
In Journal of Algorithms26 (1998), pp. 1–33.

Ultra-Fast Expected Time
Parallel Algorithms

Philip D. MacKenzie1

Google Research

Quentin F. Stout2

Computer Science and Engineering
The University of Michigan

Abstract

It has been shown previously that sortingn items inton locations with a polynomial number of proces-
sors requiresΩ(log n/ log log n) time. We sidestep this lower bound with the idea of Padded Sorting, or
sortingn items inton + o(n) locations. Since many problems do not rely on the exact rank of sorted items,
a Padded Sort is often just as useful as an unpadded sort. Our algorithm for Padded Sort runs on the Tolerant
CRCW PRAM and takesΘ(log log n/ log log log n) expected time usingn log log log n/ log log n proces-
sors, assuming the items are taken from a uniform distribution. Using similar techniques we solve some
computational geometry problems, including Voronoi Diagram, with the same processor and time bounds,
assuming points are taken from a uniform distribution in theunit square. Further, we present an Arbitrary
CRCW PRAM algorithm to solve the Closest Pair problem in constant expected time withn processors
regardless of the distribution of points. All of these algorithms achieve linear speedup in expected time over
their optimal serial counterparts.

1Research done while at the University of Michigan and supported by an AT&T Fellowship.
2Supported by NSF/DARPA grant CCR-9004727.

1

1 Introduction

For a given problem withn inputs, we define anultra-fast parallel algorithm as one which uses a linear
number of processors and runs inO((log log n)O(1)) time. Some examples of problems with known ultra-
fast parallel algorithms include merging two lists of sizen [24] and finding the maximum ofn numbers [36].
We also define anultra-fast expected timeparallel algorithm as one which uses at most a linear number of
processors and runs inO((log log n)O(1)) expected time. In this paper, we will develop ultra-fast expected
time parallel algorithms for sorting and many geometric problems. These algorithms will also achieve linear
speedup in expected time over their serial counterparts.

Because there is some ambiguity involved in the term “expected time,” we will define it more carefully.
If we assume the inputs to an algorithm come from a specific probability distribution, we call the expected
time analysisdistribution dependent. For adeterministicalgorithm, the expected time is simply the average
running time over the distribution of inputs. For arandomizedalgorithm, the expected time is the average
running time over the distribution of inputs and the possible random choices within the algorithm.

Alternatively, if we assume nothing about the input distribution, we call the expected time analysis
distribution independent. For a deterministic algorithm, the expected time is simplyequal to the worst case
time. For a randomized algorithm, the expected time is the average running time over the possible random
choices for the worst case input, or equivalently, the maximum over all inputs of each input’s average running
time.

We will define arandomized parallel algorithmas one in which each processor can make independent
random choices. In this paper, we present randomized parallel algorithms that solve the following problems
in Θ(log log n/ log log log n) expected time with linear speedup (n log log log n/ log log n processors).

Padded Sort Givenn values taken from a uniform distribution over the unit interval [0, 1], arrange them in
sorted order in an array of sizen + o(n), with the value NULL in all unfilled locations.

All Nearest Neighbors Given a setS of n points taken from a uniform distribution over the unit square,
for each pointp ∈ S find the point inS − {p} that is closest top in the Euclidean metric.

Relative Neighborhood Graph Given a setS of n points taken from a uniform distribution over the unit
square, for each pointp ∈ S, construct an edge fromp to every other pointq ∈ S wherep andq are
relative neighbors, i.e., for allr ∈ S wherer 6= p, q, the distance fromp to q is less than than the
maximum of the distance fromp to r and the distance fromq to r.

Voronoi Diagram Given a setS of n points taken from a uniform distribution over the unit square, for each
point p ∈ S find the maximal polygon around it which has the property thatany point in the polygon
is closer top than to any other point inS.

Delaunay Triangulation Given a setS of n points taken from a uniform distribution over the unit square,
find a triangulation ofS with the property that the interior of the circumcircle of every triangle is
empty. A triangulation ofS is defined as a planar subdivision inside and including the convex hull of
S, whose vertices are exactly the points ofS, and whose regions are all triangles.

Largest Empty Circle Given a setS of n points taken from a uniform distribution over the unit square,
find the largest circle that contains no points ofS and whose center is internal to the convex hull ofS.

Givenn1+ǫ processors, the above problems can be solved in constant time. We do not consider these
ultra-fast algorithms due to the super-linear number of processors, but we include descriptions of these
algorithms for completeness.

We also present a randomized parallel algorithm to solve thefollowing problem in constant expected
time givenn processors. Note that there is no dependence on the distribution of points in this problem.

2

Closest Pair Given a setS of n points in the plane, determine the pair of points inS which are closest to
each other in the Euclidean metric.

All of the problems above have trivial linear lower bounds onthe expected times of their solutions,
and serial algorithms have been developed for all of them which attain this lower bound. The solution
for sorting is well known. Bentley, Weide, and Yao [7] exhibit linear expected time algorithms for All
Nearest Neighbors and Voronoi Diagram, and linear expectedtime Delaunay Triangulation and Largest
Empty Circle algorithms follow immediately. Katajainen, Nevalainen, and Teuhola [22] exhibit a linear
expected time algorithm for the Relative Neighborhood Graph. Rabin [29] has given a randomized linear
expected time algorithm for Closest Pair which is distribution independent.

There has been a great amount of work on parallel algorithms for distribution independent versions of the
problems above. We give the most recent results here, and indicate whether the algorithms are PT-optimal,
which means that the processor time product is equal to the serial lower bound, or simply optimal, meaning
that for the number of processors used, the time is equal to a known lower bound. When the processor time
product of an algorithm isO(n), the PT-optimality is obvious, and we will sometimes omit this indication.

Leighton’s [25] modification to the AKS sorting network [3],and Cole’s parallel merge sort [13] both
usen processors and achieveΘ(log n) worst case time for sorting, which is PT-optimal. We note that
any PT-optimal algorithm for sorting must use at leastlog n time [4]. Reischuk [33] gives a PT-optimal
randomizedn processor,Θ(log n) time algorithm for sorting. Rajasekaran and Reif [30] give arandom-
ized algorithm for general sorting which achievesΘ(log n/ log log n) time withn logǫ n processors for any
ǫ > 0, which is optimal, a randomized algorithm for integer sorting which achievesΘ(log n/ log log n)
time withn(log log n)2/ log n processors, and a PT-optimal randomized algorithm for integer sorting which
achievesΘ(log n) time with n/ log n processors. Cole and Goodrich [14] and Willard and Wee [37] both
present PT-optimaln processor,Θ(log n) worst case time algorithms for solving the All Nearest Neighbor
and Closest Pair problems. Aggarwalet al. [1] present ann processor,Θ(log2 n) worst case time algorithm
for finding the Voronoi Diagram. Cole, Goodrich, and O’Dunlaing [15] give algorithms for finding the
Voronoi Diagram inΘ(log2 n) worst case time withn/ log n processors, and inΘ(log n log log n) worst
case time withn log n/ log log n processors. Reif and Sen [32] have recently given PT-optimal n proces-
sor,Θ(log n) expected time randomized algorithms for constructing the Voronoi Diagram and finding All
Nearest Neighbors. We note that the Largest Empty Circle canbe found inΘ(log n) worst case time with
n processors given the Voronoi Diagram, so the time and processor bounds above also apply to finding the
Largest Empty Circle.

Berkmanet al. [8] give n/ log log n processor,Θ(log log n) worst case time algorithms for some other
geometric problems, but these problems are highly constrained. On the other hand, we solve much more
general problems and use randomness and a knowledge of inputdistribution to obtain linear speedup and
o(log log n) expected time solutions.

Two groups have previously done work on parallel distribution dependent expected-time geometry. Stout
[35] shows that givenn points taken from a uniform distribution over the unit square, the maximal points,
extreme points, diameter, smallest enclosing rectangle, smallest enclosing circle, and closest pair can all
be found in constant expected time withn processors. These results can also be extended to more general
regions. Levcopoulos, Katajainen, and Lingas [26] show that the Voronoi Diagram ofn points taken from
a uniform distribution over the unit square can be constructed in Θ(log n) expected time withn/ log n
processors. Katajainen, Nevalainen, and Teuhola [22] showthat the Relative Neighborhood graph ofn
points taken from a uniform distribution over the unit square can also be constructed inΘ(log n) expected
time withn/ log n processors.

Distribution dependent parallel sorting has been worked onby Chlebus [12]. He obtains aΘ(log n)
expected time,n/ log n processor algorithm to sortn random integers in the range[1, n].

Following the work in this paper, MacKenzie [27] has proven alower bound ofΩ(log∗ n) expected

3

time for Padded Sort and Hagerup and Raman [21] have shown that this is optimal by giving anO(log∗ n)
expected time algorithm for Padded Sort. We note that their algorithm also improves on the algorithm given
here in that it does not rely on any assumption about the distribution of inputs.

2 Preliminaries

Some probabilistic tools and other equations which will be useful in our analyses are given in the appendices.
Throughout the paper we will assume thatn (the number of inputs) is large enough so that our analyses hold.

For all our algorithms except for Closest Pair we will be using the Tolerant Concurrent Read, Concurrent
Write (CRCW) Parallel Random Access Machine (PRAM) model. In this model, if two or more processors
write to a cell simultaneously, then the cell remains unchanged. An algorithm for the Tolerant CRCW PRAM
implies algorithms with the same time and processor bounds on stronger models, such as the Collision and
Arbitrary models (see, for example, Hagerup and Radzik [20]). For the Closest Pair algorithm we will
be using the Arbitrary CRCW PRAM model. In this model, if two or more processors write to a cell
simultaneously, the one which succeeds in writing is chosenarbitrarily.

In all our algorithms, we will also assume that we can performfloor and ceiling functions in constant
time. These are used to perform various types of “bin-sorting” procedures, which are crucial to our algo-
rithms.

We will use the following CRCW PRAM algorithms as subprocedures.

Prefix The prefix operation takes an arrayA = [a0, a1, . . . , an−1] and an associative binary operator⊕
as input, and outputs an arrayS = [s0, s1, . . . , sn−1], wheresi = a0 ⊕ a1 ⊕ . . . ⊕ ai. When⊕
is addition, and the input array consists ofn numbers, each ofO(log n) bits, the prefix operation
can be performed inΘ(log n/ log log n) time with n log log n/ log n processors on a CRCW PRAM
[16]. Compression, in which m marked records out of a total ofn records must be compressed to
the front of the output array, can easily be reduced to prefix addition, and thus can be performed
in the same time bounds. Using only the processors assigned to the marked records, those marked
records can be compressed inΘ(log n) time [18]. We will call this amarked compression. When⊕ is
maximum or minimum, the prefix operation can be performed inΘ(log log n) time usingn/ log log n
processors [9, 34]. This obviously implies that the maximumor minimum ofn elements can be found
in Θ(log log n) time with n/ log log n processors [36]. However, if we can usen1+b processors, for
anyb > 0, the maximum ofn elements can be found in constant time [36].

A special type of prefix operation is thesegmented prefix operationin which the input array is
divided into contiguous groups and a prefix operation is performed within each group in parallel. A
segmented prefix operation can be performed in the same time bounds as a normal prefix operation.

Merge Two lists of sizen can be merged inΘ(log log n) time usingn/ log log n processors [24].

Sort A list of n items can be sorted inΘ(log n) time usingn processors [3, 13]. Withn2 processors, the
items can be sorted inΘ(log n/ log log n) time, by finding the position of each item using separate
prefix operations.

Global OR Assuming each processor in some set of processors contains a0 or a1, the global OR of those
processors’ values can easily be found in constant time on anArbitrary CRCW PRAM. However, on
the Tolerant CRCW PRAM, we need to have exactly one designated processor to allow us to perform
a global OR in constant time as follows. The designated processor initially writes0 to a memory
location. Then it writes1 to that memory location while all the other processors write1 only if they
contain a1. The designated processor now reads the location. If the location contains0 then at least
one other processor contains a1 and so the designated processor writes1 there. If the location contains
1 then no other processor contains a1 and the designated processor writes its own value there. Note

4

that if we have a known block of processors, we can simply use the first processor in the block as the
designated processor. Also note that we can perform a GlobalAND in a similar fashion.

Broadcast One processor can broadcast a value to any other set of processors in constant time by simply
writing the value to a global memory cell. Each processor that wants to participate in the broadcast
then can read the cell.

Now we list some lemmas that will be useful in our analysis. Weuse the term “randomly” to mean
“with uniform distribution.” In some lemmas, we will assumethat a set ofn bins is partitioned into blocks of
log log n consecutive bins, or into superblocks oflog4 n consecutive blocks (i.e.,log4 n log log n consecutive
bins).

Lemma 2.1 Givenn items randomly placed inton bins, the probability that more than6n/ log8 n blocks
of sizelog log n will all contain at least8 log log n items is less than1/n3.

Proof: Use a Chernoff bound to place an upper bound on the probability that6n/ log8 n blocks each have at
least8 log log n items, and multiply this by the number of choices of6n/ log8 n blocks out ofn/ log log n
blocks.�

Lemma 2.2 Givenn items randomly placed inton bins, the probability that more than4 log n fall into any
block of sizelog log n is less than1/n3.

Proof: Use a Chernoff bound to place an upper bound on the probability that 4 log n items fall into any
block and multiply this by the number of blocks.�

The ideas in the following lemma were previously used in Stout [35] and Rajasekaran and Sen [31]

Lemma 2.3 For any b > 0, n processors can each be allocated a position in an array ofn1+b positions
in constant time (which depends onb) with probability of failure less than1/n in the CRCW PRAM model.
(We assume that each processor has a unique identification number.)

Proof: A processor attempts to allocate a position for itself in an array by writing its unique identification
number to a random position. It then reads that position. If it contains its own identification number, then
that processor has succeeded. Otherwise, it has failed.

For b ≥ 2 the allocation takes one step. The probability of a processor failing is bounded by1/n2, and
thus the probability of any failing is bounded byn(1/n2) = 1/n.

For b < 2, we assume without loss of generality thatn is large enough (depending onb) so that the
following analysis holds. We divide the array intoT = ⌈5/b⌉ − 1 equal size subarrays, and perform the
allocation inT steps. At each stepi we attempt to allocate each of the remaining unallocated processors a
position in subarrayi. We first note that the probability of a processor failing at astep is less thanT/nb.
Thus, ifna processors must be allocated in stepi, for some2b/5 < a ≤ 1, andZi is the number which fail,
thenZi is dominated by a random variableZ ′

i ∼ B(na, T/nb). Then by a Chernoff bound,

Pr(Zi ≥ na−(b/5)) ≤ Pr(Z ′

i ≥ na−(b/5)) ≤ 2−na−(b/5) ≤ 1/n2.

At each stept we see that we will have less thann1−(tb/5) processors left to allocate, and thus afterT − 1
steps, we will have less thann2b/5 processors to allocate. The probability of a processor failing on the last
step is bounded byT/n1+(3b/5) and so the probability of any processor failing on the last step is less than
n2b/5(T/n1+(3b/5)) ≤ T/n1+b/5. �

Note that in the Padded Sort algorithm, we will always use theprevious lemma withb = 2, and thus
allocation will be accomplished in one step with high probability.

5

Lemma 2.4 Givenn items randomly placed inton bins, the probability that more than(log4 n+log3 n) log log n
items fall into any superblock oflog4 n blocks isO(n−2).

Proof: Use a Chernoff bound to put an upper bound on the probability that(log4 n+log3 n) log log n items
fall into any superblock and multiply this by the number of superblocks.�

Lemma 2.5 For k ≥ 16,
(

n

k

)(

2

n

)k (

1 − 2

n

)n−k

≤ e−(k log k)/4.

Proof: Fork ≥ 16,

(

n

k

)(

2

n

)k (

1 − 2

n

)n−k

≤
(

n

k

)(

2

n

)k

≤
(en

k

)k
(

2

n

)k

≤
(

2e

k

)k

≤ 2−k(log k−log 2e)

≤ e−(k log k)/4.

�

3 Padded Sort

Beame and Hastad [6] have shown that finding the parity ofn bits in any PRAM model requiresΩ(log n/ log log n)
time using any polynomial number of processors. From Ajtai and Ben-Or [2] and Chandra, Stockmeyer,
and Vishkin [11], we can see that this lower bound applies even when randomization is allowed and/or the
bits are chosen at random. This implies that sortingn items inton locations requiresΩ(log n/ log log n)
time using any polynomial number of processors, even if the items are taken from a uniform distribution.
Fortunately, the lower bound of Beame and Hastad does not apply to a Padded Sort, in whichn items are
sorted inton+o(n) locations with some locations left blank, and we have found away to use the distribution
assumption and randomization to achieve a PT-optimalΘ(log log n/ log log log n) expected time algorithm.

A Padded Sort does not convey as much information as an unpadded sort, but if the important infor-
mation is simply the relative ordering of items, and not the exact rank of the sorted items, then a Padded
Sort will be as useful as an unpadded sort. Examples of problems in which a Padded Sort is directly useful
include the Maximum Gap problem and the one dimensional All Nearest Neighbors problem.

The Padded Sort algorithm we present uses many of the same ideas as the serial algorithm for sorting
items taken from a uniform distribution, so we will describethe serial algorithm here. The main idea is
that since then items are taken from a uniform distribution over an interval, they will be roughly evenly
distributed over that interval. Thus if we divide the interval into subintervals of equal length1/n and assign
a bin to each interval, we know that on average,1 item will fall into each bin. It can be shown that the
expected time to sort the items in a single bin will be constant, and thus the expected time to sequentially
sort all the items in all the bins will be linear. The algorithm then simply places items in bins (usually
implemented as linked lists) and sorts the items in each bin.

Unfortunately, a straightforward parallelization of the above technique does not lead to an efficient
algorithm. The first problem is placing items in bins. The expected maximum number of items in a bin is

6

Θ(log n/ log log n) [19], and thus it would take that many naive attempts before all items were placed in
bins. The other problem is that assuming each processor tookone bin to sort, the expected maximum time
would beΩ(log n/ log log n). However, we show that we can still use the bin technique, butin a much more
careful way, to achieve an ultra-fast expected time parallel algorithm.

The algorithm for Padded Sorting is logically divided into two sections. The first is the placement
of items into bins, and the second is sorting within bins. These sections are further divided into separate
stages. Between the stages we will use a processor reallocation procedure described below. This processor
reallocation could fail either because not enough items succeeded in the previous stage or because the items
that did not succeed were badly arranged. If this happens, werevert to a deterministic logarithmic parallel
sorting algorithm. We will show that the probability of thishappening is less thanO(n−1), so it will not
increase the expected running time of our algorithm.

3.1 Processor Reallocation

Here we give aΘ(log log n/ log log log n) expected time algorithm that can be used to approximately evenly
distribute the processors over a random set of problems which need to be solved. (For the Placement in Bins
section, this will distribute processors evenly to unplaced items, and for the Sorting within Bins section, this
will distribute processors evenly over bins which have not been completely sorted.)

Formally, letc ≥ 1 andm ≥ n log log log n/ log log n be integers, and letp be a value between1/ logc n
andlog log log n/4 log log n. Assume we have an arrayA of sizen in which there is a set of marked posi-
tions, and this set is taken from a distribution with the properties that (1) for any given number of marked po-
sitionss, any set of positions of sizes is equally likely to be marked, and (2) the probability that the number
of marked positions is larger thannp is O(n−2). Then withm processors and inΘ(log log n/ log log log n)
time we can with high probability allocate from one tom/4np unique processors to each marked position.
The probability of failing will beO(n−2). We need the following Lemma.

Lemma 3.1 If we partitionA into n/4 logc+1 n groups of size4 logc+1 n, then the probability that there are
more than16p logc+1 n marked positions in any group isO(n−2).

Proof: First we can assume thatA contains at mostnp marked positions, since the probability that it does
not is O(n−2). Now we analyze the probability of more than16p logc+1 n marked positions in a given
group. Note that for a given positionj in this group, even conditioning on any other positions in this group
being marked or unmarked, the probability of positionj being marked is at most2p. Let Z be the number
of marked positions in this group. ThenZ is a random variable which is dominated by a random variable
Z ′ ∼ B(4 logc+1 n, 2p). Using a Chernoff bound we obtain

Pr(Z ≥ 16p logc+1 n) ≤ Pr(Z ′ ≥ 16p logc+1 n)

≤ 1

232p logc+1 n/9

≤ 1

n3.5
.

Now we can bound the probability of having over16p logc+1 n marked positions in any group by summing
the probability of this occurring in one group over all groups. (Note that because we are simply summing
probabilities, this bound applies regardless of dependencies between groups.) Since there are fewer thann
blocks, the total probability of any group having more than16p logc+1 n marked positions is at mostn−2.5.
�

The Processor Reallocation algorithm proceeds as follows.We assign4m logc+1 n/n processors to each
group and perform a compress operation inΘ(log log n/ log log log n) time. We then perform a prefix sum

7

in each group to count the number of marked items. If a processor finds that one of the prefix sums is
greater than16p logc+1 n, then we say this processor has failed. We perform a global ORto inform all the
processors of a failure. It is the responsibility of the caller of this reallocation procedure to decide what
to do on a failure. If there is no failure, then in each group, we will havem/4np processors to allocate
to each marked item. Letk be the number of processors we wish to allocate to each markeditem, where
1 ≤ k ≤ m/4np. To the marked item at positioni in the compressed array, we will allocate processorski
to k(i + 1).

3.2 Random Placement Procedure

We will also use a randomized procedure for placing (and compressing and sorting)m items into an array of
sizek, assuming that each item has a processor assigned to it. AssumeA is the array of sizek, and assume
processorpi is assigned to itemi. Processorpi then performs the following procedure. First it chooses a
randomr between0 andk− 1, and writesi into A[r]. Then it readsA[r]. If it readsi, it sets a local variable
Succ= 1, else it sets Succ= 0. If Succ= 1, it participates in a compression overA of the successful writes.
Assume it ends up in positions after compression. Ifs = 0, it considers itself the designated processor.
Then (even if Succ= 0 or s 6= 0) it participates in a global AND over the Succ values of allm processors.
Now if Succ= 1, it sets AllSucc to be the result of the global AND. Otherwise, it sets AllSucc= 0. (Note
that AllSucc= 1 if and only if all processors were successful in their writes. The key to this fact is that if
any processor had Succ= 1, then there will be a designated processor, and the global AND will return the
correct answer.) Now if AllSucc= 1, processorpi writes the actual itemi to A[s], and participates in a Sort
of the compressed list of items.

When this procedure is used in the Padded Sorting algorithm,we will specify the algorithms to be used
for compression and sorting.

3.3 Processor Choice Procedure

We will encounter the situation in which we would like to choose one processor out of many, only knowing
that each processor has a unique index from1 to k. (Note that there might be fewer thank processors, and
for any given indexi, it might be that no processor has that index.) To do this we use an array of sizek, and
have each processor mark a position according to its index. Then we perform a compression in the array,
and choose the processor that ends up in the first position.

When this procedure is used we will specify the algorithm to be used for compression.

3.4 Padded Sort Algorithm

In this section, we give the algorithm for padded sort. It is straightforward to show that assuming we do not
revert to a deterministic sorting algorithm, the running time of each stage is bounded byO(log log n/ log log log n).
Therefore in the analysis, we simply prove that the probability of reverting to a deterministc sorting algo-
rithm isO(n−1)

3.4.1 Placing Items in Bins

In this section, we assume that the unit interval is divided into n equally sized subintervals, and a bin is
associated with each subinterval. Placing the items in binswill be carried out in five stages, with processor
reallocations between the first four stages. The fifth stage will simply merge the results from the first four
stages into an array of sizen+o(n) in which items are sorted by bins, items in the same bin are in consecutive
locations, and at most the first16 log log n/ log log log n items in each bin are not sorted.

8

Number of processors
Stage assigned to each Items placed into Total unplaced items

unplaced item (with high probability)
1 1/v bin array n/4v

2 1 array of size8(log log n)3 n/32(log log n)3

per block
3 8 log log n array of size8(log log n)3 n/256 log5 n

per block
4 64 log4 n array of size4 log3 n 0

per block
5 gather items (sorted by bins) into an arrayF of sizen + o(n)

Table 1: Summary of the five stages for placing items in bins.

Assume the input is given in arrayI. For each itemi, Bin(i) = ⌊n · I[i]⌋, or equivalently, the bin in
which item i should be placed. Also Block(i) = ⌊Bin(i)/ log log n⌋, or the block (oflog log n bins) in
which itemi should be placed. Let PO be an array that stores for each inputits position in its bin if it is
placed in Stage 1, and otherwise−1. Let UNP be an array that stores for each input a binary value indicating
whether it has been placed. Let CO be another array of sizen indicating the number of items placed in each
bin in Stage 1. Letv = log log n/ log log log n. Table 1 summarizes the five stages for placing items in bins.

Initialization Initialize each element of PO to−1, each element of UNP to1, and each element of CO to
0. Also for another arrayD of sizen, initialize each element to0.

Stage 1: Split then items into16v groups. For each group perform the following constant time procedure.
Each processori (0 ≤ i < n/16v) writes i to D[Bin(i)], and then readsD[Bin(i)] to see if its
write was successful. If so, it writes0 to D[Bin(i)], sets UNP[i] = 0, sets PO[i] to CO[Bin(i)], and
increments CO[Bin(i)].

Analysis of Stage 1:For each item there will be at most a1/16v probability of not being assigned to the
lowest numbered processor writing to its bin. By a Chernoff bound, the probability of this occuring
to more than twice the average number of items in a group isO(n−2). Each of these items implies at
most 1 other processor in a write conflict, and thus the probability of more than4n/(16v)2 = n/64v2

items from a group not being written is thanO(n−2). The location of these items within the group is
obviously random. Thus, the following reallocation procedure will perform with probability of failure
O(n−2)

Reallocation 1: Let n/v2 processors be associated with each group ofn/v items. Then in each group
of items in parallel, perform the Processor Reallocation procedure to assign one processor to each
marked (i.e. unplaced) item. If the reallocation fails, revert to the deterministic sorting algorithm.

Stage 2: For each blockb, using the processors assigned to each itemj such that Block(j) = b, perform
a random placement procedure into an arrayAb of size(8 log log n)3. In this procedure, use marked
compression as the compression algorithm, and Cole’s parallel merge sort for the sort algorithm. If the
procedure succeeds let each processor mark its item as placed. If the procedure fails for blockb, (i.e.
AllSucc = 0 for each processor) then repeat the procedure until either it succeeds, or the procedure
has been run four times.

Analysis of Stage 2:From Lemmas 2.1 and 2.2, we see that the probability that there are over24n/ log7 n
items from blocks with over8 log log n items in each isO(n−3). By Lemma 2.3 the probability that

9

a block with≤ 8 log log n items will fail in all four random placement attempts is≤ (8 log log n)−4.
By a Chernoff bound, we can show that the probability of over twice the average number occuring is
O(n−3). Thus the probability that we have over

2n(8 log log n)

(log log n)(8 log log n)4
+

24n

log7 n
≤ n

32(log log n)3

items which have not been placed isO(n−2). Within each group these items are at random positions.
Also, given any distribution of items between the groups (and even if all items were in the same group)
the following reallocation procedure will perform with probability of failureO(n−2).

Reallocation 2: Let n/v2 processors be associated with each group ofn/v items. Then in each group
of items in parallel, perform the Processor Reallocation procedure to assign8 log log n processors
to each unplaced item. (We may assume that each processor, inaddition to knowing the item it is
assigned to, also knows its rank in the list of processors assigned to its item.) If the reallocation fails,
revert to the deterministic sorting algorithm.

Stage 3: For each blockb, let B′

b be an array of size8 log log n and letA′

b be an array of size(8 log log n)3.
For each blockb, and for eachi ∈ {0, . . . , 8 log log n − 1}, let C ′

b,i be an array of size(8 log log n)3.
Now for each blockb and eachi ∈ {0, . . . , 8 log log n− 1}, using the processors with ranki assigned
to each itemj such that Block(j) = b, perform a random placement procedure into arrayC ′

b,i. In
this procedure, use marked compression as the compression algorithm, and Cole’s parallel merge sort
for the sort algorithm. If the procedure succeeds for a givenpair (b, i), then the designated processor
p for (b, i) participates in a processor choice procedure in arrayB′

b. In this procedure use marked
compression as the compression algorithm. The processor that is chosen then broadcasts that fact to
other processors with the same rank, and these processors mark their items as placed, and transfer
their list of sorted items to arrayA′

b.

Analysis of Stage 3:From Lemmas 2.1 and 2.2, we see that the probability that there are over24n/ log7 n
items from blocks with over8 log log n items in each isO(n−3). By Lemma 2.3 the probability that a
block with≤ 8 log log n items will fail in all 8 log log n random placement attempts is≤ 2−8 log log n.
By a Chernoff bound, we can show that the probability of over twice the average number occuring is
O(n−3). Thus the probability that we have over

2n(8 log log n)

log8 n
+

24n

log7 n
≤ n

256 log5 n

items which have not been placed isO(n−2). Within each group these items are at random positions.
Also, given any distribution of items between the groups (and even if all items were in the same group)
the following reallocation procedure will perform with probability of failureO(n−2).

Reallocation 3: Let n/v2 processors be assigned to each group ofn/v items. Then in each group of
items in parallel, perform the Processor Reallocation procedure to assign64 log4 n processors to each
unplaced item. If the reallocation fails, revert to the deterministic sorting algorithm. Otherwise, let
Item(p) be the item assigned to processorp, and let Rank(p) be the rank of processorp in those
processors assigned to Item(p). Let the superrank of a processorp be ⌊Rank(p)/64 log3 n⌋, and let
the subrank ofp be Rank(p) (mod 64 log3 n). Let a processorp with subrank0 be called a main
processor, and any processorp′ assigned to the same item asp and with the same superrank asp, be
called an auxiliary processor forp.

Stage 4: For each blockb, let B′′

b be an array of sizelog n and letA′′

b be an array of size(4 log n)3. For
each blockb, and for eachi ∈ {0, . . . , (log n) − 1}, let C ′′

b,i be an array of size(4 log n)3. Now for

10

each blockb and eachi ∈ {0, . . . , (log n) − 1}, using the main processors with superranki assigned
to each itemj such that Block(j) = b, perform a random placement procedure into arrayC ′′

b,i. In this
procedure, use the auxiliary processors to perform compression by computing prefix sums over the
number of succesful writes before their main processor’s successful write (if the main processor was
successful). In the same manner, use these auxiliary processors to sort by computing prefix sums over
the number of items smaller than their main processor’s item. If the random placement procedure
succeeds for a given(b, i), then the designated processorp for (b, i) participates in a processor choice
procedure in arrayB′′

b . In this procedure, again use the auxiliary processors to perform compression,
as above. The processor that is chosen then broadcasts that fact to the other main processors with the
same superrank. Then these processors mark their items as placed, and transfer their list of sorted
items to arrayA′′

b . After this, perform a global OR to determine if any block failed in all of its random
placement attempts. If so, revert to the deterministic sorting algorithm.

Analysis of Stage 4: In this stage we makelog n independent attempts in each block to place its items into
random positions in arrays of size(4 log n)3. ¿From Lemma 2.3, we know that for each independent
attempt, if the number of items in the block is≤ 4 log n, then the probability of not placing the items
in one attempt is at most1/4 log n. Then by a Chernoff bound, we can see that the probability of all
log n attempts failing isO(n−2). ¿From Lemma 2.2, the probability that any block has over4 log n
items isO(n−3), so the probability that any block will fail to have a conflict-free placement must be
O(n−2).

Stage 5: For each blocki, merge the items placed in Stages 2, 3, and 4 (from arraysAi, A′

i, andA′′

i)
using the processors assigned to them in Reallocation 1. Then using segmented prefix sums, count the
number of items in each binb placed in Stages 2, 3, and 4. Add this to CO[b]. Now for each superblock
j of log4 n consecutive blocks, perform the following. Uselog4 n log log log n/ log log n processors
to perform a prefix operation over thelog4 n log log n positions in the CO array corresponding to
the bins in this superblock. This will find for each binb, the number of items that precede it in the
superblock. Now using a global OR, check if there are more than (log4 n + log3 n) log log n items in
any superblock. If so, revert to a deterministic sorting algorithm. Otherwise, letF be the output array
of sizen + (n/ log n), and letx = (log4 n + log3 n) log log n. Let S(b) be the number of items that
precede binb in the superblock. Now for each group ofn/16v items perform the following constant
time procedure. Each processori (0 ≤ i ≤ n/16v) writes itemi to F [jx+S(b)+PO[i]], if PO[i] ≥ 0.
After this, place the items merged from Stages 2, 3, and 4 after the last item placed from Stage 1.

Analysis of Stage 5:By Lemma 2.4, the probability that more than(log4 n + log3 n) log log n items fall
into any superblock isO(n−2).

3.4.2 Sorting Within Bins

Assume we have correctly placed then items into their corresponding bins. Now we must sort the items
within each bin. This procedure is divided into two stages, with a reallocation of processors between the
stages. Again letv = log log n/ log log log n.

Stage 1: Then bins are divided equally among the processors, and each processor is given at most144v
steps to try to sort the items in itsv bins. The processors can use a standard serial sorting algorithm,
such as MergeSort.

Analysis of Stage 1:The left hand side of the inequality in Lemma 2.5 is the maximum probability of
exactlyk items landing in one bin given that we have seen≤ n/2 other bins. Now assume we have
a serial sorting algorithm that sortsk items in exactlyck log k steps, for some constantc. Then the

11

probability that it takes exactly4ct steps to sort a bin will be less than1/et. Thus the time to sort a bin
is bounded by a simple exponential distribution. Without loss of generality, we can assume4ct ≤ 8t.

In this stage, each processor hasv bins to sort and is given a total of144v steps. 80v steps
will take care of sorting all bins with fewer than10 items. Now we will bound the probability
that more thann/4v(log log n)2 groups ofv bins (each with over10 items) take more than64v
steps each to sort. From the discussion above, the time to sort a bin is bounded by an exponential
distribution. LetZ be the time to sortn/4(log log n)2 bins. ThenZ is dominated by a random
variableZ ′ ∼ Γ(n/4(log log n)2, 1/8). We can bound the tail ofZ ′ using a Chernoff bound, and
multiplying by the number of possible choices ofn/4v(log log n)2 out of n/v groups, we see that
Pr(Z ≥ 16n/(log log n)2) ≤ O(n−2). Also, the processors that fail are randomly distributed, so the
following reallocation procedure will perform with failure probabilityO(n−2).

Reallocation 1: Perform the Processor Reallocation procedure to assign(log log n)2 processors to each
unfinished processor, and more specifically,log log n to each of the unfinished processor’s bins. If the
reallocation fails, revert to the deterministic sorting algorithm.

Stage 2: For each binb, deterministically sort the at most16v unsorted items inb. Now binb has at most 2
sorted sublists in it. If CO[b] ≤ 2 log log n, merge the lists using thelog log n processors assigned to
the bin in the Reallocation 1 of Sorting Within Bins. Otherwise, merge the lists using the processors
assigned in Reallocation 1 of Placing Items into Bins to the items placed in this bin in Stages 2, 3, and
4. In either case, there will be at most twice as many items as processors.

Analysis of Stage 2:Stage 2 is deterministic and always succeeds.

It is a simple matter to make sure that each unused location contains the value NULL, and this completes
Padded Sort.

We have therefore proven the following theorem.

Theorem 3.1 Givenn values taken from a uniform distribution over the unit interval, in
Θ(log log n/ log log log n) expected time and usingn log log log n/ log log n processors, these values can
be arranged in sorted order in an array of sizen + o(n) with the value NULL in all unfilled locations.

We note that although the size of the output is onlyn+o(n), we actually use superlinear (n ·polylog(n))
space during the Padded Sort algorithm.

4 Applications of Padded Sort

By having each processor choose a random number uniformly from [0, 1] and performing a Padded Sort,
we will obviously be left with the processors in random order. We can easily obtain a random cycle of
the processors from this using an algorithm for chaining [10], and we can obtain a random permutation
of the processors by compressing the padded list using a prefix sum operation. (In a random cycle of
processors, each processor contains a link to another processor, the links form a simple cycle, and each
possible cycle is equally likely.) Thus, by using the PaddedSort algorithm given above, a random cycle
can be constructed inΘ(log log n/ log log log n) expected time withn log log log n/ log log n processors,
and a random permutation can be constructed inΘ(log n/ log log n) expected time withn log log n/ log n
processors.

This result is not optimal, as shown by Gil, Matias, and Vishkin [17], who give an algorithm to construct
a random permutation inΘ(log∗ n) expected time usingn/ log∗ n processors, wherelog(1) n ≡ log n,
log(i) n ≡ log(log(i−1) n) for i > 1, andlog∗ n ≡ min{i : log(i) n ≤ 2}.

12

We note that the Padded Sort algorithm given above can also beviewed solely as a item distributing pro-
cedure, which simply places items into their correspondingbins. This item distributing property makes the
Padded Sort algorithm very useful in solving many other “proximity” problems inΘ(log log n/ log log log n)
expected time withn log log log n/ log log n processors. We show some important examples here.

4.1 All Nearest Neighbors

In this problem we are givenn points taken from a uniform distribution over the unit square, and we are
asked to find each point’s nearest neighbor. To do this, we follow the technique of Bentley, Weide, and
Yao [7] and divide the square inton equal subsquares in a

√
n × √

n grid. The points can be placed into
bins corresponding to these subsquares just as in the PaddedSort algorithm. To find the nearest neighbor
to a point, we simply examine the subsquares around that point in a spiral fashion until we are sure we
have found the nearest neighbor. The probability of a searchtaking more thanKi steps has been shown
to bee−i, for some K [7]. Thus the search time is bounded by a simple exponential distribution, and this
enables us to use techniques similar to the ones used in Padded Sorting (where sorting time per bin was
bounded by an exponential distribution) to find the nearest neighbors inΘ(log log n/ log log log n) time
usingn log log log n/ log log n processors. The details here are not complicated and are left to the reader.

4.2 Relative Neighborhood Graph

The procedure for constructing the Relative Neighborhood Graph is very similar to the one for solving All
Nearest Neighbors. We refer the reader to Katajainen, Nevalainen, and Teuhola [22] for the details of the
differences.

4.3 Voronoi Diagram

We construct the Voronoi Diagram with two separate procedures, one which constructs the part inside the
unit square, and one which constructs the part outside the unit square. The procedure for constructing
the Voronoi Diagram inside the unit square will be very similar to the one given above for solving All
Nearest Neighbors. We refer the reader to Bentley, Weide, and Yao [7] for the details of the transformation.
Constructing the Outer Voronoi Diagram, that part of the Voronoi Diagram which lies outside the unit
square, requires more work, but it too can be accomplished inΘ(log log n/ log log log n) expected time
usingn log log log n/ log log n processors. We show the details here.

We will use the following lemmas.

Lemma 4.1 Given a set ofn points taken from a uniform distribution in the unit square,and given a region
R within the unit square of areap, wherelog n/n ≤ p ≤ 1, the probability that over4pn points lie within
this region is less than1/n2.

Proof: Let Z be the number of points which lie within the regionR. ThenZ ∼ B(n, p), and by a Chernoff
bound,

P (Z ≥ 4np) ≤ 4−np ≤ 4− log n ≤ 1

n2
.

�

Lemma 4.2 Given a set ofn points in the plane, one can find the Voronoi cell around a point in constant
time withn2+ǫ processors.

13

Proof: To find the Voronoi cell around a pointp we simply need to find the intersections of the halfspaces
defined by the perpendicular bisectors betweenp and the othern − 1 points. Thus, for each perpendicular
bisectorb, we must find the section (if it exists) which is not behind theother perpendicular bisectors, when
viewed fromp. Each of the other bisectors will restrict the visible section ofb, and withn1+ǫ processors we
can find the most restrictive limits in constant time. We willdo this simultaneously for each perpendicular
bisector. If the most restrictive limits on a bisector definea non-empty interval then this interval is an edge
to the Voronoi cell ofp. �

Corollary 4.1 Given a set ofn points in the plane, one can find the Voronoi diagram in constant time with
n3+ǫ processors.

Now we define three strips around the edge of the unit square. LetR be a strip of width2 log n/n0.5, S
be a strip of width2/n0.7, andT be a strip of width1/n0.7 (see Figure 1). Note thatT ⊂ S ⊂ R. Also note
that the probability of any points not inR contributing to the Outer Voronoi Diagram is less than1/n (shown
in Bentley, Weide, and Yao), and so we only need to be concerned with points inR. We will describe how
to find the Outer Voronoi Diagram from the points along one side of the unit square. The other sides and the
corners will follow with similar arguments. The points inR along one side are uniformly distributed so we
assume they can be placed in sorted order using a Padded Sort.

First we will find the contribution to the Outer Voronoi Diagram from the points in the areaR−S. From
Lemma 4.1 we see that the probability of more thanO(n0.5 log n) points inR − S is less than1/n2. Also,
given a pointp in R−S, the probability that no points lie inT for a length of2 log2 n/n0.3 in either direction
from p is less thane−2 log n ≤ 1/n2. Then it is easy to see that only points within a distance4 log2 n/n0.3

from p in R would have any affect on the Outer Voronoi Cell ofp (see Figure 2). By Lemma 4.1, we see that
the probability of more thanO(n0.2 log n) points in this region is less than1/n2. Now if we assignO(n0.45)
processors to each point inR − S, we can find all of their Voronoi cells in constant time by Lemma 4.2.

Now we must find the Outer Voronoi Cell for each point inS. We note that by Lemma 4.1 the probability
that there are more thanO(n0.3) points inS is less than1/n2, and by the above discussion, the probability
that overO(n0.2 log n) points inR−S affect the Outer Voronoi Cell of a point inS is less than1/n2. Thus
for each pointp in S, to construct the Outer Voronoi Cell, we simply must consider theO(n0.3) points inS
and theO(n0.2 log n) points closest top in R−S. Then to each pointp in S we can assignn0.65 processors
and use them to find the Outer Voronoi Cell ofp in constant time, according to Lemma 4.2. SinceS contains
O(n0.3) points, all the Outer Voronoi Cells can be found simultaneously, and this completes the construction
of the Voronoi Diagram.

4.4 Delaunay Triangulation

From Preparata and Shamos [28], we know that the Delaunay Triangulation is simply the straight line dual
of the Voronoi Diagram. Thus we can find the Voronoi Diagram asabove, and easily construct the dual in
Θ(log log n/ log log log n) time.

4.5 Largest Empty Circle

From Preparata and Shamos [28], we know that the midpoint of the Largest Empty Circle must be on a
vertex of the Voronoi Diagram, or on the intersection of a line segment from the Voronoi Diagram and the
Convex Hull.

We find the Voronoi Diagram as above. To find the Convex Hull, first we find the extreme points (i.e.
those points which are corners of the Convex Hull) inΘ(log log n/ log log log n) time, using the constant
time algorithm given in Stout [35], but simulatinglog log n/ log log log n processors with1 processor. Then
we use the following lemma.

14

R

S

T

Figure 1: Strips used in computing the Outer Voronoi Diagram.

R

ST

p

Figure 2: Only points within the dotted lines can affect the Outer Voronoi Cell of pointp.

15

Lemma 4.3 Givenn points taken from a uniform distribution in the unit square,the probability that there
will be more thanlog2 n extreme points isO(1/ log3 n).

Proof: It is easy to see that the number of extreme points is less thanor equal to the total number of maximal
points found in the following four orientations of the plane: standard, rotated by90◦, rotated by180◦, and
rotated by270◦. Since the probabilities for all four orientations are equivalent, we simply need to show that
the probability of more thanlog2 n maximal points in the standard orientation is less thanO(1/ log3 n).

Let us number the points from1 to n by increasingy coordinate. Since thex coordinates andy co-
ordinates of points chosen from a uniform distribution are independent, we see that if points are placed in
order by decreasingx coordinate, then any permutation of1 to n is equally likely. We consider positionk a
maximal position if the number stored at positionk is larger than all the numbers stored at positions before
k. The number of maximal positions is then equal to the number of maximal points.

The analysis of the number of maximal positions is given in Knuth [23]. The average is less thanlog n
and the standard deviation is less than

√
log n. Then by Chebyshev’s Inequality, the probability that there

are more thanlog2 n extreme points isO(1/ log3 n). �

We attempt to place the extreme points into an array of sizelog4 n. By Lemma 2.3 and Lemma 4.3
the probability of failing is less than1/ log2 n. If we do fail, we simply find the Largest Empty Circle
deterministicly. It is trivial to show that this takesO(log2 n) time, so that it will add only a constant to the
expected time.

If we succeed, then inΘ(log log n/ log log log n) time we can sort the extreme points and construct the
Convex Hull. The probability that any point not in the outer2 log n/

√
n width strip around the outside of

the unit square is not inside the Convex Hull is less than1/n2, so we only must check theO(
√

n log n)
vertices of the Voronoi Diagram in this strip to see if they lie inside the Convex Hull. We can assignlog2 n
processors to each vertex and check each one of these simultaneously in constant time. We then perform
a max operation on the at mostn empty circles corresponding to those vertices inside the Convex Hull.
Similarly, we find the intersections of the Voronoi Segmentswith the Convex Hull, and perform amax
operation on the at mostn empty circles corresponding to those intersections. The larger of the two circles
found will be the Largest Empty Circle.

We summarize the results given in this section in the following theorem.

Theorem 4.1 Givenn points taken from a uniform distribution over the unit square, in
Θ(log log n/ log log log n) expected time and usingn log log log n/ log log n processors, we can

1. solve the All Nearest Neighbors problem,

2. construct the Relative Neighborhood Graph,

3. construct the Voronoi Diagram,

4. construct the Delaunay Triangulation, and

5. find the Largest Empty Circle.

5 Closest Pair

Rabin [29] suggests the following algorithm for finding the closest pair ofn points in linear time. Take
a random sample ofn2/3 points and find the closest pair of this sample recursively. Then form a lattice
with a mesh size equal to the distance between the closest pair in the sample. Obviously the points of the
closest pair must be within one square of each other, and Rabin shows that with high probability onlyO(n)
combinations of points have this property. Finding the minimum of these will thus take linear time, and the
recurrence is bounded, so the total time of the algorithm is also linear.

16

A trivial parallelization of this algorithm will not work well because there is only a bound ofO(
√

n) on
the number of points in any square. This will cause major problems when we try to sort points by squares.
Moreover, we are not able to apply any techniques from PaddedSort because there is no assumption on
the distribution of points. Fortunately, we can still use most of Rabin’s ideas and simply strengthen his
intermediate results to obtain a good parallel algorithm. Before we begin to dicuss these, though, we will
present some technical lemmas to aid our analysis.

Lemma 5.1 Givenk < 1, a random sample of sizenk is drawn from a setS of sizen. Then the probability
that n1−k log n or more items from the setS are smaller than the minimum item in the random sample is
less than1/n.

Proof: The probability that any item chosen from the setS is greater thann1−k log n items is at most
1 − (log n/nk). Then the probability that every item from the random samplehas this property is less than
(1 − (log n/nk))n

k ≤ e− log n ≤ 1/n. �

Lemma 5.2 The minimum (or equivalently, the maximum) ofn items can be found in constant expected
time withn processors.

Proof: We assume one item is assigned to each processor. We take a random sample by having each
processor decide to include its item in the random sample with probability1/n1/2. Using a Chernoff bound,
we see that the probability of a sample with more than(3/2)n1/2 items or less than(1/2)n1/2 items is less
than1/n. ¿From Lemma 2.3, these items can be placed into an array of size n3/4 in constant time with
probability of failure less than1/n. Now with n processors we can find the minimum of the items in the
random sample in constant time. By Lemma 5.1 the probabilitythat there are more than2n1/2 log n items
which are less than the minimum in the sample is less than1/n, and by Lemma 2.3 these can be written to
an array of sizen3/4 in constant time with probability of failure less than1/n. Then the minimum of these
items (which is the minimum of alln items) can be found in constant time withn processors. If any step
fails, we simply run aΘ(log log n) time deterministic algorithm to find the minimum. This will not add
more than a constant to our expected time.�

We now return to the description of a parallel closest pair algorithm. We begin by defining the notation
used in Rabin [29]. LetS = {x1, . . . , xn} be a set of points in the plane. IfS = S1 ∪ . . . ∪ Sk is a
decompositionD of S and|Si| = ni, then the measure ofD is defined asN(D) =

∑k
i=1 ni(ni−1)/2. This

is simply the number of possible pairings of points which areboth in the same subset of the decomposition.
If we know that the nearest pair of points is within one of theSi, then we simply need to find the minimum
distance between theseN(D) pairs of points.

Let Γ be a square lattice of mesh sizeδ. Let δ(S) be the distance between the closest pair inS. If
δ(S) < δ, then the closest pair must lie within the same square ofΓ or in two squares with a common
corner. LetN(Γ) denote the measure of the decomposition ofS formed by the latticeΓ. Also letN ′(Γ, t)
denote the measure of the decomposition ofS formed by the latticeΓ but only including those subsets which
have more thant points.

Lemma 5.3 LetΓ be a lattice of mesh sizeδ. Construct a latticeΓ1 by choosing a fixed lattice pointy of Γ
as a lattice point ofΓ1 and forming the lattice with mesh size2δ and lines parallel to those ofΓ. Then for a
fixed setS of n points,

N(Γ1) ≤ 16N(Γ) + 24n

N ′(Γ1, 4) ≤ 32N(Γ).

17

Proof: The first inequality is proven by Rabin. Now consider a squarein Γ1 with at least5 points. It must
have a subsquare inΓ with at least2 points and thus the measure in the square is at most

4k(4k − 1)

2
≤ 32k(k − 1)

2
,

wherek ≥ 2 is the maximum number of points in any of the four subsquares.We obtain the second
inequality in the lemma by summing over all squares inΓ1 with at least5 points.�

Corollary 5.1 There exists a constantc such that for everyS, Γ, andΓ1 as above, ifN(Γ) ≤ n0.4, then
N(Γ1) ≤ cn andN ′(Γ1, 4) ≤ cn0.4.

If we start from a lattice in which all points are in individual squares, we can keep doubling this lattice
as in Lemma 5.3 until we findN(Γ1) ≥ n0.4. At this point,N(Γ) ≤ n0.4, so the conditions of Corollary 5.1
still hold for Γ1. Let Γ0 = Γ1 at this point, and letδ0 be the mesh size ofΓ0.

Lemma 5.4 LetD be a partition of the setS, |S| = n, andn0.4 ≤ N(D). If n0.9 pairwise different points
are drawn at random fromS, then the probability that two elements will be chosen from the same set ofD
is at least1 − 2e−cn0.1

, for somec.

Proof: Rabin shows that we can substitute a partitionD′ for D in which exactly one subset has more than1
element,λn0.4 ≤ N(D′) for some constantλ, and the probability that two elements will be chosen from the
same set ofD′ is greater than the equivalent probability inD. Thus ifp is the size of the only non-singular
set inD′, then2λn0.4 ≤ p(p − 1) so thatcn0.2 ≤ p for c ∼

√
2λ.

The probability that in one choice fromS we miss this non-singular subset is1− p/n, which is smaller
than1 − c/n0.8. Then forn0.9 choices the probability of all missing this subset is smaller than

(

1 − c

n0.8

)n0.8(n0.1)
≤ e−cn0.1

.

The probability that two elements are chosen from this set isthus greater than1 − 2e−cn0.1
. �

SinceN(Γ0) ≥ n0.4, if we take a random sample of sizen0.9, we know that two points must fall within
a single square ofΓ0 with probability 1 − 2e−cn0.1

. Then the distanceδ between the closest pair of points
will be less than

√
2δ0. Thus if we consider a latticeΓ with mesh sizeδ, each square will be covered by a

square found when quadruplingΓ0. We can see then thatN ′(Γ, 64) ≤ O(n0.4) andN(Γ) ≤ O(n).
The actual algorithm proceeds as follows. We take a random sample by having each processor decide

to include its point in the random sample with probability1/n0.1. Using a Chernoff bound, we see that
the probability of a sample with more than(3/2)n0.9 points or less than(1/2)n0.9 points is less than1/n.
¿From Lemma 2.3, these points can be placed into an array of sizen0.95 in constant time with probability of
failure less than1/n. We find the closest pair in this random sample recursively. Then we form a lattice with
a mesh size equal to the closest distance found and find the number of squares vertically and horizontally
which we must use to cover all the points. This again can be done with the constant expected time minimum
and maximum finding algorithm. We then assign a position in memory to each square in this region.

We will place the points into squares by writing each point simultaneously to the position corresponding
to its square. If a point succeeds in being written, then it isplaced in an array of size64 for its square.
Otherwise, it tries again. We do this64 times. After this, if any points are left over, their processors write
denseto the positions corresponding to their squares. All processors can then tell if their points are in dense
squares. If so, these points will be called thedensepoints. All the points which are in squares with less than
64 points will be calledsparsepoints.

18

We have shown that when one forms this lattice, the number of distance comparisons which must be
made is betweenO(n0.4) andO(n), but that onlyO(n0.4) comparisons come from dense squares. We will
now separately find the closest pair of the dense points, and then find for every point the closest neighboring
sparse point.

To find the closest pair of the dense points, we simply write them into an array of sizen0.45. By
Lemma 2.3 this will take constant time with probability of failure less than1/n. Then we usen0.9 processors
to find the distances between all pairs of dense points. The minimum of thesen0.9 distances can then be
found in constant time withn processors.

For each point, to find the closest neighboring sparse point we simply examine the at most9 · 64 points
in its own and neighboring sparse squares. Then we perform the constant expected time minimum operation
from Lemma 5.2 to find the closest pair of theseO(n) pairs.

The closest pair of all the points must be two dense points or apoint and a neighboring sparse point, so
it can be found simply by comparing the distances of the two pairs found above. Given that after16 stages
of recursion, there will be less thann0.45 points left, and the closest pair of these can easily be foundin
constant time, we have the following theorem.

Theorem 5.1 Givenn points in the plane, we can determine the closest pair of points in constant expected
time usingn processors.

6 Padded Sort Revisited

We note that the lower bound ofΩ(log n/ log log n) time on sortingn items inton locations applies for any
polynomial number of processors. However, Padded Sort, andthe geometry problems which have similar
solutions, all can be solved in constant expected time when one is allowed to usen1+ǫ processors for any
constantǫ > 0. We show how to do this here.

6.1 Padded Sort

First we prove the following technical lemmas.

Lemma 6.1 For largem, givenm items to be randomly placed into an array of sizekm, for some constant
integerk > 1, the probability that there will be a conflict is less than1 − e−m/k.

Proof: Let A be the event that there is a conflict. ThenPr(A) can be bounded by

Pr(A) = 1 − (km)!

(km − m)!
(km)−m

≤ 1 −
(

(

km
e

)km √
2πkm

(

km−m
e

)km−m√
2π(km − m)e1/12(km−m)

)

(km)−m

= 1 −
(

km

km − m

)km−m

e−m

√

km

km − m
e−1/12(km−m)

≤ 1 −
(

k

k − 1

)(k−1)m

e−m

√

k

k − 1

(

1 − 1

12(km − m)

)

≤ 1 −
(

k

k − 1

)(k−1)m

e−m

(

1 +
1

3(k − 1)

)(

1 − 1

12(km − m)

)

≤ 1 −
(

k

k − 1

)(k−1)m

e−m

19

= 1 − 1
(

k−1
k

)(k−1)m
em

≤ 1 − 1

e−(1−1/k)mem

= 1 − e−m/k.

(See B for some of the mathematical details.)�

Lemma 6.2 Given m items to be randomly placed into an array of sizekm, for some constantk, the
probability of failing on all ofe2m/k attempts is less thane−em/k

.

Proof: Let A be the event of failing on all attempts. ThenPr(A) can be bounded by

Pr(A) ≤ (1 − e−m/k)e
2m/k

≤ e−em/k

�

Lemma 6.3 Given an array ofm values from0 to b − 1, the prefix sums can be computed in constant time
with mbm processors.

Proof: Note that there arebm possible sequences ofm values, and we havem processors for each sequence.
Each processor in a sequence will be initialized with the value at its position in the sequence and the prefix
sum at its position in the sequence. Each processor can then check to see if its value is the same as the input
value at its position. A global Or can be used to test for a failure. Exactly one sequence will not have a
failure, and the processors corresponding to this sequencecan write their prefix sums to the output array.�

Lemma 6.4 Givenm values from0 to b−1, and a constant integerk > 0, the prefix sums can be computed
in constant time withmbm1/k(1+log m) processors.

Proof: Compute the prefix sums of groups ofm(k−1)/k values recursively, assigningm(k−1)/kbm1/k(1+log m)

processors to each group. Note that the recursion will stop when there arem(k−1)/k groups ofm1/k values.
At this point each group is assigned more thanm1/kbm1/k

processors, and by Lemma 6.3, the prefix sums
can be computed in constant time.

Now compute the prefix sums over the groups, i.e., over them1/k values from0 to bm(k−1)/k corre-
sponding to the total sum in each group. By Lemma 6.3 these canbe computed in constant time, with
m1/k(bm(k−1)/k)m

1/k ≤ m1/kbm1/k(1+log m) processors.
Now we assign one processor per location. This processor canfind the prefix value for its location by

summing at mostk prefix sums computed at different levels of recursion.�

Lemma 6.5 Givenm items, and a constant integerk > 0, these items can be sorted intom locations in
constant time withm22m1/k(1+log m) processors

Proof: We will assignm2m1/k(1+log m) processors to each item to find its position in the sorted array. For
each itemt, we will comparet with every other itemsi and thus compute an array of lengthm which
contains a1 at positioni if t > si, and otherwise contains a0. The sum of these bits is the position of
t in the sorted list, and by Lemma 6.4, this sum can be found in constant time with the exact number of
processors we have assigned to eacht. �

20

We now return to the constant expected time Padded Sort algorithm which usesn1+ǫ processors. Letj
be a constant integer such that4/j < ǫ. We attempt to place items randomly into the correct block oflog n
bins. By a Chernoff bound, the probability that there are more than4 log n items to be placed in any block
is less than1/n. We allocaten4/j processors to each item, so we can maken4/j = 24 log n/j independent
attempt to place points in the correct block. If we choose thearray size for a block to be16j log n, then
by Lemma 6.2 (withm = 4 log n, k = 4j, and noticing that24 log n/j > e2m/k) the probability of not
having a correct placement in a block is less thane−e4 log n/4j

. Thus the probability of any block not having
a correct placement is less than(n/ log n)e−n1/j ≤ 1/n, for largen. Using a decision broadcast, we can
find a correct placement in each block.

Now we form groups oflog3 n blocks, so that each group haslog4 n bins associated with it. We will sort
the items within these groups. We have at most16j log4 n positions to sort for each group, andn4/j log4 n =
(log4 n)24 log n/j processors for each group. By Lemma 6.5 (withm = 16j log4 n, k = 8, andn large
enough so that(16j log4 n)22(16j log4 n)1/8(1+log(16j log4 n)) ≤ (log4 n)24 log n/j), we can sort these into a
compressed list (assuming we mark each position without an item as greater than any item) in constant
time. Also, in a proof similar to Lemma 2.4, we can show that the probability that there are more than
log4 n + log3 n items in any group is less than1/n. Thus we can now write the items into an array of size
n + o(n) without conflicts, and we are finished.

6.2 All Nearest Neighbors

To solve All Nearest Neighbors withn1+ǫ processors, we will again place items into blocks oflog2 n×log2 n
cells, but use the constant time procedure given above for Padded Sort. Then we can assign each pointnǫ

processors and each one can perform a constant expected timeminimum operation on the distances between
itself and thelog2 n ≤ nǫ neighbors closest to it.

6.3 Relative Neighborhood Graph

An algorithm similar to the one for All Nearest Neighbors will find the Relative Neighborhood Graph in
constant expected time.

6.4 Voronoi Diagram

An algorithm similar to the one for All Nearest Neighbors will find the Voronoi Diagram in the unit square in
constant expected time, and the Outer Voronoi Diagram can befound in constant time as shown previously.

6.5 Delaunay Triangulation

The Delaunay Triangulation can be constructed in constant expected time given the Voronoi Diagram. Since
the Voronoi Diagram can be constructed in constant expectedtime, the Delaunay Triangulation can be
constructed in constant expected time.

6.6 Largest Empty Circle

The Largest Empty Circle must have its midpoint on a vertex ofthe Voronoi Diagram, or on the intersection
of the Voronoi Diagram and the Convex Hull. Withn1+ǫ processors we can find the Voronoi Diagram and
the extreme points in constant time. We see by Lemma 6.5 that we can sort these extreme points in constant
time to form the ordered convex hull. Then we can easily find the vertices of the Voronoi Diagram which
are inside the Convex Hull in constant expected time, and findthe maximum empty circles these imply in
constant expected time. Similarly we can find the intersections of the Voronoi Diagram with the Convex

21

Hull in constant expected time, and find the maximum empty circles these imply in constant expected time.
Comparing these two will give us the Largest Empty Circle.

We sum up the results in this section in the following theorem.

Theorem 6.1 Givenn values taken from a uniform distribution over the unit interval, in constant expected
time and usingn1+ǫ processors, these values can be arranged in sorted order in an array of sizen + o(n)
with the value NULL in all unfilled locations. Also, givenn points taken from a uniform distribution over
the unit square, in constant expected time and usingn1+ǫ processors, we can

1. solve the All Nearest Neighbors problem,

2. construct the Relative Neighborhood Graph,

3. construct the Voronoi Diagram,

4. construct the Delaunay Triangulation, and

5. find the Largest Empty Circle.

7 Conclusion

We have defined an ultra-fast expected time parallel algorithm as one which uses a linear number of proces-
sors and runs inO((log log n)O(1)) expected time. We have presented ultra-fast expected time parallel algo-
rithms for Padded Sort, All Nearest Neighbors, Relative Neighborhood Graph, Voronoi Diagram, Delaunay
Triangulation, Largest Empty Circle, and Closest Pair. Allthe algorithms run inΘ(log log n/ log log log n)
expected time usingn log log log n/ log log n processors and assume that inputs are taken from a uniform
distribution except Closest Pair, which runs in constant time withn processors and makes no assumptions
on the distribution of inputs.

We note that all of these algorithms are optimal in terms of linear speedup, but only Closest Pair is
known to be optimal in terms of running time. It is known that the optimal running time of Padded Sort is
Θ(log∗ n), but in regards to the other problems, an open question is whether any of them can be solved in
o(log log n/ log log log n) expected time with a linear number of processors. As for the case of havingn1+ǫ

processors, we showed these problems could all be solved in constant expected time,

A Probabilistic Tools

One technique we use for bounding the tail of a probability distribution is the Chebyshev Inequality. It states
that given a random variableX with meanµ and standard deviationσ,

P (|X − µ| > rσ) ≤ 1

r2
.

Another technique we use is the Chernoff bound. This can be used when we wish to bound the distribution
of a random variableZ which is the sum ofn independent random variables. For a binomial random varible
Z ∼ B(n, p), whereZ is the sum ofn independent Bernoulli trials with probability of successp, Angluin
and Valiant [5] show that for0 < β < 1, one can obtain the bounds

P (Z ≥ (1 + β)np) ≤ e−β2np/3,

and

P (Z ≤ (1 − β)np) ≤ e−β2np/2.

22

From this we obtain the bound

P (Z ≥ 2np) ≤ 2−4np/9.

Also, for k ≥ 3 we obtain the bound

P (Z ≥ knp) ≤ k−np,

and fork ≥ 6 we obtain the bound

P (Z ≥ knp) ≤ 2−knp.

For a random variable with a gamma distribution,Z ∼ Γ(n, λ), whereZ is the sum ofn independent
random variables with exponential distributions with parameterλ, we obtain for0 < β < 1 the bound

P (Z ≥ (1 + β)n/λ) ≤ e−β2n/6,

and fork ≥ 3 the bound

P (Z ≥ kn/λ) ≤ 2−kn/2.

B Useful Equations and Inequalities

To simplify some of the expressions we derive, we use the following facts.

1 + x ≤ ex, for all x.√
1 + x ≥ 1 + x/3, for 0 ≤ x ≤ 1.

Also, Stirling’s Approximation is often useful. Taken fromKnuth [23],
(x

e

)x √
2πx ≤ x! ≤

(x

e

)x √
2πxe1/12x.

One use of Stirling’s Approximation is to obtain the bound
(

n

k

)

≤ nn

(n − k)n−kkk
≤
(ne

k

)k
.

References

[1] A. Aggarwal, B. Chazelle, L. Guibas, C. O’Dunlaing, and C. Yap. Parallel computational geometry.
Algorithmica, 3:293–327, 1988.

[2] M. Ajtai and M. Ben-Or. A theorem on probabilistic constant depth computations. InProc. 16th ACM
Symp. on Theory of Computing, pages 471–474, 1984.

[3] M. Ajtai, J. Komlós, and E. Szemerédi. AnO(n log n) sorting network.Combinatorica, 3:1–19, 1983.

[4] N. Alon and Y. Azar. The average complexity of deterministic and randomized parallel comparison
sorting algorithms.SIAM J. Comput., 17(6):1178–1192, December 1988.

[5] D. Angluin and L. G. Valiant. Fast probabilistic algorithms for Hamiltonian circuits and matchings.J.
Comput. System Sci., 18:155–193, 1979.

23

[6] P. Beame and J. Hastad. Optimal bounds for decision problems on the CRCW PRAM.J. Assoc.
Comput. Mach., 36(3):643–670, July 1989.

[7] J. L. Bentley, B. W. Weide, and A. C. Yao. Optimal expected-time algorithms for closest point prob-
lems.ACM Trans. Math. Software, 6(4):563–580, December 1980.

[8] O. Berkman, D. Breslauer, Z. Galil, B. Schieber, and U. Vishkin. Highly parallelizable problems. In
Proc. 21st ACM Symp. on Theory of Computing, pages 309–319, 1989.

[9] O. Berkman, B. Schieber, and U. Vishkin. Some doubly logarithmic parallel algorithms based on
finding all nearest smaller values. Technical Report UMIACS-TR-88-79, University of Maryland
Institute for Advanced Computer Studies, 1988.

[10] O. Berkman and U. Vishkin. Recursive *-tree parallel data-structure. InProc. 30th Symp. on Found.
of Comp. Sci., pages 196–202, 1989.

[11] A. K. Chandra, L. J. Stockmeyer, and U. Vishkin. A complexity theory for unbounded fan-in paral-
lelism. InProc. 23th Symp. on Found. of Comp. Sci., pages 1–13, 1982.

[12] B. S. Chlebus. Parallel iterated bucket sort.Inform. Process. Lett., 31(4):181–183, May 1989.

[13] R. Cole. Parallel merge sort. InProc. 27th Symp. on Found. of Comp. Sci., pages 511–516, 1986.

[14] R. Cole and M. T. Goodrich. Optimal parallel algorithmsfor polygon and point-set problems. InProc.
4th ACM Symp. on Comp. Geom., pages 205–214, 1988.

[15] R. Cole, M. T. Goodrich, and C. O’Dunlaing. Merging freetrees in parallel for efficient voronoi
diagram construction. InProc. 17th Intl. Coll. on Automata, Languages, and Programming, pages
432–445, 1990.

[16] R. Cole and U. Vishkin. Approximate and exact parallel scheduling with applications to list, tree, and
graph problems. In27th IEEE Symp. on Foundations of Computer Science, pages 478–491, 1986.

[17] J. Gil, Y. Matias, and U. Vishkin. Towards a theory of nearly constant time parallel algorithms. In
Proc. 32nd Symp. on Found. of Comp. Sci., pages 698–710, 1991.

[18] J. Gil and L. Rudolph. Counting and packing in parallel.In Proc. 15th Intl. Conf. on Parallel Process-
ing, pages 1000–1002, 1986.

[19] G. H. Gonnet. Expected length of the longest probe sequence in hash code searching.J. Assoc. Comput.
Mach., 28:289–304, 1981.

[20] T. Hagerup and T. Radzik. Every robust CRCW PRAM can efficiently simulate a Priority PRAM. In
Proc. 2nd ACM Symp. on Para. Alg. and Arch., pages 117–124, 1990.

[21] T. Hagerup and R. Raman. Waste makes haste: Tight boundsfor loose parallel sorting. InProc. 33rd
IEEE Symp. on Found. of Comp. Sci., pages 628–637, 1992.

[22] J. Katajainen, O. Nevalainen, and J. Teuhola. A linear expected-time algorithm for computing planar
relative neighbourhood graphs.Inform. Process. Lett., 25(2):77–86, May 1987.

[23] D. E. Knuth.The Art of Computer Programming, volume 1. Addison-Wesley, Reading, Massachusetts,
1973.

24

[24] C. P. Kruskal. Searching, merging, and sorting.IEEE Trans. Comput., 32(10):942–947, October 1983.

[25] T. Leighton. Tight bounds on the complexity of parallelsorting.IEEE Trans. Comput., 34(4):344–354,
April 1985.

[26] C. Levcopoulos, J. Katajainen, and A. Lingas. An optimal expected-time parallel algorithm for Voronoi
diagrams. InScandenavian Conf. on Theoretical Comp. Sci., 1988.

[27] P. D. MacKenzie. Load balancing requiresΩ(log∗ n) expected time. In3rd ACM-SIAM Symp. on Disc.
Alg., pages 94–99, 1992.

[28] F. P. Preparata and M. I. Shamos.Computational Geometry: An Introduction. Springer-Verlag, New
York, 1985.

[29] M. O. Rabin. Probabilistic algorithms. In J. F. Traub, editor, Algorithms and Complexity, pages 21–39.
Academic Press, Inc., New York, New York, 1976.

[30] S. Rajasekaran and J. H. Reif. Optimal and sublogarithmic time randomized parallel sorting algo-
rithms. SIAM J. Comput., 18(3):594–607, June 1989.

[31] S. Rajasekaran and S. Sen. Random sampling techniques and parallel algorithm design. In J. Reif,
editor,Synthesis of Parallel Algorithms, pages 411–451. Morgan Kaufmann, San Mateo, CA, 1993.

[32] J. H. Reif and S. Sen. Polling: A new randomized samplingtechnique for computational geometry. In
Proc. 21st ACM Symp. on Theory of Computing, 1989.

[33] R. Reischuk. Probabilistic parallel algorithms for sorting and selection.SIAM J. Comput., 14(2):396–
409, May 1985.

[34] B. Schieber.Design and analysis of some parallel algorithms. PhD thesis, Tel Aviv University, 1987.

[35] Q. F. Stout. Constant-time geometry on PRAMs. InProc. Intl. Conf. on Parallel Processing, pages
104–107, 1988.

[36] L. G. Valiant. Parallelism in comparison problems.SIAM J. Comput., 4:348–355, 1975.

[37] D. E. Willard and Y. C. Wee. Quasi-valid range querying and its implications for nearest neighbor
problems. InProc. 4th ACM Symp. on Comp. Geom., pages 34–43, 1988.

25

