
Algorithms Minimizing Peak Power on Mesh-Connected Systems

Quentin F. Stout

Computer Science and Engineering
University of Michigan

Correspondence:

Quentin F. Stout
Computer Science and Engineering
University of Michigan
2260 Hayward
Ann Arbor, MI 48109-2121
qstout@umich.edu

734/763-1518 734/763-8094 (fax)

Abstract

There are many situations in parallel computing where reducing power consumption is an important
goal. We consider mesh-connected systems where each processor is connected to its neighbors in a regular
grid, such as occurs in cellular automata, sensor networks,and some supercomputers, focusing on systems
with myriad simple processors on a chip. Most algorithms forsuch computers assume that all processors are
active at all times, an assumption which is often unrealistic when power is supplied externally. This leads
one to develop algorithms minimizing the peak power. Optimal or near-optimal algorithms are developed for
basic problems involving images, such as labeling the components and determining the distances between
them, and graphs, such as determining a minimal spanning forest and deciding if a graph is biconnected.
These algorithms also minimize the total energy, and can be modified to simultaneously reduce the total
power used by any processor, a consideration of considerable importance in sensor networks.

Keywords: mesh-connected computer, low power, energy, parallel computing, image processing, graph
algorithm, connected component, minimal spanning tree

1



1 Introduction

Systems connected in a grid fashion have occurred throughout parallel computing history, from cellular au-
tomata to sensor networks (typically an irregular grid) to interconnection networks for high-performance
multicore chips [20] and supercomputers [3, 4, 10]. For suchsystems physical location and distance play
an important role, as opposed to PRAMs or serial computers. More recently another physical consideration,
power consumption, has taken on importance. It is a concern in systems such as cell phones, laptops, and
supercomputers. The last is different from the others in that the power is external and does not diminish
over time, but supplying the peak power required is a major concern. Removing the heat generated intro-
duces packing constraints which in turn affect communication time, and hence various tradeoffs need to be
made. For example, peak power considerations resulted in the BlueGene/L utilizing slow, but numerous,
processors [4].

This paper addresses the problem of minimizing the peak power required for parallel algorithms for
systems such as single chips with many tiny, simple processors. For example, there are image processing
chips which both detect images and do substantial processing on them. It is not realistic to assume that the
entire chip can have most of its circuits active at the same time. (E.g., see [7] for an image processing chip
with processing capabilities and emphasis on energy efficiency.)

We utilize the basicmesh-connected computermodel: the system hasn processors arranged as an√
n × √

n grid, where each processor can communicate only with its immediate neighbors (either the
4 neighbors sharing an edge, or the 8 sharing an edge or corner). To simplify exposition we assume that
n is a power of 4, with modifications to the more general case being straightforward. Each processor can
store a fixed number of words of logarithmic length, and all operations on these words, including sending
one to a neighbor, take constant time and energy. Each processor starts with its coordinates(x, y), x, y ∈
[0, 1, . . .

√
n−1]. For purposes of timing analysis the system is SIMD, though strict synchronization can be

relaxed. Note that algorithms for such a basic system can be simulated on a variety of systems.
We say that a processor isusing powerif it is calculating or communicating, and otherwise is not using

power. While we say it is not using power it might actually be using a greatly reduced amount in a wait
state, either counting to know when to awaken or to be woken bythe arrival of a message from a neighbor.
It will be seen that all of the algorithms have the property that a processor is only calculating in a fixed
period around a message transmission, and hence to determine power utilization it will suffice to merely
count messages.

Standard mesh-connected computer algorithms assume all processors are on all the time, and hence for
a mesh ofn processors peak energy isΘ(n) and total energy is the product of time andn. Many basic
algorithms takeΘ(

√
n ) time [1, 2, 9, 12, 13, 19] andΘ(n3/2) total energy. Note that this time is a lower

bound for any nontrivial problem since it is the diameter of the communication network. As for total energy,
Ω(n3/2) is a lower bound for operations such as sorting or matrix multiplication whereΘ(n) values may
need to be transported distanceΘ(

√
n ). These operations can in fact can be completed inΘ(

√
n ) time using

this much energy on a standard mesh-connected computer [19], and thus, for them, reducing peak power
necessarily increases time. For many other problems, however, it will be shown that far fewer messages can
be used while still finishing inΘ(

√
n ) time. When the total data movement iso(n3/2) then there is the

possibility of a solution in this time bound using onlyo(n) peak energy.
Rather than directly indicating which processors are on at any given time, it is useful to think of trained

squirrels traversing the mesh, where the presence of a squirrel indicates that the processor is on. The
squirrels have a memory of a finite number of words, they can keep track of their location, and they can
leave a finite number of words at any location. Admittedly squirrels are an unusual computing model, but

2



since many of the algorithms require taking something from one place and leaving it at another, and then
being able to go back and get it if needed, squirrels seem to have the requisite skills, though their ability
to be trained to cooperate with one another remains an open question. A squirrel carrying information
from one location to another corresponds to a sequence of communication steps, where both the number of
steps (time) and total energy are proportional to the distance traveled, and the peak power is proportional
to the maximum number of squirrels active at any one time. Squirrel algorithms have some similarities
with pebble algorithms for automata [5, 6, 14]. Pebbles are used to keep track of positional information,
and can be used to help traverse mazes and more general graphs. Here the problem descriptions, such as
labeling components, require the ability to store words of logarithmic size, rather than the fixed size inherent
in pebble algorithms, and hence the cellular automata modelof pebble algorithms is not quite suitable.

Peak energy is merely the number of squirrels, denoteds. For any nontrivial problem for which every
position must be visited at some point the total energy must beΩ(n), and hence if time= Θ(n/s) then the
speedup is optimal, which implies that the peak energy vs. time tradeoff is optimal. Further, if this holds
for s = Θ(

√
n ) and information must be passed from some processor to another one distanceΘ(

√
n )

away then the time is the minimum possible no matter how much energy is expended. While thinking in
terms of squirrels moving around simplifies the descriptions of many algorithms, in some cases adjacent
squirrels may stay where they are and merely exchange information, and occasionally algorithms can result
in two squirrels needing to occupy the same location at the same time. Note that in a valid algorithm for a
mesh-connected computer, the number of squirrels per location cannot grow unboundedly withn. We also
assume that a squirrel can determine which adjacent locations are occupied by squirrels. In most cases the
algorithm obviously guarantees that the time for a squirrelto move from one location to another is equal to
the distance between them, but in some cases multiple squirrels may have paths that depend on the data, and
the paths end up overlapping. Standard routing algorithms can be used to ensure that the squirrels are still
able to complete their tasks in the time claimed.

It is trivially true that any algorithm takingt time on an
√

m × √
m mesh can be stepwise simulated

in Θ(tm/s) time and total energyΘ(tm) by 1 ≤ s ≤ m squirrels, where each squirrel is responsible for
stepwise simulation of a

√

m/s ×
√

m/s submesh. This fact will be used in some of the algorithms in
which a small subproblem is solved via a standard (power-oblivious) mesh algorithm.

The algorithms are described fors =
√

n , and it is easy to see how to simulate them with fewer
squirrels with only linear slow-down. In general such simulation requires some care since in addition to
the operations being performed the simulating squirrel must move from the location of one squirrel being
simulated to the location of another, i.e., extra time is added. Contrast this with the result mentioned in
the previous paragraph, which corresponds to starting withan algorithm ofm squirrels which never move
from their initial position, and then simulating them bys squirrels which can just do simple scans of their
subsquare to move from simulating one of the original squirrels to the next. For the results in this paper,
however, the simulation tends to be simple and details will be omitted. Further, in the general case one
might need the simulating squirrel to have memory proportional the number of squirrels being simulated, or
spend extra time storing information at the sites, but againthat is not true here and the memory can be held
constant no matter what the value ofs is in relation ton.

A single squirrel cannot in general use an algorithm for a standard serial computer without increasing the
time required since it is constrained by the physical dispersion of information, something normally ignored
in serial algorithms (unless cache behavior or paging is a concern). Squirrels also introduce a constraint in
that the pattern of activation in the parallel computer follows connected paths and does not jump around.
While we don’t make this assumption for the underlying power-constrained parallel computer model, we
don’t know of any problems for which this extra capability provides faster (in O-notation) algorithms, given

3



that a processor can only decide to turn on based on the information it has, not information only known far
away. There might be a way to exploit the fact that it didn’t receive information, but that does not seem to
be a widely useful capability.

Throughout we assume the squirrels have a unique integer id∈ {0, . . . , s−1} and that each squirrel
knowss andn. At each processor its (x,y) coordinates are stored. Often the processor’s z-order index will be
used. In z-ordering, the coordinates(xkxk−1 . . . x0, ykyk−1 . . . y0) yield the indexykxkyk−1xk−1 . . . y0x0.
Hilbert curve ordering would be equally useful.

2 Image Algorithms

For image data we assume that a
√

n ×√
n image is stored one pixel per processor, where each pixel has

a color. By afigurewe mean a connected component of pixels of the same color, where we typically think
of figures representing objects on a white background. We consider two pixels to be adjacent if and only if
they share an edge, but this can trivially be expanded to include corner adjacency. Bylabeling figureswe
mean that each pixel is assigned a label, and that two pixels have the same label if and only if they are in
the same figure. Initially each pixel starts with its label being its processor’s z-index. The final label of the
figure will be the minimal initial label of any of its pixels, and this position will be called the figure’sleader.

A single squirrel can label the figures inΘ(n) time. To do so, it uses a simple z-ordered scan to traverse
the image. When it encounters a pixel with label equal to its initial label then it has encountered a new
figure. It can then use a depth-first search to label the figure in time proportional to its size. Once the figure
is labeled the squirrel returns to figure’s leader and resumes the scan. The scan takesΘ(n) time, and since
the time to label all pixels in a figure is proportional to their number, the total labeling time isΘ(n), giving
Θ(n) time for the algorithm.

For multiple squirrels, however, we use a significantly different approach. A single figure may have
Θ(n) pixels, and hence having only one squirrel work on it would not improve upon the time of a single
squirrel labeling the entire image. Instead, we use a well-known divide-and-conquer approach (see [12, p.30]
for a generic version of this approach). The algorithm is as follows: to solve the problem in a square, suppose
the problem has been solved for the 4 subsquares. Within the larger square, the only figures where the pixels’
labels are inconsistent are those that cross the borders between subsquares. The edges connecting the two
sides, the ones that contain the information needed to make the labels consistent, form the edges of a graph
in which vertices are the labels of pieces adjacent to the sides. In this graph the connected components need
to be labeled (see Figure 1). To label this graph, move all of the edge information to the center and use an
edge-based algorithm to label the components, and then movethe information back to the edges. Ultimately
the highest level is reached, and then the final labels are propagated by reversing the process.

When squares of sizem are being worked on the movement of the subsquares’ edge information to
a submesh of sizem/4 involvesΘ(

√
m ) edges being moved a distance ofΘ(

√
m ), for a total energy of

Θ(m) per square. The edge-based component labeling involves a submesh of sizeΘ(
√

m ), and can be done
in Θ(m1/4) time [17] andΘ(m3/4) total energy, and thus the movement to the center dominates the time
and total energy. Since the movement to the center takes energy proportional to the area, and the squirrels
are evenly distributed among the squares, each level of recursion takes the same time,Θ(n/s). There are
log4(n) − log4(n/s) = log4(s) levels of parallel recursion, so we arrive at the following for the energy
range1 ≤ s ≤ √

n :

Theorem 1 Labeling the figures of an image of sizen can be performed inΘ((n log s)/s) time using peak
powers, for 1 ≤ s ≤ √

n log n.

4



1

8

5
7

12

13

4

2

11

3

14

6

9

10

image

9

7

1

8

4

2
3

11

14

6

10

13

label graph

Figure 1: Merging subsquares to label figures

Proof: To finish the theorem we need to consider the energy range
√

n ≤ s ≤ √
n log n. Partition the mesh

into subsquares ofr = (n/s)2 pixels. There aren/r such squares, so each can be assignedsr/n = n/s
squirrels. Note that this is

√
r, and hence by the above the subsquares can be labeled inΘ(

√
r log r) time.

Now a single merge step is used, merging alln/r squares at once. The number of squirrels is linear in
the size of all of the boundaries of the squares, so the label information of all of the boundaries can be
simultaneously moved to the center and made consistent, inΘ(

√
n ) time. As long as

√
r log r = Ω(

√
n ),

the time for labeling the squares dominates the total time. Since
√

r log r = 2(n/s) log(n/s), the time is as
claimed fors ≤ √

n log n 2

This divide-and-conquer approach has recently been utilized for sensor network algorithms [16]. In
Section 4 it will be shown that the above algorithm can be adjusted to achieve the minimum total power
goals in [16] while retaining its peak power properties.

Since rodents are being used to perform the algorithms, the following seems appropriate:

Corollary 2 Given a black/white maze of sizen with start and stop sites, inΘ((n log s)/s) times squirrels,
1 ≤ s ≤ √

n log n, can decide if the maze has a path from start to stop.2

Note that this does not say that they determine the shortest path, merely that they can determine if there is a
path. The power/time tradeoff for shortest paths is an open question, even for a single squirrel.

The algorithm in Theorem 1 is within a logarithmic factor of work-optimal parallelization, and it is an
open question whether this factor can be eliminated. Further, whens =

√
n the time is also slower than the

optimal time by a logarithmic factor [13]. Once the figures have been labeled various properties of them can
be determined without the extra logarithmic factor, but a bit more care is needed. Thelarge figures, those
having more than

√
n pixels, are partitioned into pieces and the results on the pieces are combined to get the

final result. The pieces are of size
√

n , and a squirrel will work on a piece and take the result directly to a
location where the piecewise results are combined all at thesame time, rather than combining them in the
tree-like fashion used for labeling. A figure with

√
n or fewer pixels will be calledsmall.

Within a figure, therank of a pixel is its position in the z-order numbering of the pixels in the figure
(with the numbering starting at 0, i.e., the label’s leader is rank 0). See Figure 2. A processor in a large
figure with rank a multiple of

√
n is abreakpoint. We say that an image isstrongly labeledif in addition

to being labeled, every processor contains the processor’srank in its figure and the number of pixels in the

5



2114 16

15

17

18 19 22 23 24

20 25

26

10

8

3

21

0

4 5

6 7

9

11

12

13

Figure 2: Rank ordering within a figure

figure. Each breakpoint also contains the location of the next breakpoint. It is straightforward to determine
ranks as the figures are being labeled, without increasing the time, using the property that when squares
are being merged they contain consecutive positions in the space-filling curve ordering, and hence merely
knowing the number of processors in the subsquares allows one to determine the starting rank of processors
in each subsquare.

For the processors that are breakpoints, once the ranks are known a simple bottom-up then top-down
pass can be used to determine the location of the next breakpoint. A somewhat more complicated approach
can reduce the time toΘ(

√
n ). It introduces a technique that will be employed in more complex operations.

Note that all of the large figures combined have at most2
√

n breakpoints since each corresponds to a
collection of

√
n pixels, except for the last breakpoint in a figure which may bein a piece containing only

itself. Thus ifs =
√

n we can assign each squirrel at most 2 breakpoints to be responsible for. However, a
given region may have many breakpoints. To assign breakpoints to squirrels, first have the squirrels, one per
row, move from right to left, counting the number of breakpoints encountered. Once these totals have been
deposited in the leftmost column, it’s simple to have each squirrel proceed bottom-up to determine which
row(s) contains its breakpoints, and then within the row(s)determine which breakpoints it is assigned to.
Temporarily, for the purposes of locating the next breakpoint, the pixel of highest rank within its figure is
also treated as a breakpoint, and hence there may be nearly3

√
n points involved, so each squirrel really

carries 3 points.
Once each squirrel has located a breakpoint, it creates a record containing the breakpoint’s label, rank,

and location, and then carries this to a centraln1/4 × n1/4 subsquare. A simple mesh algorithm is used to
sort the records by label, and within each label by rank. If the sort is into alternating row major order (or
any other contiguous ordering) then for each breakpoint therecord of the next breakpoint in its figure is in
an adjacent record. This information is added to the breakpoint’s record, and then the squirrels carry the
records back to the breakpoints and deposit the location of the next breakpoint, completing the operation.

By broadcast over figureswe mean that there is a value at the leader which is then copiedto every pixel
in the figure. Byreduction over figureswe mean that there is a commutative semigroup operation∗ over a
setS, and that each pixelp has a valuev(p) ∈ S. At the end of the reduction operation, the leader of figure
F has the value∗{v(p) : p ∈ F}. We assume that∗ can be computed in unit time. Broadcast and reduction
can easily be performed using the divide-and-conquer approach in Theorem 1, taking the same time bounds.
Here, however, we remove the extra logarithmic factor.

6



Theorem 3 Given a strongly labeled image of sizen, broadcast and reduction over figures can be performed
in Θ(n/s) time using peak powers, for 1 ≤ s ≤ √

n .

Proof: Note that by using depth-first search a single squirrel can do broadcast and reduction over a figure in
time proportional to the size of the figure. This will be used for small figures, and for pieces of large figures.

To do the operation for all of the small figures, first the squirrels move right to left, one per row, with each
counting the total size of all small figures with a leader in the row. Each total is divided by

√
n and rounded

up, with the result deposited in the leftmost column. This the minimum number of squirrels required if each
visits no more than

√
n pixels while labeling the small figures. For the entire imagethis could require nearly

2
√

n squirrels. We therefore require each squirrel to do the workof 2. If, for example, the first row had a
total of 4.5

√
n , then it was converted into a 5, so the first 2 squirrels will work solely on that row, and the

third will work on that row and the next row with a nonzero value. Within a row the figure sizes may not
divide evenly by

√
n , so the first squirrel does the first set of figures that add up toat least 2

√
n , the second

squirrel takes the next figure through the set of figures that add up to at least 4
√

n , and the third squirrel
takes the remaining ones (it is possible that there are none remaining). No squirrel works on more than 1
small figure more than its share, and since no small figure has size more than

√
n , no squirrel works on

more than 3
√

n pixels. Hence the total time to complete the operation on allsmall figures isΘ(
√

n ).
For the large figures the reduction operation will be described, with the broadcast being an approximate

reversal of this. As before we assign squirrels to breakpoints, and the squirrel assigned to the breakpoint
of rank i

√
n will do the reduction over all pixels of ranki

√
n through(i+1)

√
n −1, i.e., until the next

breakpoint. A slight difficulty, however, is that these pixels may not be contiguous. For example, even if the
entire image is a single figure, two pixels with consecutive ranks can be quite far from each other because
of the jumps in the z-ordering (see Figure 2). However, a slight modification can remedy this. Given two
pixels at positionsp andq, the set of pixels with z-orderings between theirs form at most 2 convex regions
C1, C2 that can easily be determined (see Figure 3). Ifp is a breakpoint of some figureF andq is the next
breakpoint ofF , then all of the points inF with ranks between the ranks ofp andq lie in C = C1 ∪ C2.
Further,F ∩ C forms a collection of subfigures, each of which touches the boundary ofC. Therefore a
squirrel can start atp, follow the boundary ofC, and whenever a new pixel ofF is encountered start a
depth-first search of that subfigure. The boundary ofC has lengthO(

√
n ), and the total number of pixels

examined in the depth-first search is≤ √
n , so the total time for the squirrel to determine the reduction of

its piece isΘ(
√

n ). Then the squirrels can congregate in the middle to determine the reductions over entire
figures and return the results to the leaders. Note that the number of pixels inC may be far larger than

√
n ,

so the squirrel could not simply traverse all ofC. 2

There is a slight complication in the above, in that several squirrels may have paths that overlap, and
only a fixed number are allowed to occupy a position at any one time. However, simple routing control
mechanisms can guarantee that all of the traversals can be completed inO(

√
n ) time.

Using reduction one can find the area and perimeter of each figure, and its bounding box, where the
(iso-oriented) bounding boxof F , denotedbox(F ), has x-extent equal to the x-extent of the pixels inF
(i.e., the smallest to largest x-coordinates of pixels inF ), and its y-extent is the y-extent of the pixels inF .
A broadcast is used to move all of these values to all pixels inF .

A figureF is contained infigureG if every path fromF to the edge of the image contains a pixel ofG.
Whenever two pixels of different colors are adjacent one corresponds to a figure containing the other (unless
both figures are adjacent to the boundary), but it cannot be determined which is which without some global
information. Fortunately this is simple to determine sincea figureF is contained in an adjacent figureG iff
box(F ) is contained inbox(G). Note that if figures are not adjacent then it can be thatbox(F ) ⊂ box(G)

7



A

B

Figure 3: All locations with z-ordering between those of A and B

without G containingF . For example, ifG is shaped like a U thenF can be a dot inside it without
being properly contained. However, for adjacent figures this cannot occur. Note that a figure has only one
containing figure that is adjacent to it. Thenesting levelof a figure is the number of figures that contain it.

Proposition 4 Given a strongly labeled image of sizen, for each figure one can determine if it is contained
in any others, obtain the label of the smallest container, and determine its nesting level, inΘ(n/s) time
using peak energys, for 1 ≤ s ≤ √

n . Further, for black/white images, in the same time/energy bounds
each figure can determine the smallest container of the same color.

Proof: For each pixelp on the boundary of a figure determine if an adjacent pixel in the figure of the
opposite color is part of a figure with a bounding box containing p’s, and if so retain that figure’s label,
while otherwise just retain an empty label. This label is that of the smallest container of a different color. To
find the smallest container of the same color in a black/whiteimage, now each boundary pixel ofF adjacent
to the containing figureG of the opposite color acquires the label ofG’s container, which is the smallest
containing figure ofF of the same color. Note that for arbitrarily many colors the closest enclosing figure
of the same color may be many levels away.

To determine nesting level, a left-right scan can be used, adding one every time a transition is made from
a figure to one it contains, and subtracting one when the opposite occurs. 2

Given an image, suppose each pixel has a (possibly empty) label, not necessarily a label of a figure. The
closest similar point problemis to find, for every pixel with nonempty label a closest one ofthe same label;
theclosest black point problemis to find, for every pixel, a closest black one; and theclosest differing point
problemis to find a closest one with a different non-empty label.

Theorem 5 Using peak energys, 1 ≤ s ≤ √
n , in Θ(n/s) time the closest black point problem, and the

closest differing point problem, can be solved for theℓ1 andℓ∞ metrics.

Proof: For the closest black point problem using theℓ1 metric, squirrels perform a right-left sweep in each
row, leaving, at each position, the location of the most recently encountered (hence closest) black pixel.
Then a similar left-right sweep is performed, where the closer of the black pixels in either direction is left
at each pixel. Note that for any pointp, either the closest black point is in the same column, or is one of the
points recorded in its column (including the points recorded atp itself). Now vertical sweeps are done in

8



each direction. Suppose an upward sweep is being done. The squirrel remembers the location of the closest
black pixel known so far. At each positionq, it compares the distance to the pixel it is carrying versus the
distance to the black pixel’s location stored atq in the horizontal sweeps, and it keeps the location of the
closer of these two, proceeding upwards. At each step, when it arrives at a pixel it is carrying the location
of the closest black pixel with vertical coordinate no larger than the coordinate it is currently at. A similar
downward sweep is also done, at which time the correct value is stored at each location. Modifications for
theℓ∞ metric are quite simple, and to modify for the closest differing pixel problem, note that the squirrel
merely needs to keep track of the closest labeled point, and the closest one of a different label. 2

The closest similar point problem is difficult in that there can be images withn/2 labels where each
occurs exactly twice, in which case the problem is essentially the same as sorting, requiringΩ(n3/2) total
energy. However, when the only labels are black or white the problem becomes considerably easier.

Theorem 6 Using peak energys, 1 ≤ s ≤ √
n , in Θ(n/s) time the closest similar point problem can be

solved for a black/white labeled image, where the metric isℓ1, ℓ2, or ℓ∞.

Proof: For theℓ1 andℓ∞ metrics the problem was solved in Theorem 5. For thel2 norm a somewhat more
complex algorithm is used, closely following that in [11]. Figure 4 helps illustrate the approach. Suppose
p is a black pixel within the dark subsquare, and suppose the closest black point has been found within the
union of the subsquare and the horizontal and vertical bands(the lighter gray regions). The only way there
might be a closer black pixel is ifp is closer to a cornerc than it is to any black pixel found so far, for in this
case there might be a black pixelq in the white quadrant corresponding toc that is the closest one top. Call
p a special pointif it satisfies this criterion. An important fact is that there are at most 2 points within the
square which are closer toc than to any point found so far. If there were 3 or more such points, one would
be closer to another than to the corner (see [11]). Thus in total there are at most 8 special points for which
white regions need to be considered.

To start the process, each squirrel is assigned to a subsquare of sizen/s. These are the black subsquares
in Figure 4. In linear time, for each black point it locates the nearest black, if any, in the square. (It can do
this by, say, simulating the recursive approach described for the entire image.) At this stage the only points
which are not guaranteed to have found the closest are those points which are the leftmost or rightmost
within a row, or highest or lowest in a column, of the subsquare. The only points within the banded regions
which might be closest to them are the leftmost ones in each row in the banded region to the right of the
square, the rightmost ones in each row in the banded region tothe left of the square, and similarly for the
vertical banded region. Row- and column-wise sweeps as in Theorem 5 can be used to simultaneously
find the appropriate banded region points for all subsquares, and finding the points within the subsquare is
similar. There are at mostΘ(

√

n/s ) points within the square that have to consider at mostΘ(
√

n/s ) points
within the banded region, so simple comparisons of all of theinside points with all of the outside ones can
be done inΘ(n/s) time. Then the special points are located. A traversal alongthe row corresponding to
the top row of the square is performed, where at each column the distance from the special point to the
lowest black pixel above that row is computed, and if this is closer than any point found so far then it is
kept. Similar operations are performed along the horizontal and vertical bounding lines in all directions.
The traversal takesΘ(

√
n ) time, and when all of the traversals are completed the closest black neighbor of

each black pixel has been found. Then the same algorithm is applied to the white pixels, locating the closest
white. 2

Note that the above approach does not directly solve the nearest black point problem for theℓ2 metric
because there may be more than 8 special points. For example,there may be no black pixels in the square
or banded regions, and hence every pixel in the square is special.

9



Q

P

Figure 4: The closest point to P is Q

3 Graph Problems

3.1 Adjacency Matrix Input

General matrix operations are not amenable to peak energy reduction without increasing the time. For ex-
ample, it appears that multiplying

√
n × √

n matrices requires total energyΩ(n3/2) on a mesh, despite
serial algorithms such as Strassen’s which reduce the serial energy too(n3/2). However, operations involv-
ing adjacency matrices are often simpler. For example, someserial and parallel graph algorithms involve
steps which compress the matrix, merging entries together and reducing the size of the remaining problem.
Unfortunately, squirrels cannot compress the matrix without takingΩ(n3/2/s) time — consider, for exam-
ple, compressing a matrix where every other row and column has been eliminated. Thus energy efficient
algorithms must rely on extracting subsets of information and moving them.

Theorem 7 Given the
√

n ×√
n weighted adjacency matrix of an undirected graph, the connected com-

ponents and a minimal spanning forest can be determined inΘ((n log n)/s) time and peak energys, for
1 ≤ s ≤ √

n log n

Proof: For1 ≤ s ≤ √
n a standard iterative method is used. At each stage, each array position starts with

the weight of the edge, if any, and the labels of the two vertices. Then a horizontal sweep is used to discover,
for each vertexv, the smallest edge in its row corresponding to a vertex with alabel different fromv’s.
These

√
n edges are transported to a subsquare of size

√
n , where the minimal spanning forest of them is

constructed and the vertices labeled to reflect the connected components. The squirrels do a vertical sweep
on each column, and a horizontal one on each row, to propagatethe new vertex labels and mark which edges
were used. Then the next stage begins.

Each stage reduces the number of components at least by a factor of two, so at most⌈log4 n⌉ stages
are needed. The sweeps takeΘ(n/s) time, and the subsquare calculations takeΘ(n3/4/s) time since the
problem can be solved inΘ(n1/4) time by a standard mesh computer of size

√
n [17]. Thus the time is as

claimed fors ≤ √
n .

While the above was described in a manner natural for an adjacency matrix, note that a different approach
could have been taken, namely to subdivide the matrix into subsquares, as was used in images, solve the
problem within each subsquare, and then recursively merge results. This approach will work because no

10



matter how a graphG = (V,E) has its edges subdivided,E = E1 ∪ . . .∪Em, a minimal spanning forest of
G can be formed from the union of the minimal spanning forests of the subgraphsGi = (V,Ei). For each
of the subsquares, the number of vertices present is linear in the edgelength, as was true for the image data,
so the data movement has the same order of magnitude. Further, these observations show that the approach
in Theorem 1 can be used to extend to

√
n ≤ s ≤ √

n log n. 2

For a graph with|E| edges one can use the same basic approach used initially and solve the problem
in no more than|E|/√n iterations, by reassigning squirrels working on vertices where all the edges have
already been used. Thus graphs of bounded degree, or of bounded average degree (such as planar graphs)
can be solved in time linear in the number of vertices by

√
n squirrels. For general graphs it is unknown if

the worst case can be improved to remove the logarithmic factor in Theorem 7.
The basic approach used above consists of stages of collecting some information from the adjacency

matrix, moving it to a smaller region to solve a graph problemwith edges as input, and then moving infor-
mation back to the adjacency matrix. This approach can be used for several other problems, such as taking
an arbitrary spanning tree and directing it, i.e., selecting a root and having every vertex point to its parent.
Given a directed tree, one can define tree reduction operations such as having every vertex know the reduc-
tion of all values in its subtree, or in the path from the root to it. These reductions can be used to determine
sizes of subtrees, depth, height, position in a depth-first or breadth-first ordering, etc. All can be done with
in Θ(n/s) time using peak energys, 1 ≤ s ≤ √

n , once a spanning forest has been found [1, 12, 18]. The
proofs are omitted as they closely follow those in these references.

Theorem 8 Given an adjacency matrix of an unordered graphG with
√

n vertices, and a spanning forest
for G, then, using peak energys, 1 ≤ s ≤ √

n , in Θ(n/s) time one can

• Decide ifG is bipartite.

• Determine the cyclic index ofG.

• Determine all bridge edges ofG (and hence decide ifG is biconnected).

• Determine all articulation vertices ofG.

2

3.2 Edge List Input

As has been noted above, there are many algorithms for edge data which can be done inΘ(
√

n ) time, but
Θ(n) peak power andΘ(n3/2) total power, on a standard mesh-connected computer. Further, for problems
such as component labeling, it is easy to see that the total power is a lower bound, no matter what time or
peak power is used. For example, there can be2n/3 vertices andn/3 components of size 3 containing 2
edges, where each pair of edges isΘ(

√
n ) apart. However, the situation can be improved if there are fewer

vertices or components, much like the
√

n vertices inherent when an adjacency matrix is used.

Theorem 9 Given a graphG = (V,E) with n edges stored one per processor, the connected components
and a minimal spanning forest ofG can be determined in timeΘ(n

√
V /s) using peak energys, 1 ≤ s ≤

√

|V |n.

11



Proof: Within squares of size|V | simulate a standard mesh algorithm, determining the minimal spanning
forest using only the edges in the square. Note that some vertices may have no edges in the square. Then
squares are merged together in a series of stages, each stagecombining 4 subsquares at a time. The merger
involves moving the≤ |V | edges together into a subsquare and using a basic mesh algorithm algorithm to
reduce down to the minimal spanning forest of these, resulting in no more than|V | edges.

The first time squares are combined, at most|V | edges are moved a distance of
√

|V |, taking|V |3/2 total
energy per square andn

√

|V |/s time sinces|V |/n squirrels are assigned to the square. At each subsequent
stage the distance the edges are moved increases by a factor of 2, without increasing the number of edges,
and the number of squirrels moving them increases by a factorof 4, so the total time decreases by a factor of
2. Thus the time is dominated by the first stage. The initial stage, using a basic mesh algorithm in squares of
size|V |, can be completed withΘ(|V |3/2) total energy andΘ(|V |3/2/s) time by1 ≤ s ≤ |V | squirrels [17].
Heres = r|V |/n, so the time isΘ(n

√

|V |/s), i.e., the energy and time are the same as the initial move to
combine squares. The total energy over all of the initial squares isΘ(n

√

|V | ). 2

One can apply the above technique to compute broadcasts and reductions over components once they
have been labeled. If there areC components then smaller initial squares, of sizeC, can be used. The
time will be reduced toΘ(n

√
C/s), and the total energy will be reduced toΘ(n

√
C ). These time and

energy bounds can similarly be obtained for the problems mentioned in Theorem 8. Further, it is easy to
see that this time and energy are optimal: suppose in each initial square there is exactly one value for each
component. Since the components are independent, the totaltime and energy to perform reductions over
all components isC times the value for a single component. The single componentvalues can be viewed
as being in a square lattice of sizen/C, where the distance between neighbors is

√
C. Thus to perform

reduction over any component requires energy proportionalto
√

Cn/C = n/
√

C, so forC components the
total is proportional ton

√
C. Similarly, the time and power achieved in Theorem 9 is worst-case optimal.

Note thatV , and hence|V |, need not be known in advance. The algorithm can start assuming a small
value, and when results from subsquares are merged together, if it is discovered that the guess was too small
because there are too many different vertex labels present,then the squirrels in that square continue the
algorithm for the larger size. Other squirrels may end up waiting for such a group, at which point they too
will then proceed with the larger value. These cascades can occur several times until the true value|V | is
learned; however, the resulting time is asymptotically thesame as if it had been known in advance.

4 Minimizing Total Energy Used by Any Single Processor

In some applications, such as sensor networks, an importantconsideration is the maximum energy used by
any sensor. This is because the sensors are assumed to have their own, limited, power, as opposed to the
externally supplied power which motivated this work.

Recall that the power used by a processor corresponds to the number of times it was visited by a squirrel.
For the preceding algorithms, in most steps no processor is visited more thenΘ

(

1

n · (Total Power)
)

times,
i.e., no processor had power requirements more than the average. However, when data was collected and
moved to a subsquare for processing by a standard mesh-connected computer algorithm then this was not
true, since processors in the subsquare were on continuously during this step, far more than their share. For
example, in the last stage of recursion in the image component algorithm for Theorem 1, the processors
simulate a standard mesh algorithm takingΘ(n1/4) time, and hence expendΘ(n1/4) energy, but the average
per processor for the entire algorithm is onlyΘ(log n).

However, these power-intensive steps can be modified so thatthe average power per processor is still a

12



n1/4

0 00

0 0 0

1 1 1

1 1 1

2 2 2

2 2 2

Numbers indicate when the processor is used to simulate the standard mesh algorithm

Figure 5: Expanding the simulating mesh

constant. To do so, then1/4 × n1/4 submesh is expanded, as in Figure 5, so that the simulating processors
aren1/4 apart. Then a fixed number of steps of the simulation are performed, where each step now takes
Θ(n1/4) time. After this, the location of the simulating processorsare moved diagonally 1 step, as indicated
in the figure, and then another fixed number of steps are simulated, and so forth. The number of steps is
chosen so that the simulated algorithm is finished by the timethe diagonal movement would place simulating
processors on top of ones previously used.

It is easy to see that now no processor is used more than a constant number of times during the simu-
lation, either for calculation or as part of a communicationpath. While the notion of grouping processors
together and having only a few be active at one time has been used in sensor networks (e.g., [8, 16]), it is
unusual to do this when it significantly increases the time. The time has increased by a factor ofn1/4, but
this merely makes it equal to the time needed to move data to the subsquare. Thus it does not increase the
total time by more than a constant multiple. Similar changescan be made concerning the use of the leftmost
column in Theorem 3.

Summarizing, we have the following

Theorem 10 Using the indicated changes, all of the preceding algorithms can be modified so that the peak
power, total power, and time do not change by more than a constant multiple, and simultaneously each
processor uses onlyO

(

1

n · (Total Power)
)

power. 2

5 Final Remarks

This paper has been concerned with minimizing peak power usage by mesh-connected computers. The
algorithms herein were only given for 2-dimensional meshes, especially since some of the data formats
are naturally 2-dimensional, but one can use similar approaches to develop power reducing algorithms for
higher dimensional meshes. However, as the dimension increases there is a smaller range in which to lower

13



peak power without increasing the time required. For example, in a 3-dimensional mesh ofn processors,
summing values from each processor can be done inΘ(n1/3) time, and any algorithm which achieves this
minimal time must have a peak power ofΩ(n2/3). In contrast, in 2 dimensions the minimal time isΘ(n1/2),
which can be achieved with a peak power ofΘ(n1/2).

A more optimistic viewpoint is that for the same energy bounds there are problems that a 3-d mesh
can solve faster than a 2-d one, just as 2-d meshes can be superior to 1-d meshes. Sorting is one such
example. For most of the problems in this paper, however, that is not possible since the algorithms provided
work-optimal tradeoffs compared to serial algorithms. Forsome problems it isn’t clear what effect the
dimension has. For example, to find the median, the optimal time-energy tradeoffs are unknown for arbitrary
dimensions.

In general, the more structured the input the easier it is to reduce the power. For example, adjacency
graphs yield faster algorithms than do unordered edges. Part of the explanation for this is that less global
rearrangement of the data is needed, an operation which is quite power-intensive. In some cases one might
need to do an initial power-intensive operation with restricted peak power, in which case the time will
increase. However, there might be efficient algorithms for properly organized data. For example, some
geometry problems on point data can be solved significantly faster if the points have been sorted by x-
coordinate. Thus if one is solving a sequence of such problems it may be useful to organize the data initially
and view the organizational time as being amortized over subsequent operations.

It is interesting to note that several of the algorithms use afixed pattern of energy use, i.e., the time at
which a processor is active is independent of the data. The messages passed, of course, do depend on the
data. One exception was the depth-first search used by individual squirrels to label figures in a subsquare at
the start of the algorithm in Theorem 1. They could have used the fixed activation pattern employed by the
subsequent stages of the labeling process, but an extra logarithmic factor would have been introduced. It is
unclear what the optimal time for a single squirrel is if its pattern of motion must be independent of the data.

References

[1] Atallah, M.J. and Hambrusch, S.E., “Solving tree problems on a mesh-connected processor array”,
Infor. and Control69 (1986), 168–187.

[2] Atallah, M.J. and Kosaraju, S.R., “Graph problems on a mesh-connected processor array”,J. ACM31
(1984), 649–667.

[3] Batcher, K.E., “The design of the Massively Parallel Processor”,IEEE Trans. ComputersC29 (1980),
836–840.

[4] BlueGene/L: http://www.research.ibm.com/bluegene/

[5] Blum, M. and Hewitt, C., “Automata on a 2-dimensional tape”, Proc. 8th IEEE Conf. SWAT(1967),
155–160.

[6] Blum, M. and Sakoda, W.J., “On the capability of finite automata in 2 and 3 dimensional space”,Proc.
18th Symp. Foundations of Computer Science, 1977, 147–161.

[7] Brown, C., “Algorithm yields ultra-low-power image sensor”, EE Times, December 12, 2005.

[8] Chen, B., Jamieson, K., Balakrishnan, Morris, R., “Span: An energy-efficient coordination algorithm
for topology maintenance in ad hoc wireless networks”, 7th MOBICOM, 2001.

14



[9] Leighton, F.T.,Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes,
1992, Morgan Kaufmann.

[10] Mattson, T. and Henry, G., “An overview of the Intel TFLOPS supercomputer”,Intel Tech. J.2 (1968).

[11] Miller, R. and Stout, Q.F., “Mesh computer algorithms for computational geometry”,IEEE Trans.
Computers38 (1989), 321–340.

[12] Miller, R. and Stout, Q.F.,Parallel Algorithms for Regular Architectures: Meshes andPyramids, 1996,
MIT Press.

[13] Nassimi, D. and Sahni, S., “Finding connected components and connected ones on a mesh-connected
parallel computer”,SIAM J. Computing9 (1980), 744–757.

[14] Rabin, M., “Maze threading automata”, unpublished lecture, 1967.

[15] Shah, A.N., “Pebble automata on arrays”,Comp. Graphics and Image Proc.1974, 236–246.

[16] Singh, M., Bakshi, A., and Prasanna, V.K., “Constructing topographical maps in networked sensor
systems”,Proc. ASWAN 2004.

[17] Stout, Q.F., “Optimal component labeling algorithms for mesh-connected computers and VLSI”,Ab-
stracts AMS5 (1984), 148.

[18] Stout, Q.F. “Tree-based graph algorithms for some parallel computers”,Proc. 1985 Int’l. Conf. Parallel
Proc. (1985), 727–730.

[19] Thompson, C.D. and Kung, H.T., “Sorting on a mesh-connected parallel computer”,Comm. ACM20
(1977), 263–271.

[20] Tilera Corporation, “TILE64 Processor Produce Brief”(2007),
www.tilera.com/pdf/ProBriefTile64 Web.pdf

[21] Yoo, A., Chow, E., Henderson, K., McLendon, W., Hendrickson, B., and Catalyurek, U., “A scalable
distributed parallel breadth-first search algorithm on BlueGene/L”,Proc. SC—05(Supercomputing
2005).

15


