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Center for Space Environment Modeling, The University of Michigan, Ann Arbor,
Michigan, USA

Abstract. The first part of this paper reviews some physics issues representing major
computational challenges for global MHD models of the space environment. These is-
sues include: (i) mathematical formulation and discretization of the governing equations
that ensure the proper jump conditions and propagation speeds, (ii) regions of relativis-
tic Alfvén speed, (iii) regions dominated by strong intrinsic planetary magnetic field
with strong gradients, and (iv) the religiously debated issue of controling the divergence
of the magnetic field. The second part of the paper concentrates to modern solution
methods that have been developed by the aerodynamics, applied mathematics and DoE
communities. Such methods have recently begun to be implemented in space-physics
codes, which solve the governing equations for a compressible magnetized plasma. These
techniques include high-resolution upwind schemes, block-based solution-adaptive grids
and domain decomposition for parallelization. While some of these techniques carry
over relatively straightforwardly to space physics, space physics simulations pose some
new challenges. We give a brief review of the state-of-the-art in modern space-physics
codes. Finally, we describe the space physics MHD code developed at the University
of Michigan and its recent coupling to a thermosphere-ionosphere and inner magneto-
sphere model.

1 Introduction

Global computational models based on first principles represent a very impor-
tant component of efforts to understand the intricate processes coupling the Sun
to the geospace environment. The hope for such models is that they will eventu-
ally fill the gaps left by measurements, extending the spatially and temporarily
limited observational database into a self-consistent global understanding of our
space environment.

Presently, and in the foreseeable future, magnetohydrodynamic (MHD) mod-
els are the only models that can span the enormous distances present in the
magnetosphere. However, it should not be forgotten that even generalized MHD
equations are only a relatively low-order approximation to more complete physics;
they provide only a simplified description of natural phenomena in space plas-
mas.
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2 Non-relativistic Magnetohydrodynamics

The governing equations for an ideal, non-relativistic, compressible plasma may
be written in a number of different forms. While the different forms of the MHD
equations describe the same physics at the differential equation level, there are
important practical differences when one solves discretized forms of the various
formulations.

According to the Lax-Wendroff theorem [37] only conservative schemes can
be expected to get the correct jump conditions and propagation speed for a
discontinuous solution. This fact is much less emphasized in the global magne-
tosphere simulation literature than the more controversial divergence of B issue.
In some test problems the non-conservative discretization of the MHD equa-
tions can lead to significant errors, which do not diminish with increased grid
resolution.

2.1 Primitive Variable Form

In primitive variables, the governing equations of ideal magnetohydrodynamics,
which represent a combination of the Euler equations of gasdynamics and the
Maxwell equations of electromagnetics, may be written as:

∂ρ
∂t + u · ∇ρ+ ρ∇ · u = 0 (1a)

ρ∂u
∂t + ρu · ∇u+∇p− 1

µ0
j×B = 0 (1b)

∂B
∂t +∇ ×E = 0 (1c)

∂p
∂t + u · ∇p+ γp∇ · u = 0 (1d)

where µ0 and γ represent the magnetic permeability of vacuum and the specific
heat ratio of the gas. In addition, the current density, j, and the electric field
vector, E, are related to the magnetic field B by Ampère’s law and Ohm’s law:

j = 1
µ0

∇ ×B (2a)

E = −u×B (2b)

2.2 Gasdynamic Conservation Form

For one popular class of schemes, the equations are written in a form in which the
gasdynamic terms are put in divergence form, and the electromagnetic terms in
the momentum and energy equations are treated as source terms. This gives:

∂ρ
∂t +∇ · (ρu) = 0 (3a)

∂(ρu)
∂t +∇ · (ρuu+ pI) = 1

µ0
j×B (3b)

∂B
∂t +∇ ×E = 0 (3c)

∂Egd

∂t +∇ · [u (Egd + p)] = 1
µ0
j ·E (3d)
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where I is the identity matrix and Egd is the gasdynamic total energy, given by

Egd =
1
2
ρ u2 +

1
γ − 1

p (4)

This formulation is used in several popular magnetosphere codes [20,49], as
well as in the publicly available Zeus code [63].

2.3 Fully Conservative Form

The fully conservative form of the equations is

∂U
∂t

+ (∇ · F)T = 0 , (5)

where U is the vector of conserved quantities and F is a flux diad,

U =




ρ
ρu
B
Emhd


 (6a)

F =




ρu

ρuu+
(
p+ 1

2µ0
B2

)
I− 1

µ0
BB

uB−Bu

u
(
Emhd + p+ 1

2µ0
B2

)
− 1

µ0
(u ·B)B




T

(6b)

where Emhd is the magnetohydrodynamic energy, given by

Emhd = Egd +
1
2µ0

B2 (7)

2.4 Symmetrizable Formulation

Symmetrizable systems of conservation laws have been studied by Godunov [21]
and Harten [30], among others. One property of the symmetrizable form of a
system of conservation laws is that an added conservation law

∂ (ρs)
∂t

+
∂ (ρ s ux)
∂x

+
∂ (ρ s uy)
∂y

+
∂ (ρ s uz)
∂z

= 0

for the entropy s can be derived by a linear combintion of the system of equations.
For the ideal MHD equations, as for the gasdynamic equations, the entropy is
s = log(p/ργ). Another property is that the system is Galilean invariant; all
waves in the system propagate at speeds u ± cw (for MHD, the possible values
of cw are the Alfvén, magnetofast and magentoslow speeds). Neither of these
properties holds for the fully conservative form of the MHD equations.
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Godunov showed that the fully conservative form of the MHD equations
(eq. 5) is not symmetrizable [21]. The symmetrizable form may be written as

∂U
∂t

+ (∇ · F)T = Q , (8)

where

Q = −∇ ·B




0
1

µ0
B
u

1
µ0
u ·B


 (9)

Vinokur separately showed that eq. (8) can be derived starting from the primitive
form, if no stipulation is made about ∇·B in the derivation. Powell showed that
this symmetrizable form can be used to derive a Roe-type approximate Riemann
solver for solving the MHD equations in multiple dimensions [45].

The MHD eigensystem arising from eq. (5) or eq. (8) leads to eight eigen-
value/eigenvector pairs. The eigenvalues and associated eigenvectors correspond
to an entropy wave, two Alfvén waves, two magnetofast waves, two magne-
toslow waves, and an eighth eigenvalue/eigenvector pair that depends on which
form of the equations is being solved. This last wave (which describes the jump
in the normal component of the magnetic field at discontinuities) has a zero
eigenvalue in the fully conservative case, and an eigenvalue equal to the normal
component of the velocity, un, in the symmetrizable case. The expressions for
the eigenvectors, and the scaling of the eigenvectors, are more intricate than in
gasdynamics [59].

We note that while eq.(5) is fully conservative, the symmetrizable formulation
(given by eq. 8) is formally not fully conservative. Terms of order ∇ · B are
added to what would otherwise be a divergence form. The danger of this is
that shock jump conditions may not be correctly met, unless the added terms
are small, and/or they alternate in sign in such a way that the errors are local,
and in a global sense cancel in some way with neighboring terms. This downside,
however, has to be weighed against the alternative; a system (i.e., the one without
the source term) that, while conservative, is not Gallilean invariant, has a zero
eigenvalue in the Jacobian matrix, and is not symmetrizable.

3 Semi-relativistic Plasmas

While the solar-wind speed remains non-relativistic in the solar system, the
intrinsic magnetic fields of several planets in the solar system are high enough,
and the density of the solar wind low enough, that the Alfvén speed,

VA =

√
B2

µ0ρ
(10)

can reach appreciable fractions of the speed of light. In the case of Jupiter, the
Alfvén speed in the vicinity of the poles is of order ten! Even Earth has a strong
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enough intrinsic magnetic field that the Alfvén speed reaches twice the speed of
light in Earth’s near-auroral regions.

3.1 Limiting the Alfvén Speed

For these regions, solving the non-relativistic ideal MHD equations does not make
sense. Having waves in the system propagating faster than the speed of light,
besides being non-physical, causes a number of numerical difficulties. However,
solving the fully relativistic MHD equations is overkill. What is called for is
a semi-relativistic form of the equations, in which the flow speed and acoustic
speed are non-relativistic, but the Alfvén speed can be relativistic. A derivation
of these semi-relativistic equations from the fully relativistic equations is given
in [25]; the final result is presented here.

The semi-relativistic ideal MHD equations are of the form

∂Usr

∂t
+ (∇ · Fsr)

T = 0 (11)

where the state vector, Usr, and the flux diad, Fsr, are

Usr =




ρ
ρu+ 1

c2SA

B
1
2ρu

2 + 1
γ−1p+ eA


 (12a)

Fsr =




ρu
ρuu+ pI+PA

uB−Bu(
1
2ρu

2 + γ
γ−1p

)
u+ SA




T

(12b)

In the above,

SA = 1
µ0

(E×B) (13a)

eA = 1
2µ0

(
B2 + 1

c2E
2
)

(13b)

PA = eAI− 1
µ0
BB− 1

µ0c2EE (13c)

are the Poynting vector, the electromagnetic energy density, and the electromag-
netic pressure tensor, respectively. The electric field E is related to the magnetic
field B by Ohm’s law, (eq. 2b).

3.2 Lowering the Speed of Light

This new system of equations has wave speeds that are limited by the speed of
light; for strong magnetic fields, the modified Alfvén speed (and the modified
magnetofast speed) asymptote to c. The modified magnetoslow speed asymptotes
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to a, the acoustic speed. This property offers the possibility of a rather tricky
convergence-acceleration technique for explicit time-stepping schemes, first sug-
gested by Boris [11]; the wave speeds can be lowered, and the stable time-step
thereby raised, by artificially lowering the value taken for the speed of light. This
method is known as the “Boris correction.”

The equations in Sect. 3.1 are valid in physical situations in which VA > c. A
slight modification yields a set of equations, the steady-state solutions of which
are independent of the value taken for the speed of light. Defining the true value
of the speed of light to be c0, to distinguish it from the artificially lowered speed
of light, c, the equations are:

∂Usr

∂t
+ (∇ · Fsr)

T = Qc0 (14)

where the state vector, Usr, and the flux diad, Fsr, are as defined above, and
the new source term in the momentum equation is

Qc0 =
1
µ0

(
1
c20

− 1
c2

)
E∇ ·E (15)

An implementation of the semi-relativistic equations has been made in the
BATSRUS code developed at the University of Michigan [46,25].

4 Splitting the Magnetic Field

For problems in which strong externally imposed magnetic fields are present,
accuracy can be increased by solving for the deviation of the magnetic field from
this prescribed component. For instance, in magnetosphere-type simulations a
strong dipole-like magnetic field dominates the solution near the body. Solving
for the deviation B1 from the embedded field B0 is inherently more accurate
than solving for the full magnetic field vector B = B0 +B1. This approach was
first suggested by Ogino and Walker [42], applied to Godunov-type schemes by
Tanaka [64] and later employed by our group [46]. Recently we generalized it to
semi-relativistic MHD [25].

The full magnetic field vector B can be written as

B = B0 +B1 (16)

where B0 is given analytically and thus ∇·B0 = 0, while B1 is calculated by the
numerical scheme. Note that B1 is not necessarily small relative to B0. We also
introduce the non-relativistic current density j0 = (1/µ0)∇ ×B0. The splitting
is most important when the equations are solved in a (near) conservation form,
since the total energy density can be completely dominated by the magnetic
energy B2

0/(2µ0). When the pressure is calculated from the total energy density,
it can easily become negative, as we take differences of two huge numbers to
obtain a small one. This problem can be mitigated by rewriting the energy
equation in terms of the modified total energy density

e1 = Egd +
1
2µ0

(
B2

1 +
1
c2
E2

)
(17)
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Note that the electric energy still contains contribution from B0, but that is
reduced by the factor (1/c2). With these definitions the conservation form of the
semi-relativistic MHD equations (eq. 11) can be rewritten as

∂ρ
∂t +∇ · (ρu) = 0 (18a)

∂
∂t

(
ρu+ 1

c2SA

)
+∇ · [ρuu+ Ip+PA,1] = j0 ×B0 (18b)

∂B1
∂t +∇ · [uB−Bu] = −∂B0

∂t (18c)

∂e1
∂t +∇ ·

[
u

(
1
2ρu

2 + γp
γ−1

)
+ 1

µ0
E×B1

]
= −B1 · ∂B0

∂t +E · j0 (18d)

where

PA,1 =
1
µ0

[
I
(
1
2
B2

1 +B1 ·B0 +
1
2c2

E2
)

−B1B1 −B1B0 −B0B1

]
(19)

The splitting did not modify the continuity equation. In the momentum equation
the dominant B2

0 I and B0B0 terms are moved into the source term j0×B0, which
can be calculated analytically, and it is identically zero if B0 is a force free field.
The induction equation is modified in a trivial way, by moving the time derivative
of B0 to the right hand side. Again, this term can be calculated analytically, and
in the case of a stationary B0 field, it vanishes. The split energy equation is
obtained after quite some algebra. Most of the dominant B2

0 and E×B0 terms
are eliminated, but the remaining source terms B1 · ∂B0/∂t and E · j0 contain
the numerically calculated B1 and u quantities. In case of a potential (j0 = 0)
and/or stationary B0 field one or both energy source terms can be eliminated.

One may add the source terms involving ∇ · B to the split momentum, in-
duction and/or energy equations (18b)−(18d) if the numerical scheme does not
keep ∇ · B exactly zero. Of course, ∇ · B = ∇ · B1, since the analytic B0 field
must be divergence free by definition.

5 Solution Techniques

5.1 Finite-Volume Scheme

The MHD equations are well suited for finite volume methods when the governing
equations are integrated over a computational cell i, yielding

dUi

dt
= − 1

Vi

∑
faces

F · n̂A− Qi

Vi

∑
faces

B · n̂A , (20)

where Vi is the volume of cell i, A is the surface area of the faces forming the
computational cell, n̂ is the unit vector normal to the cell faces, Ui is the cell-
averaged conserved solution vector, and Qi is given by

Qi = −




0
1

µ0
Bi

ui
1

µ0
ui ·Bi


 . (21)
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The numerical face fluxes, F·n̂, are defined in terms of the left and right interface
solution states, UL and UR, as follows

F · n̂ = F (UL,UR, n̂) , (22)

whereUL andUR are the state vectors at the left and right sides of the interface.

5.2 TVD-MUSCL

Because the MHD equations are a system of hyperbolic conservation laws, many
of the techniques that have been developed for the Euler equations can be ap-
plied relatively straightforwardly. In particular, the high-resolution finite-volume
approach of van Leer [69] (i.e. approximate Riemann solver + limited inter-
polation scheme + multi-stage time-stepping scheme) is perfectly valid. The
Rusanov/Lax-Friedrichs approximate Riemann solver can be applied directly;
no knowledge of the eigensystem of the MHD equations is required other than
the fastest wave speed in the system. A Roe-type scheme [58] can be constructed
for non-relativistic MHD, but requires more work, because of the complexity of
the eigensystem. In addition, an HLLE-type Riemann solver has been derived
by Linde [39]; it is less dissipative than the Rusanov/Lax-Friedrichs scheme, but
less computationally intensive than the Roe scheme. Whichever approximate
Riemann solver is chosen to serve as the flux function, standard interpolation
schemes and limiters can be used to construct a finite-volume scheme.

5.3 Pressure Positivity

One added difficulty in solving the MHD equations is that the MHD energy has
three components: internal, magnetic and kinetic. Thus, as in gasdynamics, flows
with substantially more kinetic energy than internal energy can lead to positivity
problems when computing the pressure. Also, in contrast to gasdynamics, regions
in which the magnetic field is large can yield similar problems. Conservative and
positive HLLE-type schemes for MHD have been described by Janhunen [32].
Another alternative, due to Balsara and Spicer [2], is to use a hybrid scheme:
both the conservative energy equation and the entropy equations are solved.
Close to shock waves the energy equation is used to obtain the correct weak
solution, at other places the more robust and positive entropy equation can be
used. A variant of this technique has been implemented in our code.

6 Controlling ∇ · B
Another way in which the numerical solution of the MHD equations differs from
that of the gasdynamic equations is the constraint that ∇ · B = 0. Enforcing
this constraint numerically, particularly in shock-capturing codes, can be done
in a number of ways, but each way has its particular strengths and weaknesses.
Only a brief overview is given below; each of the schemes discussed below is
explained more fully in the references cited, and Tóth has published a numerical
comparison of many of the approaches for a suite of test cases [66].
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6.1 Projection Scheme

Brackbill and Barnes [12] proposed using a Hodge-type projection to the mag-
netic field. This approach leads to a Poisson equation that must be solved each
time the projection takes place:

∇2φ = ∇ ·B (23a)

Bprojected = B− ∇φ (23b)

The resulting projected magnetic field is divergence-free on a particular numer-
ical stencil, to the level of error of the solution of the Poisson equation. While
it is not immediately obvious that the use of the projection scheme in conjunc-
tion with the fully conservative form of the MHD equations gives the correct
weak solutions, Tóth has proven this to be the case [66]. The projection scheme
has several advantages, including the ability to use standard software libraries
for the Poisson solution, its relatively straightforward extension to general un-
structured grids, and its robustness. It does, however, require solution of an
elliptic equation at each projection step; this can be expensive, particularly on
distributed-memory machines.

6.2 8-Wave Scheme

Powell [45,46] first proposed an approach based on the symmetrizable form of
the MHD equations (eq. 8). In this approach, the source term on the right-
hand side of eq. (8) is computed at each time step, and included in the update
scheme. Discretizing this form of the equations leads to enhanced stability and
accuracy, however, there is no stencil on which the divergence is identically zero.
In most regions of the flow, the divergence source term is small. However, near
discontinuities, it is not guaranteed to be small. In essence, the inclusion of the
source term changes what would be a zero eigenvalue of the system to one whose
value is un, the component of velocity normal to the interface through which the
flux is computed. The scheme is typically referred to as the eight-wave scheme;
the eighth wave corresponds to propagation of jumps in the normal component
of the magnetic field.

The eight-wave scheme can be thought of as a hyperbolic or advective ap-
proach to controlling ∇ · B; symmetrizable form of the equations, eq. (8), are
consistent with the passive advection of ∇·B/ρ. The eight-wave scheme is com-
putationally inexpensive, easy to add to an existing code, and quite robust.
However, if there are regions in the flow in which the ∇ ·B source term (eq. 9)
is large, the conservation errors can create problems.

6.3 Constrained Transport

Several approaches have been developed that have combined a Riemann-solver-
based scheme with constrained-transport approach. The constrained-transport
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approach of Evans and Hawley [19] treated the MHD equations in the gasdy-
namics/electromagnetic-split form of eq. (3a) through (3d). The grid used was a
staggered one, and the ∇ ·B = 0 constraint was met identically, on a particular
numerical stencil.

Dai and Woodward [13] and Balsara and Spicer [1] modified the constrained-
transport approach by coupling a Riemann-solver-based scheme for the conser-
vative form of the MHD equations (eq. 5), with a constrained-transport approach
for the representation of the magnetic field. In their formulations, this required
two representations of the magnetic field: a cell-centered one for the Godunov
scheme, and a face-centered one to enforce the ∇ · B = 0 condition. Tóth [66]
subsequently showed that these formulations could be recast in terms of a single
cell-centered representation for the magnetic field, through a modification to the
flux function used.

Advantages of the conservative constrained-transport schemes include the
fact that they are strictly conservative and that they meet the ∇ · B = 0 con-
straint to machine accuracy, on a particular stencil. The primary disadvantage of
the constrained transport technique is the difficulty in extending them to general
grids. Tóth and Roe [67] and Balsara [3] made some progress on this front; they
developed divergence-preserving prolongation and restriction operators, allowing
the use of conservative constrained-transport schemes on h-refined meshes. De
Sterck generalized the constrained transport method to unstructured grids [15].

However, it can also be shown that the conservative constrained-transport
techniques lose their ∇ · B-preserving properties if different cells are advanced
at different physical time rates [68]. This rules out the use of local time-stepping
(see Sect. 9.1). Thus, while for unsteady calculations the cost of the conserva-
tive constrained-transport approach is comparable to the eight-wave scheme, for
steady-state calculations (where one would typically use local time-stepping),
the cost can be prohibitive.

6.4 Diffusive Control

Some of the most recent work on the ∇ · B = 0 constraint has been related
to modifying the eight-wave approach by adding a source term proportional to
the gradient of ∇ ·B so that the the divergence satisfies an advection-diffusion
equation, rather than a pure advection equation. Similar schemes have been used
for the Maxwell equations [41]. This technique, referred to as diffusive control of
∇ ·B, has the same advantages and disadvantages as the eight-wave approach.
It is not strictly conservative, but appears to keep the level of ∇ · B lower
than the eight-wave approach does. In other recent work by Dedner et al. [14],
a generalized Lagrange-multiplier method has been proposed, incorporating the
projection approach, the eight-wave approach, and the diffusive-control approach
into a single framework. In addition, they also introduced a hyperbolic correction
of ∇ ·B errors.
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7 Block-Based AMR on Cartesian Grids

Adaptive mesh refinement techniques that automatically adapt the computa-
tional grid to the solution of the governing PDEs can be very effective in treating
problems with disparate length scales. Methods of this type avoid underresolv-
ing the solution in regions deemed of interest (e.g., high-gradient regions) and,
conversely, avoid overresolving the solution in other less interesting regions (low-
gradient regions), thereby saving orders of magnitude in computing resources for
many problems. For typical solar wind flows, length scales can range from tens
of kilometers in the near Earth region to the Earth-Sun distance (1.5 × 1011

m), and timescales can range from a few seconds near the Sun to the expansion
time of the solar wind from the Sun to the Earth (∼105 s). The use of AMR
is extremely beneficial and almost a virtual necessity for solving problems with
such disparate spatial and temporal scales.

7.1 Adaptive Blocks

Borrowing from previous work by Berger and coworkers [5,6,8,9,10] and Quirk
[47,48], and keeping in mind the desire for high performance on massively par-
allel computer architectures, a relatively simple yet effective block-based AMR
technique has been developed and is used in conjunction with the finite-volume
scheme described above. The method has some similarities with the block-based
approaches described by Quirk and Hanebutte [48] and Berger and Saltzman
[10]. Here the governing equations are integrated to obtain volume-averaged
solution quantities within rectangular Cartesian computational cells. The com-
putational cells are embedded in regular structured blocks of equal sized cells.
The blocks are geometrically self-similar with dimensions �̃x × �̃y × �̃z and con-
sist of Nx ×Ny ×Nz cells, where �̃x, �̃y, and �̃z are the nondimensional lengths
of the sides of the rectangular blocks and Nx, Ny, and Nz are even, but not
necessarily all equal, integers. Typically, blocks consisting of anywhere between
4× 4× 4 = 64 and 12× 12× 12 = 1728 cells are used (see Fig. 1). Solution data
associated with each block are stored in standard indexed array data structures.
It is therefore straightforward to obtain solution information from neighboring
cells within a block.

Computational grids are composed of many self-similar blocks. Although each
block within a grid has the same data storage requirements, blocks may be of
different sizes in terms of the volume of physical space that they occupy. Start-
ing with an initial mesh consisting of blocks of equal size (i.e., equal resolution),
adaptation is accomplished by the dividing and coarsening of appropriate so-
lution blocks. In regions requiring increased cell resolution, a “parent” block is
refined by dividing itself into eight “children” or “offspring.” Each of the eight
octants of a parent block becomes a new block having the same number of cells
as the parent and thereby doubling the cell resolution in the region of interest.
Conversely, in regions that are deemed overresolved, the refinement process is re-
versed, and eight children are coarsened and coalesced into a single parent block.
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Fig. 1. (left) Self-similar blocks used in parallel block-based AMR scheme. (right) Self-
similar blocks illustrating the double layer of ghost cells for both coarse and fine blocks.

In this way, the cell resolution is reduced by a factor of 2. Standard multigrid-
type restriction and prolongation operators are used to evaluate the solution on
all blocks created by the coarsening and division processes, respectively.

Two neighboring blocks, one of which has been refined and one of which
has not, are shown in Fig. 1. Any of the blocks shown in Fig. 1 can in turn be
refined, and so on, leading to successively finer blocks. In the present method,
mesh refinement is constrained such that the cell resolution changes by only a
factor of 2 between adjacent blocks and such that the minimum resolution is not
less than that of the initial mesh.

In order that the update scheme for a given iteration or time step can be
applied directly to all blocks in an independent manner, some additional solu-
tion information is shared between adjacent blocks having common interfaces.
This information is stored in an additional two layers of overlapping “ghost”
cells associated with each block as shown in Fig. 1. At interfaces between blocks
of equal resolution, these ghost cells are simply assigned the solution values as-
sociated with the appropriate interior cells of the adjacent blocks. At resolution
changes, restriction and prolongation operators, similar to those used in block
coarsening and division, are employed to evaluate the ghost cell solution values.
After each stage of the multistage time-stepping algorithm, ghost cell values are
reevaluated to reflect the updated solution values of neighboring blocks. With the
AMR approach, additional interblock communication is also required at inter-
faces with resolution changes to strictly enforce the flux conservation properties
of the finite-volume scheme [5,6,8]. In particular, the interface fluxes computed
on more refined blocks are used to correct the interface fluxes computed on
coarser neighboring blocks so as to ensure that the fluxes are conserved across
block interfaces.
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7.2 Data Structure

A hierarchical tree-like data structure with multiple “roots,” multiple “trees,”
and additional interconnects between the “leaves” of the trees is used to keep
track of mesh refinement and the connectivity between solution blocks. This
interconnected “forest” data structure is depicted in Fig. 2. The blocks of the
initial mesh are the roots of the forest, which are stored in an indexed array data
structure. Associated with each root is a separate “octree” data structure that
contains all of the blocks making up the leaves of the tree which were created
from the original parent blocks during mesh refinement. Each grid block corre-
sponds to a node of the tree. Traversal of the multitree structure by recursively
visiting the parents and children of solution blocks can be used to determine
block connectivity. However, in order to reduce overhead associated with ac-
cessing solution information from adjacent blocks, the neighbors of each block
are computed and stored directly, providing interconnects between blocks in the
hierarchical data structure that are neighbors in physical space.

One of the advantages of the preceding hierarchical data structure is that it
is relatively easy to carry out local mesh refinement at anytime during a cal-
culation. If, at some point in a computation, a particular region of the flow is

D

B

C

A
0

1

2

3

Multiple Roots

Octree
Refinement
Level

A
C

D B

Fig. 2. Solution blocks of a computational mesh with three refinement levels originating
from two initial blocks and the associated hierarchical multiroot octree data structure.
Interconnects to neighbors are not shown.
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deemed to be sufficiently interesting, better resolution of that region can be at-
tained by refining the solution blocks in that region, without affecting the grid
structure in other regions of the flow. Reducing the grid resolution in a region
is equally easy. There is no need for completely remeshing the entire grid and
recalculating block connectivity every time a mesh refinement is performed. Al-
though other approaches are possible, in BATSRUS the coarsening and division
of blocks are directed using multiple physics-based refinement criteria [43,44,46].
In particular, decisions as to when to refine or coarsen blocks are made based on
comparisons of the maximum values of various local flow quantities determined
in each block to specified refinement threshold values. Note that the refinement
thresholds are dynamically adjusted so as to exercise some control over the to-
tal numbers of blocks, and hence cells, used in a calculation. We also note that
other refinement criteria can also be used, such as a combination of estimated
numerical errors.

An example illustrating the adaptation of the block-based Cartesian mesh to
an evolving solution is shown in Fig. 3, which shows the grid at four different
instances in time for an unsteady calculation and depicts both the solution blocks
(thick lines) and computational cells (thin lines) of the evolving grid. As noted
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Fig. 3. Evolution of a computational mesh illustrating grid adaptation in response to
changes in the numerical solution. Cross sectional cuts through a 3-D grid are shown
for a solar wind calculation at four different instances in time. The computational cells
are not shown for the smaller blocks.
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above, each level of refinement in the grid introduces cells that are smaller by a
factor of 2 in each dimension from those one level higher in the grid. Typically,
calculations may have 10-15 levels of refinement; some calculations may have
more than 20 levels of refinement. In the case of 20 levels of refinement, the finest
cells on the mesh are more than one million times (220) smaller in each dimension
than the coarsest cells. The block-based AMR approach described above has
many similarities to the cell-based method proposed by De Zeeuw and Powell
[16]. Although the block-based approach is somewhat less flexible and incurs
some inefficiencies in solution resolution as compared to a cell-based approach,
the block-based method offers many advantages over a cell-based technique when
parallel implementations of the algorithms are considered and performance issues
are taken into account. As will be discussed below, the block adaptation readily
enables domain decomposition and effective load balancing and leads to low
communication overhead between solution cells within the same block.

8 Parallel Implementation

The parallel block-based AMR solver was designed from the ground up with a
view to achieving very high performance on massively parallel architectures. The
underlying upwind finite-volume solution algorithm, with explicit time stepping,
has a very compact stencil and is therefore highly local in nature. The hierar-
chical data structure and self-similar blocks make domain decomposition of the
problem almost trivial and readily enable good load-balancing, a crucial element
for truly scalable computing. A natural load balancing is accomplished by simply
distributing the blocks equally amongst the processors. Additional optimization
is achieved by ordering the blocks using the Peano-Hilbert space filling curve to
minimize inter-processor communication. The self-similar nature of the solution
blocks also means that serial performance enhancements apply to all blocks and
that fine grain parallelization of the algorithm is possible. The parallel imple-
mentation of the algorithm has been carried out to such an extent, that even
the grid adaptation is performed in parallel.

Other features of the parallel implementation include the use of FORTRAN
90 as the programming language and the message passing interface (MPI) library
for performing the interprocessor communication. Use of these standards greatly
enhances the portability of the code and leads to very good serial and parallel
performance. The message passing is performed in an asynchronous fashion with
gathered wait states and message consolidation.

Implementation of the algorithm has been carried out on Cray T3E super-
computers, SGI and Sun workstations, on Beowulf type PC clusters, on SGI
shared-memory machines, on a Cray T3D, and on several IBM SP2s. BATSRUS
nearly perfectly scales to 1,500 processors and a sustained speed of 342 GFlops
has been attained on a Cray T3E-1200 using 1,490 PEs. For each target ar-
chitecture, simple single-processor measurements are used to set the size of the
adaptive blocks. The scaling of BATSRUS on various architectures is shown in
Fig. 4.
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9 Time to Solution

Since a major goal of global space plasma simulations is the creation of a pre-
dictive space weather tool, wallclock time to solution is a paramount issue. In
particular, a predictive model must run substantially faster than real time. From
the starting point – the observation of a solar event, to the ending point – post-
processing the data from a simulation based on the initial conditions derived
from the observations, a simulation must be accomplished rapidly to be of use.

The main limitation of the present generation of global space plasma codes
is the explicit time stepping algorithm. Explicit time steps are limited by the
Courant-Friedrichs-Lewy (CFL) condition, which essentially ensures that no in-
formation travels more than a cell size during a time step. This condition rep-
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resents a non-linear penalty for highly resolved calculations, since finer grid res-
olution not only results in more computational cells, but also in smaller time
steps.

In global MHD simulations of space plasmas the CFL condition is controlled
by two factors: (1) the smallest cell size in the simulation, and (2) the fast
magnetosonic speed in high magnetic field, low plasma density regions. In a
typical magnetosphere simulation with a smallest cell size of about 0.25 RE the
CFL condition limits the time step to about 10−2 s. This small step is primarily
controlled by the high fast magnetosonic speed (due to the high Alfvén speed)
in the near-Earth region.

9.1 Local Time Stepping

In the local time stepping approach the time step in each cell of the computa-
tional domain is determined by the local stability condition. The flow variables
in cell i are advanced from time step n to time step n+ 1 as

Un+1
i = Un

i +∆tni (−∇ · F+Q)i (24)

where the local time step is determined from the stability condition. Here U
represents the conservative state vector, F is the flux diad and Q is the source
term. In case of ideal MHD, the time step is determined by the CFL condition

∆tni = C
∆xi

cfast
i + |ui|

(25)

where C < 1 is the Courant number and cfast
i is the fast speed in cell i. In

more than 1D the sum of the speeds in all directions should be taken in the
denominator.

Note that this technique is different from “sub-cycling” when cells are ad-
vanced at the same physical time rate, but the number of time-steps taken by
individual cells varies. For example, in adaptive grids it is customary to set the
time-step to be inversely proportional to the size of the cell, so that a finer cell
typically makes two half time-steps while the coarser cell makes only one full
time-step. In this method the time-steps are still determined by a global sta-
bility condition as opposed to local time-stepping where time-steps are set on a
cell-by-cell basis.

It is easy to see from (24) that the steady state solution, if it exists, satisfies

0 = (−∇ · F+Q)i (26)

since in steady state Un+1
i = Un

i and we can simplify with the time step ∆tni
which is always a positive number. Consequently the steady state solution is
independent of the time step, and it does not matter if it is local or global.

The above proof assumes that the steady state is fully determined by the
boundary conditions. This is a non-trivial assumption, because the MHD equa-
tions are non-linear, and there is no mathematical theorem that would guarantee
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the existance and uniquness of the steady state solution. In practice, magneto-
sphere simulations seem to converge to the same solution independent of the
initial conditions or the time integration scheme.

The applicability of the local time-stepping technique in a given scheme pri-
marily depends on the evolution of ∇ · B. In some methods even if ∇ · B = 0
initially, the numerical transients towards steady state will destroy this prop-
erty if the local time stepping is applied. For instance, it can be shown that the
constrained transport scheme cannot be combined with local time stepping.

9.2 Implicit Time-Stepping

In BATSRUS we have a number of time stepping algorithms implemented. The
simplest and least expensive scheme is a multistage explicit time stepping, for
which the time step is limited by the CFL stability condition. We have also im-
plemented an unconditionally stable fully implicit time stepping scheme [65,36].
The second order implicit time discretization (BDF2) requires the solution of a
non-linear system of equations for all the flow variables. This can be achived by
the Newton-Krylov-Schwarz approach: a Newton iteration is applied to the non-
linear equations; a parallel Krylov type iterative scheme is used to solve the linear
systems; the convergence of the Krylov solver is accelerated with a Schwarz type
preconditioning. In our implementation the Krylov solver is BiCGSTAB, and a
modified block incomplete LU (MBILU) preconditioner is applied on a block by
block basis. Since every block has a simple Cartesian geometry, the precondi-
tioner can be implemented very efficiently. The resulting implicit scheme requires
about 20-30 times more CPU time per time step than the explicit method, but
the physical time step can be 1,000 to 10,000 times larger. This implicit algo-
rithm has a very good parallel scaling due to the Krylov scheme and the block
by block application of the preconditioner.

In BATSRUS, we can combine explicit and implicit time stepping. Magne-
tosphere simulations include large volumes where the Alfvén speed is quite low
(tens of km/s) and the local CFL number allows large explicit time steps (tens
of seconds to several minutes). In these regions implicit time stepping is a waste
of computational resources. Since the parallel implicit technique we use is fun-
damentally block based we only treat those blocks implicitly where the CFL
condition would limit the explicit time step to less than the selected time step
(typically ∼ 10 s). Needless to say, this combined explicit-implicit time stepping
represents more computational challenges (such as separate load balancing of
explicit and implicit blocks). Overall, this solution seems to be a very promis-
ing option, but other potential avenues need to explored before one makes a
final decision about the most efficient time-stepping algorithm for space MHD
simulations. These questions will be discussed in an upcoming paper [68].

10 Ionosphere–Magnetosphere Coupling

The state of the magnetosphere is controlled by conditions in the solar wind and
in the ionosphere. Solar wind conditions are imposed as boundary conditions at
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the outer boundaries of the simulation domain. Even though the numerical pro-
cedures used to impose these boundary conditions can be quite sophisticated, the
distant solar wind (in all directions) is assumed to be unaffected by the presence
of the magnetosphere. This assumption makes the outer boundary conditions
relatively simple (at least in principle).

The ionosphere–magnetosphere (I-M) coupling, on the other hand, is a highly
non-linear two-way interaction which strongly affects the large-scale behavior of
both domains. Self-consistent global magnetosphere models include some kind
of dynamic ionosphere model which interacts with the magnetosphere and pro-
vides ionospheric boundary conditions actively responding to changing magne-
tospheric conditions.

While mass exchange between the ionosphere and the magnetosphere is un-
doubtedly of major importance, the dominant component of I-M coupling is a
system of field-aligned currents (FACs) connecting the magnetosphere and the
high-latitude ionosphere. These FACs carry momentum (electromagnetic stress)
and energy (Poynting flux) along stretched magnetic field lines connecting the
ionosphere and the magnetosphere. Self-consistent global magnetosphere models
need to describe the generation and closure of these FACs through appropriate
boundary conditions and embedded non-MHD models.

The most important current systems coupling the ionosphere and the magne-
tosphere are the so called Region 1 and Region 2 currents. Region 1 FACs, flowing
near the open-closed magnetic field boundary, connect the magnetopause cur-
rent to the ionosphere where they close through ionospheric Pedersen currents.
Region 2 FACs flow along closed magnetic field lines and they connect to the
ionosphere at lower magnetic latitudes than the Region 1 current. Region 2 cur-
rents are generated in the inner part of the plasma sheet and in the ring current
region.

The generation of Region 2 currents can not be adequately described by
an MHD model alone. The main physical process leading to the generation of
these currents is the gradient and curvature drifts of hot magnetospheric parti-
cles. Since single-fluid MHD represents all particles with a single bulk velocity
(obtained as a mass weighted average), it provides an inaccurate representation
of the important drift processes (in reality electrons and ions drift in opposite
directions, and ions with different energy and equatorial pitch-angle have very
different drift velocities). As a result of this limitation of the single-fluid treat-
ment, one needs to embed an accurate drift model into the global MHD code in
order to get physically consistent Region 2 currents.

BATSRUS has been coupled to two ionosphere models to provide ionospheric
current closure (the user can choose from the two available models) and a drift
model to account for the generation and closure of FACs.

10.1 Electrostatic Ionosphere

The simplest I-M coupling procedure involves a height integrated electrostatic
ionosphere model. In this case the MHD code has an inner boundary at a radius
of RB (for explicit time-stepping we typically use RB = 2.5RE). At this inner
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boundary, the plasma density, temperature, and velocity are specified. In addi-
tion, the magnetic field is allowed to float (zero gradient of the normal compo-
nent), so currents can flow along the boundary. The velocities which are imposed
on the boundary are calculated in the ionosphere in a three step process:

1. field aligned currents are calculated from the curl of the magnetic field at
RB + 1RE, and these are mapped down to the ionosphere,

2. a height-integrated ionospheric conductance pattern is generated and the iono-
spheric potential is calculated from the equation:

jR (RE) = [∇⊥ · (Σ · ∇ψ)⊥]R=RE
(27)

which describes the relationship between the height integrated conductance
tensor, Σ, the ionospheric potential, ψ, and the radial component of the cur-
rent, jR; and finally

3. the electric potential is mapped out along field lines to the inner boundary at
RB where electric fields and velocities are generated. The corotation velocity
field is added to the ionosphere generated velocity field.

The details of our conductance model as well as some simulations results using
this method are given in [52,53,55].

10.2 BATSRUS–TIEGCM Coupling [54]

As our physical understanding of the magnetosphere – ionosphere system in-
creases, our need to have more accurate models of the coupled system also grows.
Recently we developed a coupled model of the magnetosphere – ionosphere –
thermosphere system. The model is based on BATSRUS [46] and the thermo-
sphere – ionosphere – electrodynamics general circulation model (TIEGCM) [50]
which has been used in numerous studies of the ionosphere - thermosphere sys-
tem.

The TIEGCM solves for the thermospheric and ionospheric composition,
temperature, and winds. It solves for mass mixing ratios of the neutral major
species O2, N2, and O using full transport and chemistry, while the minor species
N(2D), N(4S), NO, He, and Ar are obtained by assuming that they are in local
equalibrium with the major species. For the ions, the O+

2 dynamics are consid-
ered, while the species N+

2 , NO
+, and N are considered to be in local equalibrium

with O+
2 . The TIEGCM is a full 3-dimensional code with 5◦ latitude by 5◦ longi-

tude by 0.5 scale height altitude cells. There are 29 pressure levels in the model
such that the simulation spans from ∼ 95 km to 650 km in altitude.

The electrodynamics within the TIEGCM focuses on the middle and lower
latitudes, with a self consistent calculation of the interaction between the neutral
winds, currents, and electric fields. At the high latitudes, an external electric field
is assumed, and the neutral winds do not affect this field (i.e. there is no ion
drag). At all latitudes, the neutral winds are coupled with ion flow through ion
drag terms. A transition region exists where the model linearly scales the electric
field between the high and middle latitude regions. The electrodynamics of the
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TIEGCM are solved on a magnetic apex grid based on the 1985 International
Geomagnetic Reference Field (IGRF) [51].

The main auroral electron precipitation is specified at high latitudes using
an external model [57]. In addition to the main oval, a polar cap precipitation
is specified as well as a spatially limited cusp precipitation. These precipitation
patterns are used to generate 3-d ionization rates, and therefore strongly control
the electron density at high latitudes.

The ionosphere is coupled to the MHD code in a similar manner as in the
case of an electrostatic ionosphere (see section 10.1). The field aligned currents
at 3.5 RE are derived from ∇×B. These currents are mapped down to the iono-
sphere using the intrinsic magnetic field within the code, and the currents are
scaled by the ratio of the magnetic field in the ionosphere to that in the mag-
netosphere. The currents are combined with a conductance pattern to produce
a potential pattern, which is mapped up to the magnetospheric inner boundary
at 2.5 RE. Corotation velocities are determined and added to the convection
velocities derived from the potential pattern. These velocities are applied as the
inner boundary condition on the MHD solution.

BATSRUS provides the ionospheric potential pattern and electron precip-
itation pattern for TIEGCM. The electon precipitation is used to determine
the nightside ionization in calculating the electron density. The electron density,
combined with the densities of different neutral consituents, is subsequently used
to determine the densities of different ion species. Collision rates between ions
and neutrals are then calculated. These collision rates specify the acceleration
of the neutral wind and the different conductivities.

In the low- and mid-latitude region, the neutral winds drive the dynamo
calculation. This is done by taking a field-line integral of the neutral wind velocity
multiplied by the conductivity. The divergence of this quantity is considered to
be a quasi-neutral wind field aligned current, and is used for the calculation of
the low- and mid-latitude dynamo in the TIEGCM. This quantity is also fed back
into the MHD potential solver, where it is subtracted from the magnetospheric
FACs. The neutral wind driven field aligned currents above 60◦ are considered
in the calculation of the MHD potential, while those below are ignored.

The conductances are not completely consistent between the two models.
The reasoning for not using the TIEGCM calculated conductances in the MHD
model is that the grid size in the TIEGCM (5◦ latitude by 5◦ longitude) is too
large. The auroral zone is ill represented by the TIEGCM. Because the particle
precipitation is calculated by the MHD model, and the conductances derived
from the Robinson formula [56] closely match those derived by models such as the
TIEGCM, it was decided that it is better to use the high resolution conductances
from the MHD model than the low resolution conductances from the TIEGCM.
Once the resolution of the TIEGCM is increased, a more self-consitent coupling
can occur.

The BATSRUS–TIEGCM coupling has been fully implemented and tested
the first results obtained with the coupled model have also been reported [54].
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10.3 BATSRUS–RCM Coupling [17]

The Rice Convection Model (RCM) calculates the dynamic behavior of the par-
ticles and the electric fields and currents in the Earth’s inner magnetosphere
(the region of closed magnetic lines). The physics of this region is complicated,
because it contains overlapping particle distributions with a wide range of ener-
gies and characteristics. These different coexisting particle populations cannot
be treated as a single fluid, because they all move differently. The RCM rep-
resents the particles in terms of 30-200 separate fluids. Its equations and nu-
merical methods have been specifically designed for accurate treatment of the
inner magnetosphere [31,29,71,18], including the flow of electric currents along
magnetic field lines to and from the conducting ionosphere. The RCM does its
primary calculations on a 2D grid on a spherical shell in the ionosphere. Values
in the magnetosphere are computed by mapping out along magnetic field lines.
The ionospheric grid is fine, typically about 0.5 degrees latitude in the auro-
ral zone. The RCM computes these currents and the associated electric fields
self-consistently.

The essential limitation of the RCM is that it only describes the inner mag-
netosphere: one needs to specify its connections to the outer magnetosphere and
to the ionosphere and thermosphere through externally specified magnetic field
models and particle source/sink boundary conditions. This can be done by cou-
pling RCM to a global MHD code which dynamically provides these inputs and
uses the results of the drift physics represented by RCM to improve the MHD
solution.

RCM calculates the Region 2 field-aligned currents using the Vasyliunas for-
mula [70]. This formula (which is also valid in the MHD limit) relates the field
aligned current in slow flow regions to the cross product of the pressure gradient
and the gradient of the magnetic flux tube volume. The pressure is calculated
as a sum of partial pressures of the large number of “species,” while the flux
tube volume is calculated by integrating the flux tube cross secton (∝ 1/B)
along magnetic field lines. In dynamic calculations (when the magnetic field is
changing with time) the flux tube volume calculation is the most time consuming
component of the entire simulation.

As a first step in coupling BATSRUS and RCM the Rice Convection Model
was reformulated and a modern advection module was incorporated. Specifically
the following changes were made:

1. Make the RCM code and its data structure compatible with BATSRUS.
2. Introduce MPI parallelization into RCM.
3. Introduce a new numerical scheme for solving the advection equations to

achieve second-order accuracy and to handle time-dependent moving bound-
ary conditions.

4. Improve other numerical algorithms (e.g., Birkeland current calculation.)

These changes in RCM already resulted in new physics, since the updated RCM
code has more powerful capabilities than the original [60].
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In the second step we introduced full, two-way coupling between BATSRUS
and RCM. BATSRUS provides to RCM the full near-earth magnetic field (all
closed field lines) as well as the flux-tube volume for the magnetic field line
originating at each RCM grid point in the ionosphere. In addition, BATSRUS
also provides the high-latitude ionospheric electric potential distribution and the
particle sources at the outer boundaries at RCM. In return, RCM provides the
hot plasma pressure averywhere in the closed field line region, which is used to
to “nudge” the MHD pressure towards the RCM pressure (this is done through
a source term).

The most computationally challenging aspect of this two-way coupling pro-
cedure is mapping between the 2D RCM and 3D MHD grids and the related cal-
culation of the flux-tube volume for the RCM grid. This calculation is extremely
time consuming if one uses standard field-line tracing routines and methods (in
case of a reasonably refined grid this step might take hours of CPU time). We
developed a block-based parallel ray-tracing algorithm which is about 104 times
faster than the “brute force” method using a modest number of processors (about
32) [17]. This new algorithm makes the frequent two-way information exchange
possible between BATSRUS and RCM.

The self-consistently coupled BATSRUS–RCM code has been recently tested
and the results are being published [17]. The coupled code is capable describing
the I-M coupling in a self-consistent manner, including the Region 1 and Region
2 FAC systems.

11 Applications

BATSRUS has been extensively applied to global numerical simulations of the
inner heliosphere including CME propagation [24,26], the coupled terrestrial
magnetosphere-ionosphere [23,61,62], and the interaction of the heliosphere with
the interstellar medium [38]. In addition, it has also been successfully applied
to a host of planetary problems ranging from comets [22,27], to Mercury [34],
Venus [4], Mars [40], Saturn [28], to planetary satellites [33,35].

In this section we briefly summarize our most ambitious space weather sim-
ulation so far, in which we used BATSRUS to simulate an entire space weather
event, from its generation at the Sun through the formation and evolution of a
CME, to its interaction with the magnetosphere-ionosphere system [24,26]. In
this simulation we resolved multiple spatial and temporal scales and took ad-
vantage of frequent grid refinements and coarsening to follow the CME through
interplanetary space. The total number of cells varied between 800,000 and 2
million as the solution evolved. The simulation used 13 levels of grid refinement.
The simulation ran faster than real time on a 512 node Cray T3E-600 super-
computer. This simulation demonstrates that we have the necessary experience
to undertake the research outlined in this proposal.

Here we only show a few highlights of this simulation. The detailed results
have been published in JGR-Space Physics [26].
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Fig. 5. 3D representation of the steady-state solar wind solution. The shading repre-
sents log |B| in the (x, z)- and (x, y)-planes. The thin black lines are the computational
mesh and the thick solid lines are magnetic field lines: grey denotes the last closed field
lines, black is open field lines expanding to the interplanetary medium just above the
heliospheric current sheet, and finally, white lines show open magnetic field lines in the
(y, z)-plane.

A steady state solar wind was obtained in the corotating frame for a tilted
rotating Sun. The intrinsic magnetic field was approximated by the superposition
of a tilted (with respect to the rotation axis) octupole and dipole. Figure 5 depicts
a three-dimensional representation of the predicted pre-event steady-state solar
wind solution in the vicinity of the Sun. The narrow dark region shown in Fig. 5,
which also coincides with regions of higher mesh refinement, corresponds to
the beginning of the heliospheric current sheet. Due to the combined effects of
magnetic tilt and solar rotation, the current sheet is tilted with respect to the
rotation axis, and deformed, and resembles a “ballerina skirt.”

Figure 6 shows a 3D representation of the magnetic field configuration 9
hours after the initiation of the CME. The density enhancement first leads to the
“filling” of the closed magnetic field lines with additional plasma and subsequent
expansion of the closed field line region. One can see that the closed field lines
become greatly stretched by the outward moving plasma. This is due to the fact
that the plasma β (the ratio of the kinetic and magnetic pressures) is quite large
and the magnetic field is “carried” by the outward moving plasma. We also note
the decrease of magnetic field strength behind the leading edge of the outward
moving disturbance.

The dynamic response of the global magnetosphere to the changing solar
wind conditions produced by the density-driven CME was also computed as
part of this simulation. The global magnetospheric configuration for quiet-time
southward IMF conditions is shown in Fig. 7. During the event the solar wind
velocity remained nearly radial with the speed gradually decreasing from about
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Fig. 6. 3D representation of magnetic field lines 9 hours after the initiation of a CME.
Grayscale represents log(B), white lines are open magnetic field lines, grey lines rep-
resent magnetic field lines with both ends connected to the Sun.

550 km/s to about 450 km/s. The solar wind dynamic pressure increased from
its pre-CME value of 2.25 nP (at t = 72 hrs) to 4.6 nP at the peak of the event.

The ionospheric potential and convection patterns also change during the
CME event. The ionospheric convection shows the two-cell pattern of ionospheric
convection typical for southward-type IMF conditions. The convection pattern is
also “twisted” due to the presence of a non-zero IMF By component. The most
important change in the ionosphere is the doubling of the cross-cap potential
drop from 30 kV at 70.5h to 60 kV some 27 hours later.

Fig. 7. 3D representation of the last closed terrestrial field lines for southward IMF
conditions. White field lines form the dayside magnetopause, while black ones map to
the magnetotail. The greyscale represents normalized thermal pressure.
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Overall, this simulated space weather event was not very geoeffective. It is
expected that we will be able to generate more geoeffective CMEs with the help
of more realistic explosive event generation modules. This simulation, however,
demonstrates the present capabilities of BATSRUS.
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