
Physica D 42 (1990) 85-98
North-Holland

THE COMPLEX BEHAVIOR OF SIMPLE MACHINES

Rona MACHLIN
Relational Technology, Park 80 West Plaza 1, Saddle Brook, NJ 07662, USA

and

Quent in F. S T O U T 1
Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109-2122, USA

This paper interprets work on understanding the actions of Turing machines operating on an initially blank tape. While
this is impossible for arbitrary machines, complete characterizations of behavior are possible if the number of states is
sufficiently constrained. The approach combines normalization to drastically reduce the number of machines considered,
human-generated classification schemes, and computer-generated proofs of behavior. This approach can be applied to other
computational systems, giving complete characterizations in sufficiently small domains. This is of interest in the area of
emergent systems since the properties of such systems are often difficult to determine. By using computers to eliminate
multitudes of machines with well understood behavior, some unanticipated exotic machines with complex behavior were
discovered. These exotic machines show that it is quite difficult to estimate the number of states needed to produce a given
behavior, and hence subjective estimates of complexity may be poor approximations of the true complexity.

1. Introduction

This exposi tory paper discusses work on under-
s tanding the possible actions of a single simple

machine interacting with a simple input. The ma-

chines are Tur ing machines, defined below, which

have only a few states, and the input is an all-blank

tape. Depend ing on one 's background, this may

either seem to be a very easy task, since the
machines have very simple descriptions, or an

impossible task, since among computer scientists
it is well known that one cannot even decide

whether or not an arbitrary Turing machine will

halt. We show that it is instead a possible, but
difficult, task, as long as the number of states is

sui tably restricted.
We believe that the techniques used to under-

s tand small Tur ing machines may prove to be

useful in unders tanding other "s imple" systems,

1Partially supported by Incentives for Excellence grant from
Digital Equipment Corp.

especially if one wants to produce provably com-

plete classifications of behavior in suitably re-
stricted classes. Since this work is largely unknown
outside of computer science, and in fact is not

even well known within computer science, we have

taken a mainly expository approach in order to

reach a wider range of researchers. This work may

also revise notions of interesting or desirable be-

havior in Turing machines. Further, while we are

successful in characterizing sufficiently small Tur-

ing machines, we show that a single Turing ma-
chine can be viewed as an emergent system, and

thus any at tempt at an unrestricted classification

of the behavior of all emergent systems in any

sufficiently powerful class is doomed to failure.
This l imitation needs to be more widely under-

stood.
Finally, we show that the behavior of small

Turing machines is far more complicated than
most people would guess, and that exhaustive

search can locate machines that are exceedingly
difficult to create on one 's own. Because such

0167-2789/90/$03.50 © Elsevier Science Publishers B.V.
(North-Holland)

86 R. Machlin and Q.F. Stout/Complex behaoior of simple machines

machines are quite unexpected, people tend to
significantly overestimate the number of states
needed to produce their behavior. This creates a
false impression of complexity, leading one to
believe that a system has many more components
that it really does, rather than understanding that
the complexity can come from the repeated appli-
cation and interaction of a few simple, carefully
chosen rules.

In section 2, we define Turing machines, and
define the busy beaver and halting probability
problems. These problems motivated work in clas-
sifying the behavior of small Turing machines. In
section 3 we introduce the notion of tree normal-
ization, which is used to drastically reduce the
number of cases that must be considered. In sec-
tion 4 we show the techniques used to classify
Turing machines that are in infinite loops, which
completes the computation of small busy beaver
numbers. Section 5 shows how to apply this work
to estimate the halting probability, and in section
6 we offer some concluding remarks.

2. Background

Turing machines are an attempt to formalize
the notion of effective computation. While it is
impossible to prove that one has correctly cap-
tured the intuitive notion of effective computation,
all other attempts have yielded systems that can
compute only functions computable by Turing
machines, and hence there is fairly widespread
acceptance of the Church-Turing thesis that Tur-
ing machines do indeed compute all functions that
are effectively computable [14].

For our purposes, a (deterministic) Turing ma-

chine has an input-output alphabet of {0,1),
which writes and reads from a 2-way infinite tape
of squares. The O's and l 's are called symbols, and
each tape square contains exactly one symbol. The
0 is thought of as being equivalent to blank.

A Turing machine has some finite number, k, of
internal states, labeled 1 k, and a read/write
head connecting it to the tape. At each time unit
the read/wri te head is positioned under some
square of the tape, and based on the symbol read
and the current state, the Turing machine will
write a (perhaps different) symbol at the square,
move the read/write head left or right one square,
and switch into a (perhaps different) state. See
fig. 1.

For each possible pair of current state and
symbol read there is a unique instruction specify-
ing the symbol printed, head movement, and new
state. Such instructions will be given as

(state, symbol, new symbol,

head movement, new state),

where L or R are used to indicate head movement
to the left or right, respectively. We assume that
the tape is initially all 0 (all blank), and that the
Turing machine is initially in state 1.

A Turing machine continues to execute its in-
structions until it encounters an instruction speci-
fying a new state of 0, in which case it prints the
symbol, moves the head, and then halts. Fig. 2
illustrates this action, which the subscripts on the
tape indicate the state of the Turing machine and
the location of the head.

• O 0 Io 01110 111
~ head

1 , 2 , . . . , k)

]o o] • O 0

Fig. 1. A Turing machine.

R. Machlin and Q.F. Stout / Complex behavior of simple machines 87

Turing machine instructions

Symbol read

State 0 1

1 1R2 1L3
2 1L1 1R2
3 1L2 1R0

n Tape status after n steps

1 1 0 2
2 I l I
3 0 3 1 1
4 0 2 1 1 1
5 01 1 1 1 1
6 1 12 1 1 1
7 1 1 12 1 1
8 1 1 1 12 1
9 1 1 1 1 12

10 1 1 1 1 1 0 2
11 1 1 1 1 11 1
12 1 1 1 13 1 1
13 1 1 1 1 i o 1

Subscripts denote machine state and position
of read/wri te head

Fig. 2. Turing machine execution.

As fig. 2 shows, even though the individual
instructions have simple, precise definitions, the
overall behavior of the Turing machine can be
quite complicated and not readily apparent from
the individual instructions. Thus a single Turing
machine, viewed as a collection of cooperating
individual instructions, is an emergent structure
according to the definition in ref. [7].

shows that no effective algorithm of any form can
solve the halting problem. It is also well known
that there is a fairly simple machine U, the univer-
sal Turing machine, such that it is impossible to
provide an algorithm to decide if U halts on input
T for arbitrary T. Similarly, the restricted halting
problem, in which the machine varies but the
initial tape is all blank, is also unsolvable.

A related problem, which we call the halting
probability problem, can be intuitively phrased as
"What is the probability that a random Turing
machine will halt when started on an all-blank
tape?" To formally define this probability, de-
noted ~2, one must assign probabilities to Turing
machines. Since there are infinitely many Turing
machines it seems that no assignment is com-
pletely natural, and we postpone such an assign-
ment until section 3. However, one can show that
for any nontrivial assignment I2 cannot be com-
puted, where by an algorithm computing ~2 we
mean that given any c > 0, the algorithm will
return a rational number which is within c of I2.

Apparently Chaitin was the first to formally
define 12 [5], though his definition differs from that
given in section 3. $2 has many interesting proper-
ties [9], and recently Chaitin used it in his signifi-
cant transformation of GSdel's incompleteness
theorem into a statement about the solutions of a
specific exponential Diophantine equation [6].

2.2. Busy beaver problems

2.1. Halting problems and halting probability

Many problems have been posed involving Tur-
ing machines. The best known of these, the Halt-
ing Problem, asks for an algorithm with input
consisting of a Turing machine M and an initial
tape T, and which outputs " t rue" if M will even-
tually halt when started on input T, and outputs
"false" otherwise. This problem is well known to
be impossible in the sense that no Turing machine
can provide such an algorithm (see any standard
text in computability, such as ref. [14]). Assuming
that the Church-Turing thesis is correct, this

Tibor Rado felt that the arguments used to
prove the uncomputability of the halting problem
were not sufficiently intuitive, and posed the Busy
Beaver Problem as a more concrete variation. To
define this, let H(k) denote the set of all k-state
Turing machines which eventually halt when
started on a blank tape. Note that H(k) is finite
since it is a subset of the set of all k-state Turing
machines, and there are exactly (2 - 2 . (k + 1)) 2k
different sets of instructions for k-state Turing
machines, i.e. there are 2k instructions that need
to be supplied, one for each (state, symbol) pair,
and for each instruction there are 2 choices of new

88 R. Machlin and Q.F. Stout/Complex behavior of simple machines

symbol, 2 choices for head direction, and k + 1
choices for new state.

For a Turing machine M in H(k), let o (M)
denote the number of l 's left on the tape when M
halts after starting on an all-blank tape, and let
s(M) denote the number of steps performed by M
before halting. For example, for the machine in
fig. 2, a (M) = 6 and s(M)= 13. Rado [16] de-
fined the k th busy beaver number, denoted ~(k) ,
by

~ : (k) = m a x (o (M) : M ~ H (k) } ,

that is, ~ (k) is the maximum number of l 's left
on the tape by any halting k-state Turing ma-
chine. Similarly, he defined S(k) by

S(k)=max(s (M) : M ~ H (k) } .

The busy beaver problem is to give an algorithm
which computes ~:(k) for all values of k. Note
that for any k, this problem merely asks for the
maximum among a finite set of values.

Rado provided a nice proof that ~ could not be
effectively computed by showing that if f is any
function computable by a Turing machine, then
there is a number n, depending on f , such that
,~(n) > f (n) . This also shows that S cannot be
effectively computed since S(k) > Z(k) for all k.
While Rado emphasized computing ,~, we will
instead concentrate on the function S, for reasons
which will become clearer in section 2.3. Work on
computing S and Z is discussed in refs. [1-3, 7,
10-13, 15-17].

2.3. Problem relationships

The halting problem, halting probability prob-
lem, and busy beaver problems are closely related,
in that a solution to any one of them would yield a
solution to each of the others (although the trans-
formations may not have any practical usefulness).
To illustrate this, suppose we have an algorithm
which computes S, and want to solve the re-

stricted halting problem. To decide if machine M
halts on blank tape, merely count the numbers of
states in M, call this k, and then simulate the
running of M for S(k) steps. If M has not halted
in S(k) steps then it must be that it will never
halt, by the definition of S. Notice that X(k)
would not have been as useful since it may be that
M sometimes writes l 's and sometimes erases
them, making it difficult to guarantee that it will
not suddenly erase all but ~:(k) or fewer l 's and
then halt.

To see how the halting probability problem can
be used to solve the restricted halting problem, let
M be some specified Turing machine, and sup-
pose it has probability p. (It suffices to merely
know that p is a nonzero lower bound on the
probability of M.) Using any effective enumera-
tion of the Turing machines, simulate running the
first Turing machine for one step, then simulate
the first Turing machine for two steps, then the
second Turing machine for two steps, then
the first Turing machine for three steps, then the
second Turing machine for three steps, then the
third Turing machine for three steps, and so on.
(This stimulation process is known as dove-tailing.)
Whenever a machine halts, add its probability to a
running total. Eventually, either M halts, or else
the running total becomes large enough so that if
p were added to it then the total would exceed the
halting probability. In this latter case M cannot
halt.

All the other possible choices of using a solution
of one problem to solve another can be done
similarly, with the exception that it may not be
obvious that an algorithm which computes ~:(k)
can be used to compute S(k) (and hence to solve
any of the other problems). Rado [16] noted that
one could prove that

S(k) < (k + 1)-Y(5k)2 x('k)

(much better bounds are possible), and any upper
bound T for S(k) can be used to compute S(k).
To do this, one merely runs all k-state Turing

R. Machlin and Q.F. Stout /Complex behavior of simple machines 89

machines for T steps. Any machine which runs for
T steps without halting must be in an infinite
loop, so the largest number of steps used by a
machine which halts in T or fewer steps must be

S(k).
A solution to any of these problems would, at

least theoretically, provide an effective means of
solving mathematical problems. For example, to
solve Fermat ' s last theorem, which asserts that
there are no positive integers x, y, z, i such that
i > 2 and x i + yi = z i, one could write a program

which uses dove-tailing to try all possible choices
of x, y, z, and i, and which halts if it ever finds
equality. Therefore the solution to Fermat 's last

theorem is reduced to the restricted halting prob-
lem for this program.

A more general reduction of mathematics to
halting problems can be obtained by noticing that
a proof is merely a finite sequence of symbols
which can be generated, and verified, by a com-
puter. Given any mathematical statement one is
curious about, construct a program which gener-
ates all possible proofs and then verifies if it is a
proof of the desired statement, halting whenever
such a proof is found. Using this procedure, the
provabil i ty of any mathematical statement is "re-
duced" to the problem of deciding if a specific
Turing machine halts. This fact is central to the

work in ref. [6].

3. Tree normalization

Despite the fact that the halting probability and
the busy beaver problem cannot be solved, one
can ask about partial solutions. For the halting
probabil i ty problem one could ask for upper and
lower bounds on the probability, and for the busy

beaver problem one might determine exact values
for some values of k, or bounds on the values.
This approach was taken by Rado in his classes,
and has been pursued by many others since [1, 2,
7, 10-13, 17]. We will emphasize the approaches
to the busy beaver problem since that is where
most of the work has been performed, though we

were first attracted to working on the halting
probabili ty problem.

To evaluate ~J(k) or S(k) for small values of k,
one immediately encounters the problem of hav-
ing a large number of possible machines. As was
noted above, there are [4(k + 1)] 2k k-state Turing
machines, which, for example, is 25 600000000
when k = 4. However, many of these are equiva-

lent or their behavior is readily apparent. Lin and
Rado [12] noted that, since one starts in state 1
reading a zero, if the instruction is to go to state 0
then the machine will halt after only one step,
while if the instruction is to go to state 1 then the
program will be an infinite loop. This observation
alone classifies the behavior of 10240000000 4-
state machines. Therefore the only unknown be-
havior is to go to a new state, and since the labels
of the states are arbitrary we may as well call it
state 2. Further, if the machine makes its first
head movement to the left it will just be a mirror
image of an equivalent machine with left and right
head movement reversed for all instructions.
Therefore one can assume that the first head
movement is to the right.

Since Lin and Rado emphasized calculating
~J(k), they could make a final reduction, namely
that the first step prints a 1. This is because if it
does not print a 1, imagine following the machine's
operation until it first prints a 1, and starting it
instead at the instruction that printed that 1. This
new start will eventually halt if and only if the
original one did, and both will produce the same
number of l 's . Thus Lin and Rado could assume
that the original instruction was (1, 0, 1, R, 2).
However, the new start will use fewer steps than
the original, and hence this normalization may
underestimate S (k) by as much as k - 1. This can
be corrected by first using the Lin and Rado
normalization to obtain a lower bound S' of S(k) .
Then, noting that S ' + k - 1 is an upper bound on
S(k) , one can utilize the approach described in
section 2.3 to use this upper bound to determine
the exact value of S(k) .

The Lin and Rado approach can be extended
(though they did not do so) to the viewpoint that

90 R. Machlin and Q.F. Stout/Complex behavior of simple machines

start 3

state 1, read 0 ?

halt loop state 2, read 0 ? loop

halt loop loop state 3, read 0 ?

o

Fig. 3. Tree-normal programs.

one deals with incompletely specified Turing ma-
chines, only filling in instructions as they are
needed. For example, if the initial instruction was
(1, 0, 1, R, 2), then the machine will go to state 2
and again encounter a 0, so now a new instruction
is needed. For this, either a 0 or 1 can be printed,
the head can be moved either L or R, and either
the machine halts (state 0), goes to a state already
used (1 or 2), or goes to a new state, which we can
relabel as 3. Thus there are 2 . 2 . 4 = 16 effectively
different choices for being in state 2 and seeing a
0, given the prior choice of instruction (1, 0, 1, R,
2). Four of these choices halt, four go into infinite
loops (printing 0 or 1, moving R, and going to
state 1 or 2), while the remaining eight each will
then encounter a situation requiring that yet an-
other instruction be generated. This approach was
utilized in refs. [1, 2, 11].

The generation of instructions as they are needed
yields a tree representation of the machines gener-
ated, as illustrated in fig. 3. The machines gener-
ated are said to be in tree-normal form. Notice
that a single machine in tree-normal form may
represent many Turing machines. For example,
the Turing machine with instructions (1, 0, 1, R, 2)
and (2, 0, 1, R, 2) represents [4(k + 1)] 2 k - 2 k-state

Turing machines, each of which will go into an
infinite loop.

3.1. Probabilities

Tree-normal form can be used to assign proba-
bilities to Turing machines. We say that the root
of the tree has probabili ty 1, and whenever a node
has children (i.e. when it eventually encounters a
situation where a new instruction is needed) then
its probability is evenly divided among all of its
children. In general, if a node with probabili ty p
represents a partial Turing machine where states

1 i have been explicitly referenced so far (with
the convention that the root explicitly references

state 1), if a new instruction is needed then there
are exactly 2 . 2 . (i + 2) children, each of which
has a probabili ty p/[4 . (i + 2)].

This is the notion of Turing machine probabil-
ity that we will use for the halting probability
problem, so to determine ~2 we need to find the
sum of the probabilities of all leaf nodes corre-
sponding to a new instruction sending the ma-
chine to state 0. Similarly one could define the
infinite loop probability as the sum of the probabil-
ities of all leaf nodes corresponding to machines
in infinite loops. There is a slight technical ques-
tion of whether the sum of these two probabilities
is 1, since the tree has infinite height and one can
show that there exist such trees, with probabilities
assigned in the same manner, for which the sum of

R. Machlin and Q.F. Stout//Complex behavior of simple machines 91

the probabilities of the leaves is less than 1. How-
ever, it is easy to show that in our case these two
probabilities do indeed sum to 1.

It is important to note that our definition of 12
differs somewhat from that in refs. [5, 6, 9], and
that this definitional change alters the value. While
the definition in refs. [5, 6, 9] has some properties
that make it simpler to use for theoretical pur-
poses, we believe our definition is somewhat more
natural and easier to understand.

3.2. Variations

It was the problem of defining, and then esti-
mating, the halting probability that lead us to tree
normalization. However, we discovered that it had
been used earlier by Brady [1] in his work on the
busy beaver problem, and so his terminology was
incorporated into the work reported in ref. [11]
(written by the first author under her maiden
name). The work in ref. [11] is an independent
confirmation of Brady's results, which is impor-
tant since the sheer volume of human and com-
puter work involved raises the possibility of error.
The work in ref. [1] was eventually published in
ref. [2], while the work in ref. [11] has not been
previously published.

There are four differences between tree normal-
ization used to find ~ (k) or S(k) and the version
used to define 12. In each of these, the trees used
for busy beaver problems are smaller than the tree
for the halting probability. First, as was noted
earlier, the initial instruction for finding ~ (k) can
be taken to be (1, 0, 1, R, 2), ignoring the other 11
possibilities. As was stated above, this may slightly
underestimate S(k), but a post-mortum check can
be used to correct it. Second, no node need be
generated which sends the machine into a state
labeled k + 1 or higher. Third, if a node repre-
sents a partial machine in which only states 1 i
have been explicitly referred to so far, and if
2i - 1 instructions have already been defined, then
the new instruction is the last instruction involving
states 1 i. If the new instruction sends the
machine to states 1 i then the machine will be

Table 1
Number of Turing machines to be analyzed.

k Tree-norm~ [4(k + 1)] 2*

2 41 20736
3 3 936 16 777 216
4 603 712 25600000000

an infinite loop, so to compute busy beaver num-
bers one need only consider instructions sending
the machine to states 0 or i + 1. Finally, fourth,
the instructions sending the machine into the halt
state need only print a 1 and move R, since any
other options would produce the same value for
S(k) and either the same or smaller values for

~ (k) .
All counts of numbers of nodes will be in terms

of the tree normalization used to find S(k), though
estimates for fg will use the correct tree normaliza-
tion for it. All counts are taken from ref. [11], and
when infinite loops are classified these counts dif-
fer slightly from those in ref. [2]. These small
differences are due to slight variations in the defi-
nitions used, number of steps stimulated, and the
order in which the tests were applied.

Table 1 shows the number of tree-normal ma-
chines generated for the busy beaver problems, as
opposed to the number of Turing machines which
are formally different. This clearly shows the sig-
nificant reductions accomplished through the use
of tree normalization. This table was made by a
back-tracking program which simulated each node
until it halted, was in an infinite loop, or reached a
situation where another definition was needed, in
which case the appropriate children were gener-
ated. The task of determining when a program is
in an infinite loop is discussed in section 4.

4. Infinite loops

The major effort in calculating busy beaver
numbers and estimates for the halting probability
lies in proving that large numbers of machines are

92 R. Machlin and Q.F. Stout//Complex behavior of simple machines

in infinite loops. The approach taken in refs. [1,
11, 12] is to examine some of these machines by
hand, elicit a common behavior which insures that
a machine is in an infinite loop, and then write a
program which examines candidate machines and
proves that some of them do indeed have that
behavior. This process tends to iterate, with the
researcher constantly trying to reduce the number
of unclassified machines by either generalizing
types of behavior earlier searched for, or by dis-
covering new types of behavior.

In the end, a small enough number of machines
remain so that they can be manually examined
and verified to be in infinite loops. In ref. [12],
only one type of behavior was needed in determin-
ing 2:(3), with only 40 machines which needed to
be verified by hand. In refs. [1, 11], four types of
behavior were used in determining X(4) and S(4),
along with a couple of hundred machines which
were verified by hand.

One byproduct of this approach is that, while
the busy beaver and halting probability problems
are defined in terms of machines that halt, the
interesting work involves machines that do not
halt. In a certain sense, this approach treats all
halting programs as equivalent, only needing to
record probabilities, number of ones produced, or
number of steps used, while the programs that do
not halt must be more carefully examined and
characterized.

The remainder of this section is based on the
work in ref. [11], which was in turn based on ref.

[1]. At each stage, machines not yet classified are
called holdouts. Using tree normalization and al-
lowing machines to run a couple of hundred steps
produces 1364 3-state machines which halt, and
2572 3-state holdouts, and 182604 4-state ma-
chines which halt, along with 421 108 4-state hold-
outs. The holdouts were run through a program to
see if they could be proven to have a behavior
known as a simple loop. The holdouts from the
simple loop test were then put through a back-
tracking analysis to see if it could be shown they
were in infinite loops without determining which
type of loop they were. (Actually, a fast test for

Table 2
Classification of tree-normal machines.

3-state 4-state

total 3936 603 712
halted 1364 182 604
infinite loop 2572 421 108

simple loop 2495 404 733
back-track 50 10 363
Christmas tree 25 5 144
shadow Christmas 241
counter 2 417
holdout 210

simple loops was combined with the simulation
program, and a more thorough simple loop test
was run after back-tracking analysis, but logically
there was no need to do so. The numbers reported
are the sum of those found by the different simple
loop tests, with the vast majority found by the fast
test.) The remaining holdouts were run for a while,

and based on the rate at which new tape squares
were visited, they were tentatively classified as
being a Christmas tree or a counter. For each of
these classes, a program was developed which in
most cases could prove a candidate was of the
indicated type and was indeed in an infinite loop.
Finally, the remaining holdouts were examined by
hand.

The following subsections explain this process
in more detail, and table 2 shows the number of
machines classified at different states. Given a
Turing machine M, we use M c to denote the

machine formed from M by changing all R moves
to L, and vice versa. By a word we mean a
(perhaps empty) finite string of O's and l 's. For a

word W and state r we use W• to mean that the
machine is in state r examining the rightmost
symbol of W; •W means that the machine is in
state r examining the leftmost symbol of HI; W r
means that the machine is in state r examining the
first symbol to the right of IF, and • W means that
the machine is in state r examining the first sym-
bol to the left of W. We use 0* to mean infinite
occurrences of 0, and W i to mean i concatenated
copies of IF.

R. Machlin and Q.F. Stout / Complex behavior of simple machines 93

Symbol read Symbol read

State 0 1 State 0 1

1 1R2 1L3 1
2 1R3 2
3 0L1 0R1 3

4
1Q 11001 111111010
110 11_001 1111110110
1 ! 11101 111111011
11 1111! 111111011
! 1 1 1 1 0 0 111111001

01 1111010 111111001
__001 11110110 111111__001
101 111101! 111111101
11! 1111011 111111111
1100 111100 ! 1111111100
11010 1111001 11111111010
110110 1111__001 111111110110
11011 1111101 11111111011
11011 111111! 111111110!1
1100! 11111100 1111111100 !

Underlining indicates position of read/write head

Fig. 4. A simple loop.

4.1. Simple loops

1R2 1L1
0L1 1L3
1R4 1L3

0R2

Fig. 5. A machine analyzable via back-tracking.

recent occurrence of each state-symbol pair. After
each step the table was consulted to see if a simple
loop condition could be detected. Holdouts from
the initial check were run through a second ver-
sion which maintained a table of the conditions
each time the Turing machine scanned a square at
the edge of the critical portion of the tape (i.e. the
nonzero portion). Of the initial 2572 3-state hold-
outs, all but 77 were proven to be simple loops,
while of the initial 421108 4-state holdouts, all but
16 375 were simple loops.

4.2. Back-tracking

Fig. 4 shows a simple loop in operation. A
Turing machine M is called a simple loop if either
M or M c satisfy one of the following:

(1) Some tape configuration is repeated in-
finitely often. That is, there is a nonzero state s
and words X and Y such that at some time step
the tape configuration is 0* X s Y0*, and the same
tape configuration is reached at some later time
step.

(2) M periodically moves to the fight, in that
there is some nonzero state s, words X and Y and
a nonempty word V, such that at one time the
tape configuration is 0* Xs Y0*, at some later time
the tape configuration is 0* VX~ YO*, and between
these times M never moved left of the left edge of
the initial X.

It is clear from the definition that a machine
classified as a simple loop is indeed in an infinite
loop.

Initial checks for simple loops were done by
maintaining a table containing the tape configura-
tion, position, time step, and state of the most

One straightforward way to prove that a pro-
gram is in an infinite loop is to directly prove that
it cannot reach the halt state. For example, con-
sider the tree-normalized machine in fig. 5, which
has only one unspecified instruction, namely being
in state 4 while scanning a zero. This machine can
halt only if it reaches this instruction, i.e. it must
reach a local tape configuration of 04. To get there,
it must have been in state 3 scanning a zero to the
fight of this zero, i.e. it must have been in config-
uration 030. The only instructions which move to
state 3 are for state 2 input 0, or for state 3 input
1, so the tape must have been in the configuration
012 or 013. However, both of these would produce
031, which is not what was needed. Therefore the
configuration 04 can never be reached, and the
machine must be in an infinite loop.

While back-tracking can be useful, it cannot be
guaranteed to always stop since otherwise it would
supply a solution to the halting problem. As with
all of the heuristics we discuss, one must make
some decision as to how long to run this technique

94 R. Machfin and Q.F. Stout / Complex behavior of simple machines

Symbol read

State 0 1

1 1R2 1L1
2 1L1 1R3
3 1R1

10 111110 11111111
!1 111111 11111111

011 111111 11111111
111 111111 11111111
11! 111111 11111111
1110 111111 11111111
11!1 0 1 1 1 1 1 1 011111111
1 ! 1 1 1 1 1 1 1 1 1 111111111
!111 1 1 ! 1 1 1 1 111111111

01111 1 1 1 1 1 1 1 111111111
11111 1 1 1 1 1 1 1 111111111
11111 1 1 1 1 1 1 1 111111111
11111 1 1 1 1 1 1 ! 111111111
1111 ! 11111110 111111111

111111!1 11111111 !

Underlining indicates position of read/write head

Fig. 6. A Christmas tree.

before abandoning it. When applied with a 15-step
limit to the 3-state holdouts only 27 holdouts were
left. When applied with a 10-step limit on the
4-state holdouts only 6012 remained as holdouts.

4.3. Christmas trees

When Lin and Rado analyzed 3-state Turing
machines, they applied some of the initial stages
of tree normalization, and wrote programs to de-
tect simple loops. They ended up with 40 ma-
chines that they analyzed by hand. Most of these
exhibited the back-and-forth sweeping motion
shown by the machine in fig. 6. Brady called this
behavior a Christmas tree. While the behavior is
more complex than that of a simple loop, it is still
clearly repetitive and in an infinite loop.

Formally, a Turing machine M is a Christmas

tree if either M or M c satisfy the following condi-
tions for some nonzero state s:

(1) There are nonempty words U, V, and X
such that the tape configuration at some time is
0*U V~ 0", and at some later time is 0* U X V~ 0".

(2) The following conversions hold, where X,
X', Y, Y', Z, V, V', V", U, and U' are nonempty
words and q and r are nonzero states (the symbol

means that M transforms the left-hand side
into the fight-hand side after some numbers of
steps):

(a) XV~O* = X'V'0*; q
(b) Xq X' = q X' Y;
(C) O * U q X ' = : > O * U ' Y ' r ;

(d) Y' rY = Z Y' r;
(e) Y' r V t =:~ Z V "" S '

(3) U ' Z iV" = U X i+1 V for all i>_ 1.

While this definition is somewhat complicated,
it just guarantees that the machine sweeps back
and forth, growing a periodic middle part of the
tape configuration.

Again it can be proved that any Christmas tree
must be in an infinite loop. To detect these, a
program was written which ran a holdout for a
couple of hundred steps to overcome startup ef-
fects, and which then cut the nonblank part of the
tape in half to obtain candidates for V and U.
Then it ran the machine until a back-and-forth
sweep was observed. If after the sweep the new
tape had a right-hand portion that matched V and
a left-hand that matched U, then the remainder in
the middle was taken to be X. This process was
continued to find values for X', Y, etc., and to
verify the conditions. If the program ever ran too
many steps without finding the desired behavior,
or could not successfully determine appropriate
words, then the machine remained a holdout.

There are many variations of Christmas trees,
so the initial program was modified to detect more
of the variants. Brady called one variation an
alternating Christmas tree, for it takes two back-
and-forth sweeps to complete its cycle. Another
variation, a shadow Christmas tree, illustrated in
fig. 7, creates an increasing "shadow" at one edge,
which it never scans past.

After running the 3-state holdouts through the
various Christmas tree programs, only 2 holdouts
remained, while for the 4-state machines only 627
holdouts remained.

R. Machlin and Q.F. Stout /Complex behavior of simple machines 95

Symbol read Symbol read

State 0 1 State 0 1

1 1R2 1L1 1
2 0L1 0R3 2
3 1R4 1R3 3
4 0R2

10
10 1101-0 11101110-0 1111011110-0 11
-1 11011-0 1110111_0 1111011110 -001

01 1101100 11101111_0 1111011111_0 _01
1! 11011_0 1110111-1 1111011111 1-1
10-0 110111_0 11101111 11110111_11 11_0
101_0 110111 11101111 1111011111 111_0
10100 1101_11 11101111 1111011111 11!1
101_0 110_111 111_01111 1111011111 1!01
1011_0 110111 1111_1111 1111_011111 !001
101_1 111111 11110111 1111111111 -00001
10!1 111011 11110111 1111101111 -0001
1011 1 1 1 0 1 1 1111011_1 1111101_111 1-001
1111 111011_0 11110111_0 1111101111 1101
110_1 1110111_0 111101111_0 1111101111 -00101

Underlining indicates position of read/write head

Fig. 7. A shadow Christmas Tree.

4.4. Counters

The final class of loops for which programs
were written were called counters by Brady. Fig. 8
illustrates a counter, and it is obvious that it is
indeed acting as a type of binary counter.

Formally, a Turing machine M is a counter if
either M or M c satisfies the following conditions:

(1) There are nonempty words E, X, Y, Z, and
Z', a nonzero state s, and a positive integer n such
that at some time the tape configuration is
O* E Y, Z' Z" X O*.

(2) The following conversions hold, for some
nonempty word X':

(a) Y,Z' = , Z ' Z ;
(b) O'E, Z' = O*EX'q;
(C) S t q X =~ Y X ' q ;
(d) X'qZ=*~Z'X;
(e) X, qOIXl ~ z ' x

where I XI denotes the length of X.
In this definition, the X acts as a "one", and the

Z acts as a "zero", in a binary counter.
Using an approach similar to that used for

Christmas trees, a counter detector program was

1R2
1L3
0R1

1R1
OL3

_0101 -0010001
1101 _010001
ii01 1-10001
1111 11_OOOl
11110 111001
11111_0 111101
111111 110101
111101 100101
111001 _0000101
110001 _000101
_100001 1_00101

-00(0)O1 110101
_000001 _0010101
100001 010101
_110001 11_0101

Underlining indicates position of

110101
111101
1111Q1
111111_
1111110
1111111_0
11111111
11111_101
11111001
11110001
11!00001
1100(O1
10000001

_000000001
_00000001

read/write head

Fig. 8. A counter.

developed. This program successfully classified the
final two 3-state holdouts as counters, and when
run on the 4-state machines left only 210 holdouts.

4.5. Final holdouts

The final 210 holdouts were examined by hand
to verify that they were in infinite loops (ref. [2]
reported 218 final holdouts). More than half were
variations of counters, including base-3 and base-4
counters. Also discovered were further Christmas
tree variations, such as alternating shadow trees
and triple and quadruple sweep trees.

Brady noted an additional class of machines,
which he called tail-eating dragons. They have a
back-and-forth sweep, limited by the end of the
"tail" tl~ey create. After each sweep they "bite
off" a piece of the tail, and when it is completely
consumed they create a new, larger tail. As with
other classes, there are also variations on this
behavior. Fig. 9 gives the instructions of a tail-eat-
ing dragon.

96 R. Machfin and Q. F Stout/Complex behavior of simple machines

State

Symbol read Table 3
Turing machine probabilities.

0 1
Probability of halting

1 1R2 1L1 Probability of infinite loop
2 1 R3 0R4 Uncertainty
3 1L1
4 0L1 1R4

0.465
0.529
0.007

Fig. 9. Instructions for a tail-eating dragon.

5. Halting probability

The known values of S can be used to estimate
~2. Tree normalization appropriate for ~2 is used
(see section 3.2) to generate a portion of the tree.
A node corresponding to a machine of k states is
simulated for at most S (k) steps. If it does not
halt in this many steps then it is in an infinite loop

and its probabil i ty is added to a running total of
infinite loop probabilities. If it reaches a point
were a new instruction is needed, then the proba-
bilities of all children which halt immediately (i.e.

those in which the new instruction has a new state
of 0) are added to a running total for the halting
probability, and the remaining children are simu-
lated.

For a node corresponding to a machine with a
number of states for which the S value is un-
known the machine is simulated for some prede-
termined number of steps. If the machine does not
halt or need a new instruction, then it is aban-
doned, and its probability is part of the uncer-
tainty in the knowledge of the halting probability.
Because no node is simulated for more than the
predetermined upper limit (counting all the steps
leading to the node), only a finite portion of the
tree is explored. However, to reduce the stack
requirements, one may also abandon nodes which
have more than some (significantly smaller) prede-
termined number of defined instructions. While
such nodes add to the uncertainty, they have
relatively small probabili ty since the probability of
a single node decreases rapidly with a number of
defined instructions.

As in the use of the tree for finding busy beaver
numbers, some additional simplifications can be

incorporated. For example, suppose a node corre-
sponds to a machine with k states, and all instruc-
tions but one have been defined. If the node
reaches a point where this instruction is needed
then any definitions which do not go to a new
state (or 0) must yield an infinite loop, and hence
their probabilities can be immediately added to
the infinite loop probability. One can also use the
classification routines discussed in section 4 to

prove that machines are infinite loops, rather than
just adding their probability to the uncertainty

total.
Using the above techniques, including the

knowledge of S (k) for k < 4, but not using the
classification routines on machines of more than
four states, yielded the results in table 3.

6. Final comments

As the Emergent Computations conference
demonstrated, there is a significant interest in the
general problem of understanding the behavior of
simple systems. Further, researchers working on
such problems have a wide range of backgrounds.
Because of this, we felt it useful to describe work
that led to the complete characterization of Turing
machines of four or fewer states, and which has
also produced results such as provable bounds on
the halting probability. We note that a single
Turing machine is an emergent system, in that it
satisfies all of the conditions set forth in ref. [8] for
an emergent system, and it can indeed have a very
complex observed behavior as it moves through
time and space (along the tape). Thus this work
shows that complete, provable characterization of
a suitably restricted nontrivial class of emergent
systems has been achieved.

R. Machlin and Q.F. Stout / Complex behavior of simple machines" 97

This work is completely rigourous, as opposed
to, say, mere statistical sampling. Further, by mak-
ing extensive use of computers to prove that cer-
tain machines have well-understood behavior, the
researchers were able to focus their attention on
the final holdouts, discovering unexpected behav-
ior such as base-4 counters and tail-eating
dragons. Most people would be hard pressed to
develop a 4-state machine with such behavior, just
as they would be unlikely to develop a 4-state
machine which moves for 107 steps before halting.
The 210 final holdouts exhibit significant diversity,
and such machines would probably not be found
other than through careful use of computers to sift
out machines with known behavior. The holdouts
represent only about 0.3% of the tree-normal 4-
state machines, and only about 0.0002% of the
unnormalized 4-state machines. This approach
may prove to be generally useful for researchers
seeking simple emergent systems with unusual
properties. Further, the success in "decompiling"
all 4-state machines and provably deciding their
behavior may make it an attractive approach for
other researchers trying to "decompile" simple
systems to obtain an understanding of their behav-
ior.

One crucial step in reducing the computational
workload was the introduction of tree normaliza-
tion. Tree normalization is a form of "lazy evalua-
tion" which adds just those instructions which are
needed, simulating the effects of a collection of
instructions until a situation is encountered where
a new instruction is needed. Classes of emergent
systems other than Turing machines may also be
numerically reduced through normalizations.

One way in which emergent systems research
can impact upon work on Turing machines is by
intensifying interest in the behavior of infinite
loops. Computer scientists usually try to produce
programs that rapidly complete their task and
finish, rather than continue forever. (Operating
systems are an important exception.) However,
emergent systems research is most concerned with
systems that have infinite, or very long, lifespans.
Systems with short lifespans are usually easier to
understand, just as it is trivial to see that a Turing

machine which just moves right 10 steps and then
halts (when given all-blank input) must have at
least 10 states. It is much more complicated to
understand or design infinite behavior, such as
finding a minimal state Turing machine that has
visited O(t 1/5) tape squares after t steps. Even the
work in refs. [1, 2, 11] did not completely classify
all 4-state infinite loops, but rather resulted in
hand analysis of a few holdouts. This analysis
satisfied the authors that the machines were in-
deed in infinite loops, and they noted some in-
teresting behavior, but they did not carefully
describe all behaviors encountered, nor the num-
ber of machines with each behavior.

One caution for emergent systems researchers is
that, while we believe formal approaches can be
applied to other emergent systems models, we
must emphasize that there are limits as to when
exhaustive, provable characterization can be per-
formed. Such characterizations must be tried with
care and within appropriate parameter con-
straints. For example, as was noted previously, it
is impossible to write a program which determines
S(k) for arbitrary k, and it is even impossible for
any program to provide an upper bound for in-
finitely many k. Therefore the classification of all
k-state Turing machines cannot be completed for
arbitrary k, and similar statements can be made
for almost all sufficiently general models.

This leaves, however, the interesting question of
determining how far formal approaches can be
pushed within emergent systems research. While
one can easily prove that many problems involv-
ing infinite domain are unsolvable, it is not easy to
delimit subdomains of solvable or feasible sub-
problems. For example, it is interesting to predict
how far S will be determined. Such predictions are
perilous, since, for example, in 1962 Rado felt that
no known approach would yield S(3), and that
S(4) was "entirely hopeless at present" [15]. Only
two years later he and Lin published the solution
for S(3) [12], and by 1974 Brady had determined
S(4) [11.

In 1983 the largest known lower bound for S(5)
(i.e. the largest number of steps taken by a halting
5-state machine yet discovered) was 7707, and the

98 R. Machlin and Q.F. Stout /Complex behavior of simple machines

(a)

(b)

Symbol read

State 0 1

1 1R2 1R1
2 1L3 1L2
3 1R1 1L4
4 1R1 1L5
5 1L0 0L3

Symbol read

State 0 1

1 1R2 0L4
2 1L3 1R4
3 ILl 1L3
4 1R0 1R5
5 1R1 0R2

Fig. 10. Busy 5-state machines. (a) A machine that leaves 4098
l's. Discovered by Marxen and Buntrock [4]. (b) A machine
that performs 23554768 steps before halting. Discovered by
Marxen and Buntrock [4].

largest known lower bound for S(6) was 13 488 [2].
In 1985, Uhling showed S(5)> 2358063, and
2~(5) > 1915 [7]. In 1989 Buntrock and Marxen [4]
discovered that S(5) > 23 554 768 and ~(5) > 4098
(see fig. 10). Based on Uhling's results, Brady [3]
predicted that there will never be a proof of the
values of ~(5) and S(5). We are just slightly more
optimistic, and are lead to recast a parable due to
ErdSs (who spoke in the context of determining
Ramsey numbers): suppose a vastly superior alien
force lands and announces that they will destroy
the planet unless we provide a value of the S

function, along with a proof of its correctness. If
they ask for S(5) we should put all of our mathe-
maticians, computer scientists, and computers to
the task, but if they ask for S(6) we should imme-
diately attack because the task is hopeless.

References

[1] A.H. Brady, UNSCC Technical Report 11-74-1 (Novem-
ber 1974).

[2] A.H. Brady, Math. Comp. 40 (1983) 647.
[3] A.H. Brady, in: The Universal Turing Machine: A Half-

Century Survey, ed. R. Herken (Oxford Univ. Press. Ox-
ford, 1988) p. 259.

[4] J. Buntrock and H. Marxen, personal communication
(1989).

[5] G.J. Chaitin, J. Ass. Comput. Mach. 22 (1975) 329.
[6] G.J. Chaitin, Algorithmic Information Theory (Cam-

bridge Univ. Press, Cambridge, 1987).
[7] A.K. Dewdney, Sci. Am. 251 (2) (August 1984) 19; 251 (5)

(November 1984) 28; Sci. Am. 252 (4) (April 1985) 30.
[8] S. Forrest, Physica D 42 (1990) 1-11, these Proceedings.
[9] M. Gardner, Sci. Am. 241 (1979) 20.

[10] M.W. Green, Fifth IEEE Symposium on Switching The-
ory (1964) p. 91.

[11] R.J. Kopp, The busy beaver problem, M.A. Thesis, Math-
ematical Sciences, State University of New York at Bing-
hamton (1981).

[12] S. Lin and T. Rado, J. Ass. Comput. Mach. 12 (1972) 196.
[13] D.S. Lynn, IEEE Trans. Computers 21 (1972) 894.
[14] M. Machtey and P. Young, An Introduction to the Gen-

eral Theory of Algorithms (North-Holland, Amsterdam,
1978).

[15] T. Rado, Symposium on Mathematical Theory of Au-
tomata (1962) p. 75.

[16] T. Rado, Bell Systems Tech. J. 91 (1962) 877.
[17] T.R.S. Walsh, Ass. Comput. Mach. SIGACT News 14

(1982) 38.

