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ABSTRACT

Suppose we wish to estimate the mean of some polynomial function of random variables

from two independent Bernoulli populations, the parameters of which, themselves, are mod-

eled as independent beta random variables. It is assumed that the total sample size for the

experiment is �xed, but that the number of experimental units observed from each popula-

tion may be random. This problem arises, for example, when estimating the fault tolerance

of a system by testing its components individually.

Using a decision theoretic approach, we seek to minimize the Bayes risk that arises from

using a squared error loss function. The Bayes estimator can be determined in a straight-

forward manner, so the problem of optimal estimation reduces, therefore, to a problem of

optimal allocation of the samples between the two populations. This can be solved via dy-

namic programming. Similar programming techniques are utilized to evaluate properties of

a number of ad hoc allocation strategies that might also be considered for use in this prob-

lem. Two sample polynomials are analyzed along with a number of examples indicating the

e�ects of di�erent prior parameter settings.

The e�ects of di�erences between prior parameters used in the design and analysis stages

of the experiment are also examined. For the polynomials considered, the adaptive strategies

are found to be especially robust. We discuss computational techniques that facilitate such
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analyses by permitting rapid re-evaluation of strategies. Capabilities of this sort encour-

age people to explore designs more fully and to consider them from a number of di�erent

viewpoints.

1 INTRODUCTION

Consider a widget whose functionality depends on the error-free operation of two types of

independent parts. In order for the widget to function, some speci�ed combination of the

two types of parts must be working. For example, the widget might be a communication

system consisting of switches and links, which performs properly only if there is a fault-free

path from one end to the other. We can model the behavior of the parts using indepen-

dent Bernoulli random variables. Let Population 1 contain the parts of the �rst kind and

Population 2 contain parts of the second kind. Then de�ne

Xi =

�
0; if part i from Population 1 is defective;

1; if part i from Population 1 is ok,
i = 1; : : :

and for Population 2, let

Yi =

�
0; if part i from Population 2 is defective;

1; if part i from Population 2 is ok,
i = 1; : : : ;

where the X's and Y 's are mutually independent. If we let p1 and p2 denote the respective

probabilities of X and Y being defect free, then

Xi i.i.d. B(1; p1) i = 1; : : : and Yj i.i.d. B(1; p2) j = 1; : : : : (1)

Our goal is to estimate the chance that the widget will work by doing appropriate

sampling from the population of each part type. In the model, it is assumed that the

sample size for the experiment is a �xed number, N . However, in several of the sampling

designs considered, the number of observations sampled from the di�erent populations, n1

from Population 1 and n2 from Population 2, is random. We refer to designs in which n1

and n2 are random as sequential allocation procedures, and to designs in which n1 and n2

are determined prior to the taking of any observations as �xed sample size allocation rules

or simply as �xed rules.

Let � = (�1; �2; :::�N) represent a sampling procedure where

�m =

�
1; if Population 1;

0; if Population 2,

for m = 1; :::; N , and where �m+1 depends only on the information available up until time

m. For convenience, we denote information accrued by time m as

Dm = (x1; : : : ; xm1
; y1; : : : ; ym2

; �(m1;m2))
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where �(m1;m2) denotes the initial sampling decisions

�(m1;m2) = (�1; �2; :::; �m1+m2
)

and where
m1+m2X
i=1

�i = m1 for any 0 < m1 +m2 = m � N:

We approach this problem using Bayesian decision theory. This approach is taken not

only for reasons of mathematical tractability but also because Bayesian methods are gaining

acceptance in industrial estimation settings. While one focus of this research is to locate

optimal allocation rules, we are equally interested in the evaluation of simpler allocation

rules that are easier to implement and perhaps more intuitive.

The problem of determining good sampling strategies for estimating one particular poly-

nomial, the product, has been examined by several authors. Berry (1974) discusses optimal

�xed allocation rules for squared error loss plus cost when there are 2 or more independent

Bernoulli means. Shapiro (1985) and Page (1995) consider �xed and sequential rules for

the same problem, but address more general distributions and allow for generalized squared

error loss function. Rekab (1993) examines �xed and sequential rules for the problem using

squared error loss. In all of these papers, the behavior of the various rules is explored from

an asymptotic perspective. What we add to this series of studies is the optimal sequential

allocation rule and exact evaluations of various suboptimal rules, including those proposed

in Shapiro (1985), Page (1995) and Rekab (1993). Furthermore, we generalize the problem

to include all bivariate polynomials and address issues of design robustness.

In the next section we de�ne the framework used to formulate the problem. In Section 3

we introduce sampling procedures (also called allocation rules), and de�ne the procedures

that are considered. In Section 4 we apply the set-up to two speci�c polynomials and

evaluate the e�ciency of the di�erent allocation rules.

It is sometimes argued that prior distributions utilized in Bayesian decision problems

tend to be chosen more for their mathematical tractability than for their inherent re
ection

of beliefs about design parameters. In Sections 4 and 5, therefore, we have given some

extra attention to the issues of interpretation of prior parameters and the robustness of the

Bayesian approach.

In Section 6 we outline the computational techniques utilized. These techniques are

important because they dramatically reduce the time and space required. In particular, for

robustness studies one needs to evaluate a large number of alternatives and to re-evaluate a

design numerous times. Thus one needs algorithms and implementations which are a couple

of orders of magnitude faster than can be tolerated when evaluating a single design on a

single criterion.

Finally, in an appendix we give an approximation to the Bayes risk when �xed sample

sizes are used. While not used herein, the approximations are very accurate and greatly

reduce the computations required.
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2 THE BAYES RISK

As mentioned, it is assumed that prior information is available and may be modeled in

the form of independent beta priors on p1 and p2. Let �(p1; p2), the prior joint density

function on (p1; p2) 2 
 = (0; 1) � (0; 1), denote the product of the independent beta

random variables:

p1 � Be(a1; b1) and p2 � Be(a2; b2): (2)

We use the notation �(p1; p2) = [Be(a1; b1);Be(a2; b2)] to indicate speci�c prior parameter

con�gurations.

Suppose we wish to estimate the mean of the polynomial � = �(p1; p2), where

�(p1; p2) =
u1X
r=0

u2X
s=0

crsp
r
1p

s
2 for some u1; u2 2 N and crs 2 <:

Let ~�N be any estimate of � based on N observations. We seek a minimumvariance estimate,

so our objective is to minimize the integrated risk of (�; ~�N ) under quadratic loss L(�; ~�N ) =

(� � ~�N )2. The integrated risk, RN , based on a sample of size N , is the expected loss of

(�; ~�N )

RN (�; ~�N ) = E�[L(�; ~�N )] = E�[(� � ~�N )
2]; (3)

where the expectation E� is taken with respect to the Bayesian model (2) in which (1) holds

conditionally given (p1; p2) 2 
.

Minimizing the integrated risk can be tackled in two stages. The �rst problem is to �nd

the form of the optimal estimator and the second is to determine how many units to sample

from each population. Fortunately, these problems are independent and the solution to the

�rst is well known.

Suppose that at time m � N , we have obtained mi observations from Population i,

i 2 f1; 2g, with si of these being successes and fi being failures. Thus m = m1 + m2,

mi = si + fi, and the posterior density function, �m, on (p1; p2) is the product of the

individual posterior densities

(p1 j s1; f1) � Be(a1 + s1; b1 + f1) and (p2 j s2; f2) � Be(a2 + s2; b2 + f2):

Note that the vector (s1; f1; s2; f2) is su�cient for p1 and p2.

For any m, the optimal, or Bayes, estimate of �, denoted �̂m1;m2
, is simply its posterior

mean given by

�̂m1;m2
= E� [�(p1; p2) j Dm] =

u1X
r=0

u2X
s=0

crs bpr1 bps2:
The Bayes risk of a procedure �, denoted RN (�; �), is the expected loss when � is the

sampling procedure and �̂n1;n2 is the terminal estimate:

RN (�; �) = E�
h
(�(p1; p2) � �̂n1;n2)

2
i
; (4)
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where n1 =
PN

i=1 �i, n2 = N � n1.

The problem that remains, then, is to �nd a procedure �� = argmin� RN (�; �). Such a

procedure is said to be optimal.

3 SAMPLING PROCEDURES

A standard approach to �nding good or optimal sampling procedures for allocation problems

is to locate asymptotic lower bounds for the Bayes risk of any procedure, and then to seek

ad hoc sampling rules that either achieve or come close to achieving the lower bounds

asymptotically. (See, for example, Shapiro (1985).) Here we consider the performance,

advantages and disadvantages of 5 types of procedures. These include two �xed allocation

schemes: equal allocation (EA) and best �xed allocation (BF); and three sequential schemes:

myopic (MP), hyperopic (HP) and optimal (OS). In Section 4, we compute the e�ciency

of each procedure for various sample sizes and prior parameter settings, for two di�erent

example polynomials. The e�ciency of a procedure � is RN (�; ��)=RN (�; �), where �� is

an optimal procedure.

3.1 FIXED ALLOCATION RULES

The easiest sampling rules to employ are those with predetermined sample sizes. In our

examples, we locate the values of n1 and n2 that minimize Bayes risk among all �xed

allocation rules. We refer to an optimal rule for the predetermined sample size problem as

a best �xed or BF allocation rule. Since a natural question that arises is how well one fares

when sampling from each population equally, we include equal allocation (EA) as a special

case of �xed allocation in our examples.

We note that the solution of the minimization problem may indicate that one should use

non-integral values of (n1; n2). However, this is simply an artifact of the mathematics, and

thus our de�nition of BF procedures is based upon the optimal integral values of (n1; n2).

3.2 LOCAL SEQUENTIAL RULES

Rather than �xing n1 and n2 at the beginning of the experiment, one can expect to do better

by repeatedly updating the estimate of the distribution of (p1; p2), and basing upcoming

sampling decisions on the most recent information. In this section, \locally" sequential

procedures are considered. A local procedure is one that decides which population to sample

from next using only a small amount of computation at each stage. The simplicity of such

rules makes them attractive, especially because they can incorporate accruing information.

To describe these procedures, it is helpful to utilize various ancillary risk functions. The

conditional expected risk of procedure � at Stage m, given an horizon of t, m � t � N ,
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denoted rt(�m; �), is given by

rt(�m; �) = E�

��
�(p1; p2)� �̂t

�2
j Dm

�
;

where E�(� j Dm) denotes expectation with respect to the posterior distribution of p1 and

p2 at stage t given Dm. The interim risk at state (s1; f1; s2; f2) of Stage m, given an horizon

of t, m � t � N , denoted Imt (s1; f1; s2; f2), is given by

Imt (s1; f1; s2; f2) = min
�2�(s1;f1;s2;f2)

rt(�m; �);

where �(s1; f1; s2; f2) is the set of all procedures that could reach (s1; f1; s2; f2). Thus,

interim risk is the minimum conditional expected risk incurred if one were to start at Stage

m, given (s1; f1; s2; f2), and proceed optimally to Stage t. Note that the interim risk at

Stage N is simply the posterior risk computed for N :

I
N
N (s1; f1; s2; f2) = rN (�N ; �) for any � 2 �(s1; f1; s2; f2):

A local procedure that is particularly easy to compute is the myopic (MP) or one-stage

look-ahead rule. To generate the MP rule, we use the posterior risk beginning at Stage

m < N and ending at Stage m+ 1. Let

rim+1(�m; �) = E�

��
�(p1; p2)� �̂m+1

�2
j Dm and �m+1 = i

�
;

for i = 1; 2. Then the myopic rule is to allocate next from Population i if

rim+1(�m; �) < r3�im+1(�m; �) :

In cases where the expected risks are the same, one can either randomize or sample from

the population with the fewer number of observations so far. We use the former method in

our examples since randomization is desirable in many experimental settings.

The second local rule that we consider is an adaptive version of the best �xed rule. An

application of this rule is discussed in Rekab (1993). To generate the rule, at each Stage

m one views the problem in the context of Section 3.1 by determining the optimal �xed

values to sample from each population, given that you were starting at Stage m. This

means locating nonnegative integers n1m and n2m such that n1m + n2m = N �m and such

that taking nim more observations from Population i would minimize rN (�m; �) among all

�xed-allocation rules. There are two natural ways to formulate the sequential rule in terms

of the nim:

1. Sample from Population i if nim > n(3�i)m, or

2. Sample from Population i with probability nim=(n1m + n2m).
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In both cases, we randomize with probability 1
2 when n1m = n2m. We refer to these rules

as hyperopic because at each stage they look to the end of the experiment and make deter-

minations as to what the \best" sample sizes should be. Because alternative 2 introduces

randomization into the sampling process, we prefer it to 1, and thus the hyperopic rule (HP)

used in Sections 4 and 5 is alternative 2.

3.3 OPTIMAL SEQUENTIAL RULE

The optimal sequential rule (OS) is found via dynamic programming. This method is well

known and consists of evaluating and comparing all possible interim risks that can occur

beginning at Stage N and moving backwards to Stage 0. Interim risk obeys the recursive

optimality principle, and thus, once the interim risk has been determined for all possible

sets of outcomes at Stage m + 1, it can then be determined for all sets at Stage m, for

m = 0; : : : ; N . As with the MP and HP procedures, we randomize in the case of ties.

4 EXAMPLES OF ESTIMATING POLYNOMIALS

We consider two example polynomials in this section:

1. �(p1; p2) = p1p2

2. �(p1; p2) = (p1 + p2 � p1p2)p1

The �rst case is useful because one can easily go through many of the details of the analysis

and a number of authors have shown interest in the problem (Berry (1974), Hardwick and

Stout (1993), Rekab (1993), Shapiro (1985)). In the second case, the details are more

complex, but we include them to indicate that a more general problem is still tractable. An

application of this polynomial to a fault-tolerance problem is given in Section 4.2.

4.1 EXAMPLE 1: THE PRODUCT

We begin with some notation. Let ��r = � � (�+ 1) � � � (�+ r� 1), and let �r(v) denote the

rth moment of a random variable v, i.e., E(vr ). Recall that for a random variable v from

the distribution Be(�; �),

�r(v) =
�(�+ r) �(�+ �)

�(�+ � + r) �(�)
=

��r

(�+ �)�r
:

Applying some algebra, we get a simple expression for the Bayes risk of � = p1 p2 when n1

and n2 are non-random:

RN (�; �n1;n2) =
�2(p2)a1b1

(a1 + b1)
�2(a1 + b1 + n1)

+
�2(p1)a2b2

(a2 + b2)
�2(a2 + b2 + n2)

(5)

�
a1b1

(a1 + b1)
�2(a1 + b1 + n1)

a2b2

(a2 + b2)
�2(a2 + b2 + n2)

:
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Equation (5) can be minimized with respect to n1 by solving a quadratic equation, and

it yields the best �xed allocation procedure, BF. Further, by updating the distribution

as results accrue, (5) provides the form of the hyperopic (HP) allocation procedure. By

updating and setting n1 = n2 = 0 one obtains the posterior risk needed to determine the

optimal sequential procedure (OS).

The third term on the right hand side of (5) is an order of magnitude smaller than either

of the �rst two terms. Thus, a very close approximation to the best �xed allocation rule is

attained if one selects n1 such that

a1 + b1 + n1
a2 + b2 + n2

=

q
E�[p22 p1(1� p1)]q
E�[p21 p2(1� p2)]

: (6)

The results reported in this paper do not use this approximation, but it was used in Rekab

(1993). A generalization of this �rst-order approximation scheme appears in the appendix.

The myopic rule (MP) for this example is also quite simple. Suppose we have observed

(s1; f1; s2; f2). If �i = ai+ si, �i = bi+fi, then the posterior distribution of pi is Be(�i; �i),

i = 1; 2. From (5) one �nds that we should sample next from Population 1 if

(�2 + 1)�1
�1 + �1 + 1

+
(�1 + 1)�2
�2 + �2

+
�1�2

(�1 + �1 + 1)(�2 + �2)

<
(�2 + 1)�1
�1 + �1

+
(�1 + 1)�2
�2 + �2 + 1

+
�1�2

(�1 + �1)(�2 + �2 + 1)
:

If the inequality is reversed, then sample from Population 2, and randomize if there is a tie.

4.1.1 ILLUSTRATIVE CONFIGURATIONS AND HEURISTICS

Here we examine �ve di�erent prior parameter settings for the product of means problem.

These examples provide a number of insights. On the one hand, they suggest how prior

parameter con�gurations may be used to characterize prevailing experience and how di�erent

prior con�gurations can a�ect the sampling schemes discussed in Section 3. They also

provide concrete examples of di�erences among the risks for moderate sample sizes and

those obtained in the limiting cases. In Tables 1{3, for various sample sizes, we present

the e�ciencies of each rule relative to the OS rule, along with the percent sampled from

Population 1.

Except for the last row of each table, which contains asymptotic results, all values in

the tables are computed using methods described in Section 6. For the asymptotic values,

Shapiro (1985) proved that if the true values of the parameters are p�1 and p�2, then the

optimal rule will almost surely sample from Population i proportional to
q

1�p�
i

p�
i

. Further,

if ROS
n is the expected risk of the OS procedure for a sample of size n, then

lim
n!1

nROS
n =�1(p1)�2(p2) + �1(p2)�2(p1)� 2�2(p1)�2(p2) + 2

2Y
i=1

�(ai + 1:5)�(bi + 0:5)

�(ai)�(bi)(ai + bi)2
:
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Sample Size E�ciency (Risk Ratios) and

N % on Pop 1

OS MP HP BF EA

20 1.000 1.000 0.997 0.892 0.892

50% 50% 50% 50% 50%

50 1.000 1.000 0.999 0.870 0.870

50% 50% 50% 50% 50%

100 1.000 1.000 1.000 0.861 0.861

50% 50% 50% 50% 50%

1 1.000 1.000 1.000 0.847 0.847

50% 50% 50% 50% 50%

Table 1: (p1; p2) � [Be(1,1),Be(1,1)]

Shapiro also showed that MP asymptotically samples in the same proportions as OS, and has

asymptotic e�ciency 1. Using similar methods, one can show that the asymptotic e�ciency

of HP is also 1. The asymptotic proportions for BF can be easily derived from Equation (6),

which indicates that Population i should be sampled from in proportion to
q

bi
ai+1

. This

result was noted in Shapiro (1985), where it was also shown that the e�ciency of BF is at

least 0.5.

For our �rst example, in Table 1, we consider the most commonly used prior parameter

con�guration: [Be(1,1), Be(1,1)]. In this con�guration, BF and EA are the same. Note that

as the sample size increases, the e�ciency of BF decreases, as is to be expected.

The second example is relevant when we wish to emphasize di�ering degrees of faith in

our prior knowledge. Take the case depicted in Table 2 with (p1; p2) � [Be(20,10), Be(2,1)].

The mean for each distribution is 2
3 ; but we have less faith in the accuracy of the prior

information for p2 than for p1. The e�ect of such modeling is that the optimal sampling

rule will sample more often from the population with the smaller initial parameters, since

that population will have higher variance and hence contribute more risk. Thus, for small

N we sample proportionally more from Population 2 than from 1. As the total sample

size increases, the proportions sampled from the two populations approach each other since

the data eventually take over. The optimal proportion of observations from Population 1

makes a dramatic shift from 10% (when N = 20) to 40% (when N = 100), with the limiting

optimal proportion being 53%. Both MP and HP are virtually fully e�cient in this example.

Next, consider the case in which (p1; p2) � [Be(1; 2);Be(2; 1)]. With this prior con�gura-

tion, one might expect EA to be nearly optimal since the distributions are mirror images of

one another. As is evident from Table 2, however, this is not the case. More or less indepen-

dently of N , the OS samples approximately 70% from Population 1, and EA turns out to be

only about 85% e�cient. This observation leads to a second heuristic regarding sample size
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E�ciency (Risk Ratios) and E�ciency (Risk Ratios) and

% on Pop 1 % on Pop 1

N OS MP HP BF EA OS MP HP BF EA

20 1.000 1.000 0.998 0.979 0.793 1.000 0.999 0.997 0.926 0.862

10% 10% 11% 00% 50% 74% 74% 72% 70% 50%

50 1.000 1.000 0.998 0.937 0.882 1.000 1.000 0.999 0.907 0.846

28% 27% 30% 30% 50% 71% 71% 70% 66% 50%

100 1.000 1.000 1.00 0.930 0.918 1.000 1.000 1.000 0.898 0.838

40% 40% 40% 42% 50% 70% 70% 70% 64% 50%

1 1.000 1.000 1.000 0.918 0.911 1.000 1.000 1.000 0.885 0.823

53% 53% 53% 54% 50% 69% 69% 69% 63% 50%

(p1; p2) � [Be(20,10), Be(2,1)] (p1; p2) � [Be(1,2), Be(2,1)]

Table 2: Nonuniform Distributions

selection: if the prior information indicates that one mean is less than the other, but the

prior variances are the same, an optimal rule will tend to sample more from the population

with the lower expected mean. This rule is intuitively appealing when one notices that to

estimate the product xy of two positive quantities, if x < y, then an absolute measurement

error of � in x a�ects the answer more than the same size error in y.

Our last two examples in Table 3, one in which we have (p1; p2) � [Be(0:1; 0:01);Be(1; 1)]

and the other in which (p1; p2) � [Be(0:01; 0:1);Be(1; 1)], may appear at �rst to be patho-

logical since the small values of a1 and b1 indicate that very little information is known in

advance. Suppose, however, that the �rst of the two batches of parts under consideration

comes from a manufacturing process that is either in tolerance (working) or out of tolerance

(not working). In such a case, it is the third moment of the distribution that is of most

interest. In the case where p1 � Be(0:1; 0:01), we have a u-shaped distribution where the

probability that the process is in tolerance is ten times greater than the probability that it

is out of tolerance. After only a couple of observations we should be able to determine, with

high probability, which state we have encountered. From that point on, since p2 � Be(1; 1),

we know that we should sample more from the population with the smaller expected mean

(though the variance also has an e�ect). Given the circumstances, the fact that the informa-

tion in the prior with the small parameters is dominated so quickly by the data is precisely

what one would expect.

An interesting feature of these two examples is illustrated by the behavior of BF. Whereas

the two cases under consideration are mirror images of one another, the sampling behavior

indicated by BF does not remotely mimic the mirror image set-up. It is also worth noting

that the worst e�ciency of BF that we observed in any of our examples was 73% which is a

good deal higher than the 50% lower bound for e�ciency of this rule. For discussion of the

situations in which this bound is approached, see Shapiro (1985).
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E�ciency (Risk Ratios) and E�ciency (Risk Ratios) and

% on Pop 1 % on Pop 1

N OS MP HP BF EA OS MP HP BF EA

20 1.000 0.998 0.995 0.913 0.626 1.000 0.997 0.993 0.822 0.754

17% 15% 14% 15% 50% 92% 92% 77% 35% 50%

50 1.000 0.997 0.997 0.892 0.583 1.000 0.997 0.997 0.793 0.707

15% 14% 13% 12% 50% 92% 92% 81% 32% 50%

100 1.000 0.997 0.998 0.878 0.565 1.000 0.998 0.998 0.777 0.685

14% 13% 12% 12% 50% 91% 91% 83% 31% 50%

1 1.000 1.000 1.000 0.818 0.517 1.000 1.000 1.000 0.730 0.636

9% 9% 9% 12% 50% 91% 91% 91% 31% 50%

(p1; p2) � [Be(0:1; 0:01);Be(1; 1)] (p1; p2) � [Be(0.01,0.1), Be(1,1)]

Table 3: U-Shaped Distributions

4.2 EXAMPLE 2: A SERIES/PARALLEL POLYNOMIAL

We now consider a polynomial representing a slightly more complex con�guration. Suppose

we have a circuit involving two parts from Population 1 (Part 1A and 1B) and one part

from Population 2 (Part 2). In order for this circuit, illustrated in Figure 1, to work, we

must have either Part 1A or Part 2 work and Part 1B work. Thus, the probability that a

randomly selected circuit will work is Pf(X [Y )\Xg and the parametric function that we

are trying to estimate is

p21 + p1p2 � p21p2:

As before, to develop the allocation rules, we need expressions for the various risk and

ancillary functions. To handle this more complex example, we introduce a bit more notation.

Let �k`(pi) = E�
h
E�(pki j DN )E

�(p`i j DN )
i

for i = 1; 2:

Then �11(pi) = �2(pi) +
�2(pi)� �1(pi)

(ai + bi + ni)
; �12(pi) = �3(pi) + 2

�3(pi)� �2(pi)

(a1 + b1 + n1)
;

and �22(pi) = �4(pi) + 4

�
�4(pi)� �3(pi)

(a1 + b1 + n1)

�
+ 2

�
�4(pi)� 2�3(pi) + �2(pi)

(a1 + b1 + n1) (a1 + b1 + n1 + 1)

�
:

One begins with the Bayes risk for any procedure �,

RN (�; �) = E�

��
p21 + p1p2 � p21p2 �E

�[p21 + p1p2 � p21p2 j DN ]
�2�

: (7)

One can then determine, after some algebra, that

RN (�; �(n1; n2)) = �2(p1)�2(p2) + �4(p1) [1� 2�1(p2) + �2(p2)] (8)

+ 2�3(p1) [�1(p2) � �2(p2)] �
n
�11(p2)[�11(p1)� 2�12(p1) + �22(p1)]

+ �22(p1) + 2�1(p2)[�12(p1)� �22(p1)]
o
;
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which is the Bayes risk when n1 and n2 are �xed in advance. To determine the BF rule,

one substitutes the previously obtained expressions for the � and � factors, and then locates

the optimal n1 and n2. The algebra is much less amenable than it was in the product of

means example, but it is computationally easy because the minimization can be carried out

in time linear in N regardless of the complexity of the polynomial.

Recall that from the �xed sample size version of the risk, (8), we can also generate the

HP procedure. We use the posterior version of (7) to obtain the MP procedure and, by

adding dynamic programming, the OS procedure as well.

Table 4 displays the e�ciency and percent sampled fromPopulation 1 for the �ve di�erent

allocation procedures applied to the polynomial p1p2+p21�p
2
1p2, using N = 50 and the same

prior parameter settings that were used for the product of means example. Two properties

of these procedures stand out for this polynomial. First, there is the strong bias towards

sampling from Population 1, which is to be expected since p1 a�ects the polynomial more

than p2. Second, all of the ad hoc rules except for EA perform extremely well.

5 ROBUSTNESS

As seen in Section 4.1.1, the beta family is a rich class of distributions that can be used in a

variety of di�erent ways to represent information available before an experiment. Another

point to consider, however, is the extent to which disagreement regarding the parameters of

the prior distribution will e�ect the inference process associated with an experiment. There

are a number of ways to examine the sensitivity of a design with respect to its prior and

no one method is always best. So, rather than carrying out an exhaustive study of the

robustness characteristics of the sequential designs under consideration here, our intention

is to show the ease with which such a study can be carried out computationally. We do

this in Section 5.1 by considering one measure and contend that many other measures are

based on computationally similar approaches. (See Etzioni and Kadane (1993) and the

references therein for more in-depth comments on this issue.) In Section 5.2, we consider a

di�erent form of robustness, in that we compare the MP procedure in which the \design"

and \analysis" priors disagree with the BF procedure in which both the design and analysis

prior distributions do agree.

12



Sample Size N = 50 E�ciency (Risk Ratios)

Prior Parameter (% on Pop 1)

Con�guration OS MP HP BF EA

p1 � Be(1; 1) 1.000 1.000 1.000 0.988 0.664

p2 � Be(1; 1) (88%) (88%) (87%) (88%) (50%)

p1 � Be(20; 10) 1.000 1.000 1.000 0.997 0.857

p2 � Be(2; 1) (82%) (82%) (82%) (82%) (50%)

p1 � Be(1; 2) 1.000 1.000 1.000 0.993 0.680

p2 � Be(2; 1) (89%) (89%) (88%) (88%) (50%)

p1 � Be(0:1; 0:01) 1.000 1.000 0.999 0.979 0.616

p2 � Be(1; 1) (99%) (99%) (98%) (90%) (50%)

p1 � Be(0:01; 0:1) 1.000 1.000 0.999 0.980 0.622

p2 � Be(1; 1) (99%) (99%) (94%) (90%) (50%)

Table 4: Polynomial: p1p2 + p21 � p21p2

5.1 REANALYSIS

In this discussion, we employ a scenario similar to that utilized in Etzioni and Kadane

(1993). Imagine that Marty, a visitor from Mars, arrives on Earth and designs and carries

out an experiment using prior parameters Be(aM1; bM1) and Be(aM2; bM2). At a later time,

suppose Veni arrives from Venus, and has prior parameters Be(aV 1; bV 1) and Be(aV 2; bV 2).

Veni could either design and conduct a new experiment, or could acquire and re-analyze

Marty's data using Veni's own prior parameters. We wish to assess the loss of e�ciency to

Veni of re-analyzing Marty's data instead of designing its own experiment. We assess this

as follows:

(i) Generate each allocation rule (OS, MP, HP, BF) using Marty's prior.

(ii) Compute the Bayes risk for each method generated in (i), using Veni's prior.

(iii) Generate each allocation rule (OS, MP, HP, BF) using Veni's prior.

(iv) Compute the Bayes risk for each method generated in (iii), using Veni's prior.

(v) De�ne the relative e�ciency of each method to be the ratio of risk of that method

from (iv) with the risk of that method from (ii).

The idea is to consider the e�ect of having di�erent design and analysis prior parameters

in an experiment where Bayesian design and Bayesian analysis are both being used. Note

that the EA rule is una�ected by the choice of prior so that all of the relative risks for EA

are one.

We followed the steps just outlined for the problem of estimating the product of two

means for a variety of di�erent prior parameter settings for Marty, using a total sample size

13
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Figure 2: E�ciency of Method[Be(a1; b1),Be(1,1)] relative to Method[Be(1,1),Be(1,1)], an-

alyzed using [Be(1,1), Be(1,1)], for methods OS and BF

of N = 100. For each of the methods OS, HP, MP, BF, we computed the relative e�ciency,

(v), for 25 di�erent versions of Marty's prior parameter con�gurations. We evaluated all

combinations of

aM1 = 0:01; 0:1; 1; 10; 100 bM1 = 0:01; 0:1; 1; 10; 100 aM2 = 1 bM2 = 1 (9)

For all the experiments, Veni's prior parameters are (p1; p2) � [Be(1,1),Be(1,1)]. In review-

ing a variety of tables of relative e�ciencies, we observed only two fundamental structures

for the �ve di�erent allocation methods. These are represented in Figure 2, which displays

the data for the OS risk in (ii) relative to the OS risk (iii) and the BF risk in (ii) relative

to the BF risk in (iii), respectively. These �gures are interpolated contour plots based on

the relative e�ciencies for the grid points in (9). For example, the data point .8653 in

Figure 2 a), corresponding to a1 = 0:01, b1 = 0:01, has aM1 = 0:01, bM1 = 0:01, aM2 = 1,

and bM2 = 1. It represents the relative e�ciency of a OS procedure generated using this

prior parameter con�guration, but where the results were evaluated assuming a uniform

distribution on (p1; p2).

One interpretation of the data is that, for sample sizes of 100, even if Marty's estimates

of (a1; b1) di�er by an order of magnitude from those of Veni, Marty's design will still

be reasonably e�cient for Veni, since the e�ciency is typically above 90%. However, if

Marty's estimates di�er by two orders of magnitude then the reduction in e�ciency may be

unacceptable.

The relative e�ciencies for the MP and HP rules mirror those for OS quite closely, so

the plots for these rules look similar to Figure 2 a) and are omitted. For all three adaptive
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Figure 3: E�ciency of MP[Be(1,1),Be(1,1)] relative to BF[Be(a1; b1),Be(1,1)], analyzed us-

ing [Be(a1; b1), Be(1,1)]

rules, (OS, HP, MP), the worst case scenarios occur when Marty's prior parameters are

[Be(100,100), Be(1,1)] and Veni analyzed the data using [Be(1,1), Be(1,1)]. For the BF

rule, however, we see a di�erent picture. Throughout, the relative e�ciency is much lower,

and the worst case scenario occurs when Marty has the very extreme setup of [Be(.01,100),

Be(1,1)].

5.2 ADAPTIVE vs. FIXED SAMPLE SIZE RULES

Another important form of robustness concerns adaptive versus �xed allocation rules. Here

we show the e�ciency of the myopic rule MP versus that of the best �xed rule BF.

For the product polynomial, we create the MP rule using uniform priors, denoted as

MP[Be(1,1), Be(1,1)]. We design BF assuming (p1; p2) � [Be(a1; b1);Be(1; 1)], for a1; b1 2

f0:01; 0:1;1; 10; 100g, and then compare the e�ciency of MP relative to BF, analyzed using

[Be(a1; b1), Be(1,1)].

Figure 3 shows that the e�ciency of MP is very high throughout most of the region, and

often exceeds that of BF even when MP has used design and analysis priors that di�er by

an order of magnitude. It is only when MP's design and analysis priors di�er by two orders

of magnitude that the e�ciency becomes unacceptable. Thus MP could be viewed as being

a more conservative, robust choice than BF. Also note that MP's relative e�ciency would

have been even greater had it been compared to EA.
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6 COMPUTATIONS

All results presented herein are exact and have been obtained by a variety of techniques. As

mentioned, dynamic programming was used to determine the OS rule. For the other rules

the material in the previous sections shows how to decide each rule's allocation directly.

Still, for all of the rules considered, it was necessary to compute several quantities, such

as the risk incurred and the percent sampled from Population 1. For EA and BF these values

can be determined analytically. However, for the adaptive procedures, these calculations

were performed using backward induction, which, like dynamic programming, starts with

terminal states and works towards the initial state. While backward induction is well-known

in theory, in practice one rarely sees it used to evaluate allocation rules (see, however, Berry

and Eick (1995) and Hardwick and Stout (1992)). The time for dynamic programming

and backward induction is �(N4) and the space needed is �(N3) (see Hardwick and Stout

(1995)).

To compute the �gures in Section 5 e�ciently, an additional technique is useful. There,

a single allocation rule needed to be evaluated several times, once for each di�erent prior.

If one needed to make k evaluations, then repeated use of backward induction would take

�(kN4) time. However, by using forward induction, the time required can be reduced to

�(N4+kN3), and the space required can be kept at �(N3). The forward induction method

consists of �rst going through the state space from the initial state towards the terminal

states. Then, for each state, the number of di�erent paths that could reach that state is

computed. In this way, for each evaluation, only the terminal states need be visited. The

path counts are combined with the appropriate probabilities to determine the probability

of reaching that terminal state. This can then be used to determine whatever average

quantities one desires. Further details concerning solving allocation problems using forward

induction, backward induction, and dynamic programming appear in Hardwick and Stout

(1995).

One minor point to note is that, while OS, MP, and HP are de�ned by comparing various

quantities and randomizing only when these values are equal, in practice we randomize

whenever the di�erence between values being compared is less than 10�5. This slightly

improves the numeric stability of the results.

7 CONCLUSIONS

In writing this paper we had a couple of di�erent goals. The �rst was to solve a practical

set of estimation problems. After reducing the estimation problem to one of allocation, we

considered a variety of sampling procedures that could be used in actual experiments.

Our strategy for generating the di�erent rules can be summarized as follows. Find an

expression for the Bayes risk as a function of n1 so that the �xed sample problem can be

solved. From this locate and evaluate the BF, EA and HP rules. To generate the remaining
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two rules, MP and OS, one need work only with the interim risk functions.

Our statistical conclusions are typi�ed by the results in Tables 1{4. By de�nition,

the OS rule is best. Furthermore, subject to heuristic arguments of the sort detailed in

Section 4.1.1, the performance of the other four allocation rules depends on the polynomial,

the con�guration of the prior parameters, and the sample size for the experiment.

In particular, we found that, without exception, the local sequential rules are so close

to being optimal that the myopic rule appears to o�er the best overall combination of

practicality and e�ciency. Furthermore, for a variety of prior parameter con�gurations,

both the BF and EA rules performed reasonably well. Still, it is interesting to note how

poorly the EA rule performs in settings such as those described in Table 3.

Hyperopic rules have received signi�cantly less attention than the others considered here.

However, they have several appealing features. Because they are adaptive versions of the

best �xed rule, they can be used whenever BF can be determined. Further, at any point in

the experiment, they decide the optimal allocation to use for the rest of the experiment if

no new information is collected. This makes them natural candidates for situations in which

responses are delayed. In such situations one would determine the optimal allocation for the

remainder of the experiment, assuming that the only allocated samples are the ones that

have been observed, and then subtract the un�nished observations to decide the remaining

allocations. Thus, depending on the delays encountered in the responses, hyperopic rules

could range from the fully sequentially HP considered here to the �xed allocation BF rule.

On the whole, given the performance of the local rules, MP and HP, (including the

robustness exhibited by MP in Figure 3), it seems clear that locating the optimal rule for

these problems is important primarily because it provides a precise basis for comparison for

the ad hoc rules.

Nevertheless, as mentioned, we had another reason for pursuing an entire solution. We

believe that this problem serves as an excellent vehicle for illustrating the diverse applications

of the computational techniques of dynamic programming, backward induction, and forward

induction.

For many years, statisticians have known that, in theory, dynamic programming serves as

a useful means for computing solutions to sequential allocation problems. Historically, such

programming has been too computationally intensive to be very practical, but increasingly,

realistic problems can be solved in this manner. Less well understood is the ability of

backward induction to evaluate properties of all types of allocation rules exactly. Even if an

allocation rule is not de�ned through a set of recursion equations, one can still determine

its attributes through backward induction. If an allocation rule needs to be evaluated

several times, as in Section 5, then forward induction can be used to greatly reduce the

computational time while still yielding exact results.

This approach has some advantages over the usual method of seeking approximate char-

acteristics of an allocation rule asymptotically or through simulation studies. Asymptotic
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analyses are very important, but in practice it is hard to know how good an approximation

they are for a given situation (e.g., see Table 2). In particular, if one cannot determine the

optimal rule, then it is di�cult to know just how e�cient an ad hoc rule will be for a given

sample size.

The computational approach also allows one to explore designs more thoroughly, consid-

ering criteria beyond the design criterion that may not be amenable to analytic evaluation.

To do so, however, one needs algorithms that enable rapid evaluations, since a great many

evaluations are needed to produce views such as were shown in Section 5.

Computationally intensive examination of nontrivial adaptive designs is a new possibility

which we expect will rapidly evolve and expand over time. By making computations very

fast, and utilizing graphical output to make the results more comprehensible, researchers

can engage in an interactive design and optimization approach heretofore impossible. Ten-

tative designs can be explored and adjusted multiple times to better meet a mix of criteria.

Researchers are no longer limited to those designs that have simple analytic behavior, nor

are they limited to evaluating only certain criteria. It is this 
exibility that we view as

being the most important aspect of this work. The speci�c examples shown here are merely

indications of the types of problems and approaches one might try.

8 APPENDIX

We are interested in minimizing the Bayes risk for the case in which n1 and n2 are �xed

integers. While one can write out the �xed sample size Bayes risk with respect to squared

error loss directly for any polynomial, in general the expression is quite complicated. In

order to help understand the general behavior of the function, we provide a �rst order

approximation to the Bayes risk that applies to any bivariate polynomial �(p1; p2).

As was shown in Section 4.1.1, this approximation can be used to obtain the asymptotic

properties of the BF rule. The approximation is also useful with the HP rule, since that

rule must make multiple risk evaluations. Since the approximation is quite accurate, and

decisions are constantly being updated, the e�ect on HP of using the approximation instead

of the true Bayes risk is extremely small.

As seen in the Section 2, the Bayes risk is given by

E�[(� � �̂n1;n2)
2] = E�

24 u2X
r=0

u1X
s=0

crsp
r
1p

s
2 �

u2X
r=0

u1X
s=0

crsE
�(pr1 j DN )E

�(ps2 j DN )

!2
35 : (10)

If we expand this expression, we will be left with a series of terms of the form

E�
h
cij p

i
1 p

j
2 � ck` p

k
1 p

`
2 � cij E

�(pi1 j DN )E
�(pj2 j DN ) � ck`E

�(pk1 j DN )E
�(p`2 j DN )

i
= cijck`

n
E�
�
pi+k1

�
E
�
h
pj+`2

i
(11)

�E�
�
E�(pi1 j DN )E

�(pk1 j DN )
�
E�
h
E�(pj2 j DN )E

�(p`2 j DN )
io
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Now, note that (11) can be expressed as

cijck`

�
�i+k(p1)�j+`(p2) � E

g
�
�i(p1 j DN )�k(p1 j DN )

�
E
h
�
�j(p2 j DN )�`(p2 j DN )

��
;

where the expectations Eg and Eh are with respect to the marginal distributions g of x and

h of y respectively:

g(x) � Beta-Binomial(n1; a1; b1) and h(y) � Beta-Binomial(n2; a2; b2):

Given the moments for g and h, it is clear that each term of the form (11) can be

evaluated, and thus, with a little algebra, one can compute the Bayes risk whenever n1

and n2 are �xed. Still, while in Section 4, we carried out these calculations exactly for

two examples, in general, such manipulations are tedious at best. It is useful, therefore,

to have approximations for (10) that can be used in its place. The following proposition is

useful in this respect in that it provides �rst order approximations for all of the terms that

comprise (10).

Proposition 1

E�
h
pi1 p

j
2 � p

k
1 p

`
2 � E�(pi1 j DN )E

�(pj2 j DN ) � E
�(pk1 j DN )E

�(p`2 j DN )
i

(12)

= �j+`(p2) ik

"
ai+k�11 b1

(a1 + b1)i+k(a1 + b1 + n1)

#

+�i+k(p1) j`

"
aj+`�12 b2

(a2 + b2)j+`(a2 + b2 + n2)

#
+ O

�
1

n2

�
where n = minfn1; n2g.

Proof. Note that if p � Beta(a; b) and g � Beta-Binomial(n; a; b), then for natural

numbers i, k,

Eg [�i(p j Dn)�k(p j Dn)] =

Pn

s=0

�
n

s

�
asbn�s(a + s)i(a + s)k

(a+ b)n(a+ b+ n)i(a+ b+ n)k

=

Pk

x=0

�
k

x

�
(�i)k�xai+x(a+ i+ x+ b)nPk

x=0

�
k

x

�
(�i)k�x(a+ b)n+i+x

= �i+k(p)� ik

"
ai+k�1b

(a+ b)i+k(a + b+ n)

#
+ O

�
1

n2

�
:

Then, as n1; n2 !1, the entire expression (12) can be written as

�i+k(p1)�j+`(p2)�

 
�i+k(p1)� ik

"
ai+k�11 b1
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