integer
kyin1...n/2 otherthan,j. SinceT'(n/2;i,7, k1 : a,b,0) NS1 # ¢, we havel' N S # ¢.

j <n/2,k—n/2 =i,andc # aorif j < n/2,k—n/2 = j, andc # b. Since
W(n/2;i,7 : a,b) NSy # ¢, if y is an element of this intersection, they € TN S. O

The proof of the above theorem can be extended to show thall fer> 2h > 2,

h—2

k(n,n—h) < w([51, 151 =h) + > w51, 151 = h+i)(s([5], 5] —4) = 1).

1=2

A slightly weaker result appears in [7], where the factdf5 |, [5] — i) — 1 in the above
summation is replaced by([5 ], [5] — 7).

3 TheValuesof A

Turning to the corresponding questions involving edgetainistead of node faults, we find that
many of the results and proof techniques fohave their analogs fok. Once again, proofs of
recursive bounds show how to construct small fault sets. 8ight abuse of notation, we will use
ai...a;*a;y9 . ..a, to denote the edge of the 1-cube as well as the 1-cube itsdlénWe speak
of removing the edge; . .. a;*a;12 . . . a, from @Q,,, we remove the edge but not the nodes to which
it is incident.

3.1 Elementary Bounds
Theorem 14 Forn > 1,
(i) A(n,n) =1

(i) AM(n,n—1)=3 forn >3

(i) A(n,1) =n27 L
Proof. Parts (i) and (iii) are immediate. To establish (@},Q" andQ” denote two disjoint copies of
an(n — 1)-cube inQ@,,. Clearly, at least one edge must be removed from ea¢}i ahd@"”. More-
over, at least one edge with one endpoin)nand the other ir)” must be removed to prevent an
(n—1)-cube made up of correspondifig— 2)-cubes iR’ and®”. Thus,A(n,n—1) > 3. Toreal-

ize this bound for > 3, take the set of edges &f, given byT = {x0...0, 11«1...1, 0«10...0}.
Itis easy to check thaf' isin7 (n,n — 1). O

Recursive upper and lower bounds corresponding to Theorara Bow established fox.
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Theorem 15 Forn > m,
(i) A(n,m) > max{(n/m)2"~"™, [2A\(n — 1,m)n/(n — 1)], k(n,m)}
(it)

2 (n—1,m) + k(n —1,m — 1),
A(n,m) <ming A(n—1,m—1)+ A(n—1,m),
(n —m+ 1)k(n,m)

(i) fA(n+1,m+1) <n+1ltheni(n,m) < A(n+1,m+1).

Proof. For (i), first note that there af@)2"~"™ copies ofQ,, in @, and each edge is contained in
("~1y of the @Qy,’s. ThusA(n,m) > (n/m)2"™.

m—1

To show that\(n, m) > 2A\(n—1,m)+[A(n,m)/n], from which the second implied inequality
of part (i) follows, letT” denote a set of minimum size #(n, m). There exist at leagt\(n, m)/n ]|
parallel edges if’, and without loss of generality, we may suppose these aedi@an <0 - - - 0. The
desired inequality now follows from the observation that two node-disjoint cubes of dimension
(n — 1) given by0 % - - - x and1 * - - - * must each contain at leastn — 1, m) edges ofl".

To see that\(n, m) > k(n,m), observe that if T is a set of siz€n,m) in 7 (n,m) then the
setS = {v | {v,w} € T and weight(v) < weight(w)} isinS(n,m).

In order to show the first of the implied inequalities in (ije construct a séf in 7 (n, m) as
follows. Let@’, Q" be node-disjoinfn — 1)-cubes ofQ,,. Choose set8, T, each ofA(n — 1,m)
edges fromY’, Q”, respectively, whose removal fro@, Q" leaves na?,,,. Further, choose a set
S of k(n — 1,m — 1) nodes ofQ" whose removal fron®)’ leaves na?,,—1, and letT; be the set
of edges of@,, with one endpoint inS and the other inQ”. It is straightforward to verify that
T=TyUT,UTsisinT(n,m). Thus,A\(n,m) < 2\(n —1,m) + k(n — 1,m — 1).

The inequality\(n,m) < A(n —1,m — 1)+ A(n — 1,m) can be proved in the same way as the
corresponding inequality fot in Theorem 2.

To prove the last of the implied inequalities in (ii), cho@sset of nodes of sizex(n,m) in
S(n,m) and let

T = {{u,v} | {u,v} is an edge of @, u € S, v has the same first m — 1 components as u} .

Since anym-cube of(),, contains at least one nodesh it will contain at least one edge @f. Thus,
T €T (n,m)and|T| < (n—m+ 1)k(n,m).

For the proof of (iii), suppose for somethat\(n + 1,m + 1) < n + 1, and letT be a set of
minimum size in7 (n + 1,m + 1). By our assumption on, there is someg, 1 < j < n + 1, for
which no element of” has a« for its jth component. If we projedt on this component we see that
the resulting setis iff (n,m). O

In part (i) of Theorem 15, each of the first two terms providantpwer bound for\(n, m) is
larger than the remaining two terms for certain values ahdm. Form = 1, 22"~ = \(n,m),
and forn = 7 andm = 4, the term[2\(n — 1,m)n/(n — 1)] gives the best bound. We have
not found an example for which the third termy(n, m), exceeds the other two, but neither have
we been able to prove that it is always at most the maximumebther two. In the inequality
occurring in part (ii) of the above theorem, we find that for= 1, the first and third terms are
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equal toA(n, 1), whereas fom = 7 andm = 5, the second term is less than the other two. We
have not found an example for which the third tefm— m + 1)x(n, m), is less than the other two,
nor have we been able to show that it is always at least as é&rdfee minimum of the other two.
The example8 = \(4,2) < A(3,1) = 12 shows that, unlike the corresponding inequality £pthe
conclusion of part (iii) of our theorem does not hold forall> m. Figure 1 illustrates\(4, 2).

We state two straightforward consequences of Theorem 1&wiere also observed in [3].

Corollary 15.1 Forn > 3,
(i) k(n,n—2)<A(n,n—2)<k(n—1,n—3)+6
(i) )\(n,n—2)zlgn—l—%lglgn—l—O(l). O
The labeling technique used in Theorem 3 has an analoy(farm).

Theorem 16 Letr be a fixed integef) < r» < m and letr’ = min{r,m — 1}. Label the nodes
of @, with integers in[0, r | and label some subsét. of the edges of), with integers in[0, ] in
such a way that everycube ofQ), has either a node or an edge whose label is at l1éa3t< | < r.
If I(¢q) is the label of node in @, andi’(e) is the label of edge in E,. then

A(n,m) < Z An—r,m—1(q)) + Z k(n —r,m—1(e)).

q€Qr eckE,

Proof. We construct a sét of edges of)),, as follows. For each = ¢; ... ¢, € Q,, choose a s€f,
of \(n—r,m—1(q)) edges of thén —r)-cube®,,(¢) = ¢1 . .. ¢, *. .. x whose removal frond),,(¢q)
leaves ngm — I(q))-cube. Further, it = uy ... u;*u;y2...u, IS an edge irk,, choose a sef. of
k(n—r,m—I'(e)) nodes of thén—r)-cubeQ,, (u; ... uO0uj12 ... up) = uy ... w0U12 . .. Upk. .. %
whose removal fromQ,,(u; ... u;0u;42 ... u,) leaves no cube of dimensidm: — ’(e)). Now,
let T, be the set of edges with one endpointdpand the other irQ,, (u; ... u;lujto. .. u,) =
ug ... uluite .. up % ..k Itis straightforward to verify that the st = (Uye, Ty) U (Ueer, Te)
isin7(n,m). O

3.2 Levd Sets

We now construct sets iff (n, m) by removing edges frond),, whose nodes are at a specified
distance from the origin. The size of the sets constructethisytechnique are, for fixeth and
largen, the smallest yielded by any of the known constructions.

Theorem 17 If n > m > 1 anda is any integer, then

An,m) < (n—m+1) Z <n21>+ Z (Z:i)

k=a mod m k=a+1 mod m
k<n/2 E>(n+1)/2

Further, this sum is minimized when= |(n — m)/2].
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Proof. Consider, as in the proof of Theorem 4, the node@,ppartitioned into levels in which all
nodes of weight comprise level, 0 < i < n. Suppose that in every set of + 1 consecutive
levels there are two consecutive levels, say léwld: + 1, in the set from which we have removed
each edge that joins a node in leveb a node in level + 1. Clearly, no@,,, can remain. We can
improve upon this, for if we fix some — m + 1 dimensions, we need only remove those edges
that join a node in level to a node in level + 1 along these dimensions. Equivalently, we could
have removed the edges that join nodes in lévahd: — 1 along these dimensions. To be more
explicit, let Ny(4, j), N1 (i, 7) denote the set of nodes €%, at level: with jth component equal to
0,1, respectively.

If 0 <i<n/2and0 < j <n-—m+1,letT;; denote the set of edges @f, with one endpoint
in No(7,7) and the other inVy(i + 1,7); if (n +1)/2 < i < nand0 < j < n—m+1, let
T;; be the set of edges @},, with one endpoint inV; (i, j) and the other inVy (i — 1, j). Further,
settingT; = Up<j<n—m+171i;, for 0 <i < n, we see tha{T;| = (n —m + 1)(";1). Now, fix some
integer a. If we remove the edgesihfor : < n/2 andi = a mod m together with the edges in
Ty for k > (n+ 1)/2 andk = a + 1 mod m then no set ofn + 1 consecutive levels can contain
anm-dimensional subcube @p,,. Again, as in Theorem 4, we choosgen order to minimize the
number of edges removed in this manner. The valee| (n —m)/2] ensures that, where possible,
we avoid removing edges incident with level2 whenn is even and level&— 1) /2 and(n+1)/2
whenn is odd.O

Corollary 17.1 Forn > m > 1,
An,m) <(n—m+1)2""/m.

Proof. The desired result is a consequence of the identity

m-! <n - 1) n—1
Sy S OI  |EEE e
a=0 | k=a mod m k k=a+1 mod m k—1

k<n/2 k>(n+1)/2

3.3 Partitions

Using techniques similar to those in Section 2.4, a cobbectf » partitions satisfying property
P(n, k) can be used to construct setsZiin, n — k). We merely need to modify the method used
to construct sets i (n, m) by changingr as follows. If P is a partition of{1,2,...,n} with
non-empty cellsAy, A,, ..., A., and ift = (t1,tq,...,t.) is an edge of)., wheret, = *, say, then
let 7(t1,to,...,tc) = (di1,da, ..., d,) Whered; =ty if i is not ing~1(e); d; = * if i is the least
element inp~!(e), andd; = 0 otherwise. The same methods as those used to establishefihéar
and Corollary 12.1 can be used to prove the following.

Theorem 18 Letn > k > 1. SupposéPy, Ps, ..., P, is a collection of partitions of1,2,...,n}
satisfying propertyP(n, k), whereP; hasc; non-empty cells fot <i < r. Then

An,n—k) < Z)\(ci,ci—k) —r+1 O
i=1
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This theorem is very useful when a small collection of p@nis satisfying property?(n, k)
can be found, as illustrated in the following for= 3.

Corollary 18.1 For all integerss andt such thatst > n > s > ¢ > 3,
A(n,n—3) < 2X(s,s—3) + A(t,t —3) —2. O
The next result is an analog of Theorem 13.
Theorem 19 For n > 6,
An,n—3) < A([n/2],[n/2] —3) + A([n/2], [n/2] — 2).

Proof. We use an argument similar to that in the proof of TeepiL3 except that special consider-
ation is needed for the caseodd.

First we introduce some notation to show how two edge3oWill be used to form an edge in
Qor- fx=x1... 2552509 . .. 2 IS @ 1-cube inQy, let

xm:wl...kal...w,-OxiH...xk

and
et =y oapat 20T, 1

Thus,zZz andzz’ are 1-cubes iid)oy.
Suppose: = 2p. Choose set$;, T» of minimum size in7 (p,p — 3), 7 (p, p — 2), respectively
and define
T={zz|xeTi} U{yy |y Tr}.

The proof thatl’ € 7 (n,n — 3) is almost identical to that used for Theorem 13 and so we
suppress the detalils.

Now, suppose: = 2p — 1. Let W5, W5 be sets i (p,p— 3),7 (p, p — 2), respectively, each of
minimum size. We form a sév in 7 (n, n — 3) in the same way as we form@din then even case,
except we project thén + 1)-tuples on th last component. That isgi= x; ... 2,11 € Qn41, and
Poii(z) =21 ... .2, we takeW = {P,11(z2) |2 € Wi} U {Ps1(y?') |y € Wa}. We suppress
the details of the proof tha¥ is in 7 (n,n — 3) as they are straightforward]

3.4 Lower Boundsfor A

SinceA(n,m) > k(n,m), from Theorem 15, various lower bounds fbfrn, m) can be derived
from the lower bounds fok(n, m). In particular, the new lower bound proved in Theorem 10gjive
us the improved lower bound for(n, n — k) for fixed k£ and largen which we state below.

Theorem 20 Forn > k > 3,

k-2
H(1/2FT) = 1/2F2

An,n—k) > lg(n —k+3) —klgk —21glgn,
whereH (z) = —[zlgz + (1 — z)1g(1 — z)]. O
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At present, the lower bound just obtained is the best known o, n — k) for & fixed and large
n, k. We rewrite it in the following slightly weaker form to makeeasier to see the size of the

bound:
k—2
An,n —k) > 2kt (k——g —i—lge) lg(n —k+3) — klgk — 2lglgn. (8)
The next theorem gives lower bounds o, m) which, for smallm, are better than those
available from the inequality in Theorem 20. Its proof is ateasion and generalization of an

argument used by Johnson [22], who proved #@t 2) < 56. Our extension establishes that
g(n,2) < k2"~' + b/2, wherek is the integer such that(y) < (2) < 4(*'), andb is the largest

integer such that2” — b) () + b(*{") < (3)2"~2, and further generalizes this to arbitrarp, m).

F. Chung (personal communication, July 1988) indepenggmtived a result which is essentially
the same as our result fgtn, 2), namely that the edge density= g(n,2)/(n2"~!) must satisfy

(n —1)(n —2) > 4x(zn — 1)(zn — 2). Thus, for largen, the edge density is bounded above by
(1/4)'/3. In terms of\(n, 2), we see that, for large, at least.37 of the edges must be faulty in
order that every)s is faulty. By Theorems 1 and 15(ii), at mo§tof the edges need be faulty to
insure that every)- is faulty. Some time ago, Erdos [9] conjectured that, farge > 0, there is an

ne such that, for alh > n,, g(n,2) < (% +€)n2"1, i.e., that the edge density becomes arbitrarily

close to%. He also conjectured thg{n, k) < cn®2", wherea;, < 1 anda;, — 0 ask — oc.

Theorem 21 Forn > m > 1, letg(n, m) be the largest number of edges in a subgraptpgfthat
contains na?,,. Then
g(n,m) < k2"7' 4 b/2,

wherek is the integer determined by

2t <mlj-l> < @) (mj—l) < (Zii)
(e ol L)) /)]

Proof. We will call a node inQ,, together with itsn incident edges am-star, and refer to the
node as its center. We first note that any induced subgraph,of; with at least2”+! — 5 of the
(m + 1)-stars must contain @,,. For, supposéT is an induced subgraph 6, that is lacking
only five (m + 1)-stars. Splitd into two node-disjoint subgraph§, and H;, where the nodes of
H; have first coordinatéfor i = 0, 1. If either H, or H; lacks only ongm + 1)-star, then it must
be a@®,,. Without loss of generality, suppog&, lacks only two(m + 1)-stars, centered at nodes
po andgg. Thenpy andgy must be adjacent, for otherwidé, would be aQ),,. Let Ay denote an
(m — 1)-cube of H, that doesn’t contain nodes andgy and letA; be its neighbor inf/;. Since
A; must be missing at least one edge, it must contain at leastftthe centers, say ands, of the
missing(m + 1)-stars ofH; and these must be adjacent. Now, there are at least two nsidextd
(m—1)-cubes ofH, sayB, andCj, with py a node ofB;, andg, a node ofCj. At least one of their
neighbors inHy, By or C1, contains all of its possiblém + 1)-stars and so will form am-cube
with its neighbor inHy.

and
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Let E denote a set of edges &,, let G denote the subgraph ¢, induced byF, and suppose

G contains na,, 1. Since there ar(am’jrl)2”‘m‘1 cubes of dimensiom+1in @,,, G can contain
atmost(2™t! —6) (" )2" """ of the (m + 1)-stars. Letr; denote the number of nodes Gfof
degree;, for1 <i < n,then|E| =1/2>"" , iz;. We must have

- k ) 1 n —m—1
> zp < (27 —6)( )2" ml
k:m+1<m+l m+1

Now, let M (z) = M(z1,...,2,) = 1/2>° 7 5iz; and consider the problem of maximizing M
subject to the following three constraints:

C1: z; is an integer if0, 2"] for 1 <i < n,
C2: 3z < 20,
C3: Y mt1 (mil)zi < (2mtt—6)( " )2n—mel

m—+1
Note that ify = (y1,...,y,) Satisfies these constraints and if, s@yy;+1, andy;» are all non-
zero, then thew-tupley’ = (v, ..., ,,) also satisfies these constraints, whgre= y; — 1, y;, | =
Yit1 + 2, Yiro = yir2 — 1, andy; = y; otherwise. Moreover) (y') = M(y). In view of this
property, ifz = (z1,...,x,) yields a maximum value fol/ subject to these constraints, then we

may assume without loss of generality that all but at mostdaiie zs are 0, and that these two
are consecutive. We see that the intefeiven in the statement of the theorem is the integer for
whichz; # 0, andz; = 0 for all i # k, k + 1. The theorem now follows from the simpler problem
of maximizingM = (kzy + (k + 1)xk41)/2 subject to the modified constraints:

C1: x; andxy,, are non-negative integers,
C2: z + Tpy1 = 2",
C3: (mﬁ-l)xk + (7]:1—:-11)3:]“4‘1 < (2m+1 - 6) (mﬁ-l)2n_m_1' O
Corollary 21.1 Forn > m > 1,
An,m) > (n—k)2" 1 —b/2,

wherek is the integer determined by

k n k+1
m+-1 < m+1 m+1
2 (m—i—l) s 6)<m+1> <2 (m—i—l)

a O S S (G B

and
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4 Asymptotics

What is known about the behavior efand A for large values of andm falls roughly into two
categories: results for — m fixed and those fom fixed. The successful techniques for studying
the casen — m fixed are quite different from those that succeed in the chse fixed. Moreover,
the bounds obtained for fixed — m are not useful for fixedn, and conversely. In this section
we describe the best known bounds for each of these cases emibmseveral open problems
concerning the relative sizes efand\.

Kleitman and Spencer [26] used probabilistic methods terdahe bounds for the maximum
size of families oft-independent sets. Chandra et al. [7] used a probabiliggima@ent equivalent to
that in [26] to prove the following bound o Becker and Simon [3] rediscovered this result, and
used similar arguments to establish an upper bound.fdthese bounds are stated in the following.

Theorem 22 ([3,7]) Foralln >m > 1,

(In2)(n —m)2" ™ 1Ign

<
< (In2)(n —m)2" ™ (n/m)lgn. O

Combining these bounds with those given by Theorems 10 an@@®&ee that botl(n,m)
and\(n,m) are©(logn) for n — m fixed, but there are significant gaps between these bounds.

Question: For fixedn — m, does the limitlim,,_, o, k(n,n —m)/lgn exist?

This limit exists forn — m = 2 by the result on 2-independent sets as does the corresgoalirdin
with X in place ofx. Another question suggested by the slowly increasing eatfir along the
diagonals is:

Question: For fixedn — m, is it true that x(n + 1, m 4+ 1) — x(n,m) < 1 for all sufficiently
large n?

The same question could, of course, be asked fas well.

Whenm is fixed, andm andn are large, Theorem 10 and Corollary 4.1 combine to show that
k(n,m) = ©(2"). Analogously, Theorem 20 and Corollary 17.1 show tat, m) = ©(n2"), but
here, too, there are significant gaps between the upper aed lmunds for botlk and . Let

o = lim k(n,m)/2".

We see thatv,,, exists for allm > 0, for Theorem 2 implies that(n,m)/2™ is non-decreasing for
fixed m. Moreover, the inequalitie®«a,, 11 > «,, > a4, follow from this same theorem. The
definition of o,,, and the results of Theorems 1 and 5 show that

1 1 1
aon = a1 = — oo = —
0 ) 1 27 2 37
and thaty,,, satisfies the inequality
k(n,m) < < 1
on = m = T

for everyn. It would be interesting to know the exact values\gf for m > 3.
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In the case of edges, there are many analogies to the abave. Le
B = lim A(n,m)/(n2""1).

The fact thats,,, exists for allm > 1 is a consequence of part (i) of Theorem 15 which shows that
the sequence(n,m)/n2"! is nondecreasing for fixech. Theorem 14 shows that = 1, and
Corollary 17.1 together with the definition 6f, shows that

A(n,m) 1

o <Pm < —

for m > 1. Using Theorem 21, we find; > 0.37 and3; > 0.112. Table 2 gives\(7,4) > 19,
which yields 64 > 0.042. The boundgs > 0.016 is from Theorem 21. Stronger lower bound
results and extensions of the tables of values ahd A would be of considerable interest as they
can improve our asymptotic estimates as well as yield mdogrnmation abouty,,, andj,,.

Considering the relative sizes eind\, we see thak(n, m)/k(n, m) is ©(n) whenm is fixed.
Another question concerning the behavior of these funstadang the diagonals is:

Question: If n — m is constant, is it true that\(n, m)/k(n,m) is©(1) ?

Along the same lines, we have seen that,/ior m < 2, the difference\(n,m) — k(n,m) is
bounded, which prompts us to ask the following.

Question: For n — m fixed, is it true that\(n, m) — k(n,m) = O(1) ?

5 Exact Values

In application to hypercubes, the behaviowaind\ for relatively small values of andm is more
important than their asymptotic values. We must keep in nttiadln represents the dimension of
the hypercube and so, valuesof> 50, say, represent a hypercube with more than a quadrillion
processors! Consequently, in most applications, the exedices and constructive bounds that yield
good approximations far < 50 are most useful.

Values ofx(n, m) for 0 < m < n < 10 are presented in Table 1, where exact values are given if
known, and otherwise lower and upper bounds are given inatme fower-upper. The exact values
form = 0,1,n — 1, andn follow from Theorem 1, the values af(n,n — 2) are from Theorem 9,
and thex(n, 2) values are obtained from Theorem 5. A computer program wsirgedy heuristic
was developed to construct small sétin S(n,m). To a partially constructed sét, the program
randomly adds a node t6 that is in the largest number of remaining fault-freecubes. This
program found sets that resulted in the upper bounds:f@r4), (10, 5), (10, 6), andx(10,7)
shown in the table. In the remaining cases, the upper and lomends forx(n, m) are determined
from part (ii) of Theorem 2 and Theorem 4.

Much less has been determined about the exact valug&otn). Table 2 displays values of
A(n,m) for 1 < m < n < 7, showing lower and upper bounds when exact values are netrkno
The values form = 1,n — 1, andn follow from Theorem 14. All remaining lower bounds can be
obtained from Theorems 21.1 and 15. Upper bounds\fer 2) are from part (ii) of Theorem 15,
while the remaining upper bounds in the table were found msttaction. A computer program
analogous to the one for was designed to construct small setZitw, m). A separate program
was developed to determine thé{7, 5) = 7.
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m
0 1 2 3 4 5 6 7 8 9 10
0 1
1 2 1
2 4 2 1
3 8 4 2 1
4 16 8 5 2 1
n 5 32 16 10 6 2 1
6 64 32 21 12 6 2 1
71 128 64 42 24 12 6 2 1
8| 256 128 85 48-56 24 12 6 2 1
9| 512 256 170 96-120 48-64 24 12 6 2 1
10| 1024 512 341 192-240 96-165 48-68 24-25 12-13 6 2 || 1

Table 1: Values of(n, m)

(A copy of the sets constructed farand A may be obtained by writing to Quentin F. Stout.)

It would be very useful to extend the table of valuesxofnd A both for practical instances
and because it would, in turn, yield improvements in knowarats forx(n, m) andA(n, m) not
included in the table. However, finding small setsSitn, m) and7 (n, m) is computationally very

difficult.

m
1 2 3 4 5 6 7
1 1
2 4 1
3| 12 3 1
n 4| 32 8 3 1
5| 80 24 8 3 1
6| 192 59-64 20-22 8 3 1
7| 448 142-160 47-62 1920 7 3 |1

6 Constructions

Table 2: Values oh(n, m)

The construction of fault sets that are of nearly minimune s20f interest to saboteurs, to computer
architects solving resource allocation problems such asetldescribed in [28], and to persons
needing to construdi-independent sets for testing purposes [27]. Unfortupafielding such sets is

a very difficult problem in general. Arguments in [26] and $Apw that non-deterministic methods
have a high probability of success farlarge andn — m fixed. Probabilistic arguments similar
to those in [26] were used in [3, 7] to prove that, with highlgability, a randomly chosen set of
(In2)(n —m)2" "™ 1gn nodes ofQ),, is in S(n, m). An analogous argument shows that, with high
probability, a randomly chosen set @fi 2)(n — m)2"~™(2)1gn edges o), isin 7 (n, m) [3].

m
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Levitin and Karpovsky [27] developed constructive methéalsa problem equivalent to the
study ofx(n, m). The problem involves the exhaustive testing of devicek wiinputs where each
output is a Boolean function of at mdsbinary input variables. Using MDS codes, they constructed
anr x n binary matrix such that alt* possible binary:-vectors appear in each of titecolumns,
wherer = O(log® n) andw can be chosen arbitrarily close to 1. Their results give atootion
of a set inS(n, m) of sizeO(log” n), wherew can be arbitrarily close to 1. Alon [1] has given a
construction of a family ok-independent subsets of a set of sizeThrough the correspondence
between independent sets and elementS(af m) shown in the proof of Theorem 8, this yields a

construction of a set i (n, m) of sizeO ((n - m)c(”‘m)2 log n) for some constant about 24.

For fixedn — m, this size is the same order of magnitude as a minimum s&t#nm), but even
for n —m = 3, say, it is more thag?'6 1g n.

As discussed in Section 2.4, Becker and Simon [3] used eestifEriedman [12] to construct
sets inS(n,n — k) of size at mostg n(k*/1g k)22k18k+3k "\Whenn — m = k is fixed, this has the
right order of growth, but for small values suchras- m = 3 andn = 20, say, this bound is more
than2201g 20. On the other hand, the construction in Theorem 13 yield¢ as®(20, 17) of size
19. Even the construction using level sets, Theorem 4, yiglset of size 40 in this case.

Whenm is fixed, the constructions in [12] and [3] give sets whosesiare far from the same
order of magnitude as(n,m). In this case the best constructions for near minimum faaif are
given by the level sets in Theorems 4 and 17. It would cestdiel of interest to find constructions
of sets inS(n, m) of size~ k(n,m) and corresponding sets (n, m) of size~ A(n,m) for m
fixed.

To construct small fault sets for practical sizesnoAndm, the best strategy is to employ the
constructive methods that led to the recursive inequalitie Sections 2 and 3 coupled with the
computational results that led to Tables 1 and 2.

7 Concluding Remarks

Our analysis of subcube fault-tolerance assumes that iiffcignt to find an arbitrary fault-free
m-~dimensional subcube. However, the problem of determiaifigult-free subcube of a given di-
mension is computationally intensive, so in practice thacation routines examine the availability
of only a certain subset of the subcubes of a given dimengwust allocation schemes use some
variant of the “buddy system” allocating onty-cubes of the forna; ... a,_m*. .. * [32].

Under a given allocation schem4, let AQ,, denote the set of all subcubes @f, that are
recognized byA. A natural extension of(n,m) is to x(A;n, m), which we define as the least
number of nodes that need to be removed fi@so that the resulting graph containsmecube in
AQ,. We define\(A; n, m) in an analogous way. As an exampleBitienotes the buddy allocation
scheme the8Q,, = {a1...a, x...x|r = 0,...,n}, and it is easy to check tha{B;n, m) =
A(B;n,m) = 2"~™ forn > m > 1. While the buddy system is the only allocation scheme
used on hypercube computers thus far, we see it is not partictault-tolerant. For some specific
allocation schemes of interest, Livingston and Stout [28fedminedx(.A4;n, m). For arbitrary
allocation scheme!, Becker and Simon [3] showed that the problem of determirifd; n, n — 2)
is equivalent to a graph-coloring problem. The general lerabof determinings(.A;n, m) and
A(A;n, m) is open.

The fault-tolerance questions considered here can be @emet to arbitrary architectures and
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arbitrary graph properties. That is, given a gr@piwhich represents the connectivity of the proces-
sors, how tolerant i& to retaining some specific graph propefyunder the removal of successive
copies of a subgrapH ? Here, we define the quantity P, H; G) as the minimum number of copies
of H whose deletion fronts leaves the resulting graph without propefly For example, suppose
G is Qn, P is the property of being connected, afds a single edge, thew(P, H; Q,,) = n. If G

is Qn, P is the property of containing an-cube, and is a singlem-cube, therk(Q,,, Qm; @Qn)

is the mispacking numbenispacy(Q., C @) discussed in [13]. As a final example along these
lines, consider the problem, described in [25], due to Yogki: How many nodes of the-cube
must be removed in order that no connected component of #ieoatains an antipodal pair of
nodes? Kleitman [25] solved this problem by establishing miore general result that at least
(Ln72j) nodes must be removed fro@, if no connected component of the remaining graph is to

contain more thag”~! nodes.

In the generalized problem considered above, asking fontimemum number of copies of
H whose removal frontZ destroysP is appropriate in an adversarial situation, in certain ues®
allocation problems [28], in designing efficient tests [2¥]in constructing:-independent sets [26].
However, suppose each copyffto be removed is selected uniformly and at random from the set
of all copies of H in G. A natural question that arises is: What is the expected eurabcopies
of H that must be removed froif¥ so that the resulting graph fails to have propdfty Consider,
for example, the case in whick is Q,,, H is a single node, an® is the property of containing an
(n —1)-cube. In contrast ta(n,n — 1) = 2 we find that its expected value, denotegd(n,n — 1),
is ©(logn). Some of the properties ofz(n, m) and Ag(n,m) for arbitrary n andm, and of
kE(A;n,m) andAg(A;n,m) for certain allocation schemes$, are studied in [29, 30]. A related
but somewhat different situation arises if we are only comee that, with high probability;+ fails
to have property?. What is the expected number of copiestbthat must be removed in this case?
Becker and Simon [3] considered an instance of this questiarich G is @,,, H is a single node,
andP denotes the property of containing ancube. They showed that if at legst—m)2" """ Ign
nodes are removed frof,,, the probability that there are no remainimgcubes approaches 1as
tends to infinity.

A variation of these questions appears in the work of Burindnd Erdds and Spencer [10].
Using a probabilistic model of),, in which each edge is deleted independently and with fixed
probability p, they showed that i, (Q,,, p) denotes the probability that the resulting subgraph of
Q. is connected then

1 if p<1/2;
Jim P (Qn,p) = {l/e if p=1/2;
0 otherwise.
Whenp is allowed to vary withn, Bollobas [4, 5] proved that ifi > 0 and

p=p(n) =1 3{n+o(D}"

then
Tim_ Py (Qn,p) =",

Suppose that instead of deleting edges fr@mwe delete nodes, together with their incident
edges, with fixed probability and defineP, (Q.,, p) as the probability that the resulting subgraph of
Q. 1s connected. Najjar and Gaudiot [31], investigating tHebdity of the hypercube network in
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the presence of node faults, used Monte-Carlo simulatiestimateP, (Q,,, p) for smalln. In [30],
an analog of the above results B(Q,, p) is proved forPy(Q,, p), namely

1 if p<1/2;
lim Py(Qn,p) =4 1/2 if p=1/2;
0 otherwise.
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