
Analysis of Delays Caused by Local Synchronization

Julia Lipman
Institute for Defense Analyses
Center for Computing Sciences

Quentin F. Stout
University of Michigan

July 26, 2010

Abstract

Synchronization is often necessary in parallel computing, but it can create delays whenever
the receiving processor is idle, waiting for the information to arrive. This is especially true
for barrier, or global, synchronization, in which every processor must synchronize with every
other processor. Nonetheless, barriers are the only form of synchronization explicitly supplied
in OpenMP, and they occur whenever collective communication operations are used in MPI.

Many applications do not actually require global synchronization; local synchronization, in
which a processor synchronizes only with those processors from or to which information or
resources are needed, is often adequate. However, when tasks take varying amounts of time the
behavior of a system under local synchronization is more difficult to analyze since processors do
not start tasks at the same time.

We show that when the synchronization dependencies form a directed cycle and the task
times are geometrically distributed with p = 0.5, then as the number of processors tends to
infinity the processors are working 2 −

√
2 ≈ 0.59% of the time. Under global synchronization,

however, the time to complete each task is unbounded, increasing logarithmically with the num-
ber of processors. Similar results apply for p $= 0.5. We also present some of the combinatorial
properties of the synchronization problem with geometrically distributed tasks on an undirected
cycle.

Nondeterministic synchronization is also examined, where processors decide randomly at
the beginning of each task which neighbors(s) to synchronize with. We show that the expected
number of task dependencies for random synchronization on an undirected cycle is the same as
for deterministic synchronization on a directed cycle.

Simulations are included to extend the analytic results. They show that more heavy-tailed
distributions can actually create fewer delays than less heavy-tailed ones if the number of pro-
cessors is small for some random-neighbor synchronization models. The results also show the
rate of convergence to the steady state for various task distributions and synchronization graphs.

1 Introduction

The problem of synchronization is a very general one that appears in many contexts. It applies
to any situation in which some kind of distributed agents or processors communicate information
about their individual states to each other and a receiving processor cannot proceed until this
information is received and/or resources are released. For example, Tabe et al. [23] observed that
barrier synchronization on the IBM SP2 caused performance degradation due to random operating
system interrupts with unexpectedly long tails, even though every processor was completing tasks
that should have taken the same amount of time. Nonetheless, barriers are the only form of
synchronization explicitly supplied in OpenMP, and they occur whenever collective communication
operations are used in MPI.

1

However, in applications such as time-stepping algorithms for solving partial differential equa-
tions, a processor updating values at a site need only wait for the previous values from neighboring
sites, a form of local synchronization. In a typical MPI send/receive program for such calculations,
one region of the simulation may be a few time steps ahead of another without violating compu-
tational dependencies. Local synchronization is especially useful when the calculations can take
varying amounts of time (perhaps due to the interrupts mentioned above) and delays can occur
randomly at any processor or task (such as was observed in the operating system interrupts men-
tioned above). In this case, delays in one region may be smoothed out before they cause significant
slowdown for the entire system.

We model the system as processors p0, ..., pn−1 connected according to some digraph G, all trying
to complete a succession of tasks whose durations are independent and identically distributed with
probability distribution f . Processor pi is dependent on processor pj to complete its rth task if pi

has an incoming edge from pj in G when pi has finished its (r−1)st task. If pi is dependent on pj

at its rth task, then pi cannot start its rth task until pj has finished its (r−1)st task.
We always consider a processor to be dependent on itself (Chang and Nelson [6] call such models

lateral loops). At any given instant a processor is either executing its current task, in which case it
is working, or waiting for one of the predecessor tasks to complete, in which case it is idle. Using the
terminology of [1], we call the graph G the processor graph, and the induced graph of dependencies
among processor-task pairs the task graph. In most of the models we study, G is the same from
task to task, but in Section 4 we consider a model where dependencies can change at random. The
system starts out with no processor having completed a task.

By a level we mean the time from when all processors have completed their (i−1)st task to
when they have all completed their ith task. Let TG,f (i) denote the expected time per level when
all processors have completed the ith task. We define the (asymptotic) expected time between levels
of G, T ∗

G,f , to be limi→∞ TG,f(i). When G is infinite we modify TG,f (i) to mean the expected time
at any given vertex, rather than the expected time per level in the entire graph. In a finite graph
the asymptotic values are the same, but in an infinite graph, for any task distribution times with
unbounded support, the expected time per level in the entire graph is infinite for all i.

In Section 3 we consider cyclic synchronization graphs with task times that are geometrically
distributed with p = 0.5. For a directed cycle of n processors we use a Markov chain approach to
determine T ∗ exactly. This is given in Theorem 3.3, where it is also proven that as the number
of processors approaches infinity, the fraction of time spent working converges to 2 −

√
2 ≈ 0.59.

When the task times are geometric with p $= 0.5 the fraction of time spent working converges to a
constant that can be bounded using the value for p = 0.5. For undirected cycles we examine the
combinatorial properties of the corresponding Markov chain, relating them to Motzkin numbers.

In Section 4 we consider a model in which processors can randomly change their synchronization
dependencies. Theorem 4.1 shows that for the case of random synchronization on the undirected
cycle, where for each task a processor randomly selects one of its neighbors for synchronization,
the expected number of task-completion times depended on is the same as for the deterministic
directed cycle.

Section 5 contains extensive simulation results for a variety of synchronization models and task
time distributions. Geometric, exponential, normal, and Pareto distributions are considered, on
cycles, tori, and complete graphs. Deterministic and random synchronizations are evaluated, as is
a “first-neighbors” synchronization model, where a processor only needs to wait until a specified
number of its predecessors have completed their tasks. Results are given for both the increase in
idle time as the number of processors in the system increases, and the performance of the systems
as they converge to their stationary behavior.

2 Previous Work

Chang and Nelson [6] prove some bounds on the performance of a parallel system under local
synchronization. “The difficulty of the analysis lies in the fact that the times processors start their
ith iteration differ, which is not the case for barrier synchronization. This makes an exact analysis
intractable . . . ” they write.

Using a branching process method of Kingman [12], they show that if the task time distribution
has all finite moments and the synchronization graph is of bounded degree, then the expected time
for a processor to complete a task, including idle time, has an upper bound that does not depend
on the number of processors. This upper bound is

inf{t ≥ 1 : rm(t) < 1}

where r is the expected number of dependencies that a processor has at each time step (including
dependency on itself at the previous time step), m(t) is defined

m(t) = inf
θ≥0

e−θtφ(θ)

and φ(θ) is the moment generating function of the task time distribution. It is easy to see that this
bound does not generally have a closed form; sometimes it is not even finite, though it is when the
distribution is geometric, exponential, or normal.

Rajsbaum and Sidi [18] show that, among all “new better than used in expectation” (NBUE)
distributions for f , the exponential distribution produces the worst performance. They also perform
an exact analysis of the cases where G is a directed cycle or a complete graph, and f is the
exponential distribution, using both combinatorial and queueing-theoretic methods. Finally, they
study the behavior of a system with one slow “bottleneck” processor.

Taylor and Van Dijk [24] study a model for multicomponent systems that is similar to our
model in that components may have dependencies on other components, but that also allows for
the possibility of component failure. They bound the performance of these systems by constructing
systems with easily computed closed-form stationary distributions and using stochastic compara-
bility to prove that the performance of the new systems bounds the performance of the original
systems.

Korniss et al. [13] consider the spread, or standard deviation of the tasks completed at each
processor, in a synchronization model with exponentially distributed task times. They show that
adding random small-world edges can result in a constant bound for the spread without creating
unbounded expected synchronization times.

Legedza and Weihl [14] used simulations to study the effect of replacing barrier synchroniza-
tion with local synchronization. They showed that replacing barriers with local synchronization
improved program performance by 24 percent for some applications. Han et al. [11] proposed a
compiler optimization to replace many instances of barrier synchronization with local synchroniza-
tion.

Tsitsiklis and Stamoulis [25] find bounds for the communication complexity of a model where
processors send messages to their neighbors in a synchronization graph both when triggered by
the reception of other messages and at random, under the assumption of stochastic communication
delays.

Baccelli and Liu [1] propose a queueing model for parallel systems with precedence constraints
on tasks and give integral equations for the steady-state performance of these systems. “Exact
analytical solutions [to these equations] seem to be rather difficult to obtain,” they write, although
they provide some bounds.

Malony et al. [15] implement a stochastic technique for predicting the performance scalability
of parallel programs which transformed the graph of the original program into a “scaled” model or
models. But for a neighbor-synchronized program, they conclude, “If we were to represent each task
and dependency . . . in the scaled model, the graph size and complexity would be unmanageable.”
Their solution is to transform the original graph of the neighbor-synchronized program into one
with barriers to create an upper bound, and into one with no synchronization at all to create a
lower bound, or to implement barriers at some points and no synchronization at others.

The problem of synchronization can also be reduced to a last-passage percolation problem. Di-
rected last-passage percolation is the problem of finding maximal-weight lattice paths with stochas-
tic weights on the lattice points. When the lattice is a directed grid, the problem is exactly that of
finding the heaviest path through the dependency graph induced by directed-cycle synchronization.
Cohn et al [7] proved exact results for domino tilings of the Aztec diamond; as described by Martin
[16], these results can, by a series of transformations, be interpreted to provide exact asymptotic
results for the last-passage percolation problem corresponding to directed-cycle synchronization
with geometrically distributed task times.

One widely used method for predicting the performance of parallel programs with stochastic
task duration times is to create a dependency graph of the tasks in the program and then study
a similar series-parallel graph, which is much easier to analyze. The algorithm that Escribano
and van Gemund [10] propose for converting non-series-parallel graphs into series-parallel graphs
results in particularly large upper bounds for neighbor-synchronized graphs; in fact, it simply
replaces local synchronization with barriers, as Malony’s method does. Escribano and van Gemund
[9] researched the extent to which adding dependencies to a task graph in order to make it series-
parallel affects its expected completion time. They conjectured that any graph representing a
parallel computation has an equivalent series-parallel graph which takes no longer than twice that
of the original graph. However, Salamon [19] writes, “These [neighbor-synchronized] task graphs
are known to provide counterexamples to [Escribano’s conjecture] . . . Benchmark structures that
occur frequently in practice, such as neighbor synchronization, need to be analyzed further.”

3 Geometric/Exponential Distribution

Here we consider the geometric distribution, where each task can be thought of as flipping a coin
until it comes up heads, and the exponential distribution. For the geometric distribution on a
complete graph of n processors, the expected time between levels is simply the expected time it
takes for n coins all to come up heads; that is, the expected maximum of n geometric random
variables. For any probability p ∈ (0, 1) of heads, this extremal statistic grows as Θ(logn). For
the remainder of this paper, unless otherwise explicitly stated, we assume that the coin is fair, i.e.,
p = 0.5.

It is well-known that if f is an exponential or geometric distribution then there is a constant
Cd, where Cd = Θ(log d), such that T ∗

G,f ≤ Cd for any graph G of degree no more than d. See, for
example, Exercise 1.4.1 of Bertsekas and Tsitsiklis [5]. The comments above about the complete
graph show that this is the strongest bound possible. This result is also implied by the far more
general bounds given in Chang and Nelson [6]. Here we are able to obtain the exact value of T ∗ for
the directed cycle of n processors and a geometric distribution, and its limiting value as n tends to
infinity.

Figure 1: Markov chain for the directed cycle on 3 processors. Dashed lines indicate rezeroing.

3.1 The geometric distribution on the directed cycle

We consider the local synchronization case where G is a directed cycle: each processor must wait
only for itself and its left neighbor. Even though the geometric distribution is memoryless, tradi-
tional closed-queue methods like the ones used by Rajsbaum and Sidi for the exponential distribu-
tion on the directed cycle do not apply to it.

The actions of the processors can be modeled as a discrete-time Markov chain where the states
are ordered n-tuples of integers (s0, ..., sn−1) such that si corresponds to the number of tasks
completed by the processor pi. So, in a three-processor system, if the first processor has completed
the first task and the second two have not completed any, the state would be (1, 0, 0) (which we
will abbreviate as 100). For the directed cycle, the states will consist of n-tuples where for all i,
si ≤ si+1 + 1 (and sn−1 ≤ s0 + 1).

When every processor has completed at least one task, the state is rezeroed: each number is
decremented. The rate of rezeroing is what we want to measure; the expected amount of time
between rezeroing operations is the expected time between when every processor in the system
has completed at least i tasks and when every processor in the system has completed i + 1 tasks.
One way to represent this operation is to include states with no zeroes whose incoming edges are
states with zeroes: the state 112 would have a single outgoing edge with probability 1 going to
001. However, rezeroing is considered to be instantaneous, and such an edge would imply that a
time step had taken place. To avoid this problem, such a state can be collapsed with its succeeding
state. The state 012, then, instead of having an outgoing edge going to 112, would instead have one
going directly to 001; the rezeroing is implicitly understood. Figures 1 and 2 illustrate the Markov
chains.

We call any processor that is not waiting for its neighbor to start the next task a working
processor, and any processor that could have finished a task at the most recent time step a last-
minute processor. More formally, a processor i is working if si ≤ si−1; it is last-minute if si ≥ si−1.

Calculating the steady-state probabilities of this Markov chain is much easier with the following
lemma, which shows that the chain is balanced, i.e., that each of its states has the same number of
incoming edges as it has outgoing edges.

Lemma 3.1. The Markov chain for the directed cycle with geometrically distributed tasks is a
balanced digraph.

0000

0001 0010 01001000

0011 01101001 1100

01011010

0111 1011 11011110

0012

0112 1012

0120

11200121

2001

2011 2101

1200

12011210

0122 2012 22011220

0123 12303012 2301

Figure 2: Markov chain for the directed cycle on 4 processors. Dashed lines indicate rezeroing.

Proof. We need to have some way to count the number of outgoing and incoming edges of a state
S = (s0, .., sn−1). Note that a processor i is working if and only if si ≤ si−1. If there are f working
processors, then there are 2f possible next states and 2f outgoing edges, since any subset of the
working processors could finish their tasks by the next time step. These edges also have equal
probability, since the coin is assumed to be fair, and the coins for different processors and tasks are
assumed independent.

Counting incoming edges is similar; any i for which si ≥ si+1 is last-minute. To see this, observe
that if si = r > 0 at time t, then si could have been r − 1 at time t − 1. If si = 0, then, clearly, it
could not have been −1 at the previous time step. But consider the state S′ = (s0 +1, .., sn−1 +1).
Such a state would be one of the states with no zeroes that we removed from the chain. We can
see here that the ith processor is last-minute. According to our model, all of the edges that would
have been S′’s incoming edges will go to S. So si could have been incremented at the last time
step, with rezeroing possibly taking place. If si < si+1, then i could not have been incremented at
the last time step, because that would imply that si+1 was more than 1 greater than si at some
time. If there are l last-minute processors, then then there are 2l possible previous states and 2l

incoming edges with equal probability.
We would like to show that l = f in any possible state. To see this, observe that si ≤ si−1 if

and only if si−1 ≥ si. That is, there is a one-to-one correspondence between working processors
and last-minute processors. So each state has the same number of incoming edges as outgoing
edges.

Since the Markov chain of states is a balanced digraph, and since all outgoing arcs from any
given state have equal probabilities, the steady-state probability of a state is proportional to its
degree, so we can calculate the steady-state probabilities of a state simply by observing which of
its processors are working. By looking at the numbers of working processors of all the states in the
chain, we can calculate how many processors are expected to be working at a given time, and then
how much of the time any processor is expected to be working.

Lemma 3.2. There are
(n
k

)(n−1
k−1

)
states of length n with k working processors.

Proof. Stanley [21] proves that the Narayana numbers N(n, k) = 1
n

(n
k

)(n
k−1

)
enumerate sequences

of length 2n in which 1 appears n times and −1 appears n times such that each partial sum is
nonnegative and there are exactly k instances of a 1 immediately followed by a −1. A variation on
his proof yields a proof of this lemma.

Stanley’s construction begins with two compositions, A : a1+...+ak = n+1 and B : b1+...+bk =
n. There are

(n
k−1

)(n−1
k−1

)
ordered pairs (A,B). From each ordered pair, he creates a circular sequence

with a block of a1 1’s, then a block of b1 −1’s, then a block of a2 1’s, and so on. He shows that
each such circular sequence could have been created from exactly k composition pairs, and that

there is only one way to get a linear sequence from it that starts with a 1 and has all nonnegative
partial sums when this 1 is removed, so there are 1

k

(n
k−1

)(n−1
k−1

)
= 1

n

(n
k

)(n
k−1

)
such sequences.

Our proof is similar. A state of length n with k working processors is a sequence s0, . . . , sn−1

of nonnegative integers containing at least one 0 that satisfies the following three conditions:

1. It contains at least one 0,

2. For all i, si+1 (mod n) ≤ si + 1

3. There are exactly k positions i at which si+1 (mod n) < si + 1.

Such a state can be obtained from a circular sequence S of the form in Stanley’s construction
as follows: break S into a linear sequence that starts with at least two 1’s, and remove the first of
these; call this new linear sequence S′. We create a new sequence T from S′: At the first element
(which must be a 1), write a 0. At each subsequent 1, write the partial sum at that point (take
−1’s into account in the calculation of the partial sums, but write partial sums only at 1’s, not at
−1’s). Some of the terms in T may be negative. Now increase each term in T by the same amount
such that the least term is 0. The sequence we construct from T in this way is a state of length n
with k working processors.

There are n− k +1 points at which to break S into a linear sequence such that it starts with at
least two 1’s, since there are n+1 1’s and k of them are immediately followed by −1’s. Breaking it
at each of these points results in a different beginning state for the same reason that S could have
been created from exactly k composition pairs: n and n + 1 are relatively prime. We can also see
that every length-n, k-working-processor beginning state can be made into a circular sequence of the
form in Stanley’s construction: go through the sequence, at each si writing si−si+1 (mod n) +1 −1’s
followed by a 1. Finish by writing an extra 1. This will result in a circular sequence containing n+1
1’s (one for each entry in the state and one extra) and n −1’s, since it ends up in the same place it
started. Since there are k working processors, there are k positions at which si−si+1 (mod n)+1 > 0,
so there will be k groups of 1’s. So the circular sequence created is one of the form in Stanley’s
construction.

We have shown that there are n − k + 1 times as many beginning states of length n with k
working processors as there are such circular sequences:

(n − k + 1)
1
k

(
n

k − 1

)(
n − 1
k − 1

)
=

(
n

k

)(
n − 1
k − 1

)

.

Theorem 3.3. For a directed cycle of n processors, with geometrically distributed tasks with p =
0.5, the fraction of time each processor is working is

∑n
k=1 k2k

(n
k

)(n−1
k−1

)

n ·
∑n

k=1 2k
(n
k

)(n−1
k−1

)

As n tends to infinity this converges to 2 −
√

2 ≈ 0.59.

Proof. A state with k working processors has outdegree 2k in the Markov chain of the directed
cycle with geometric tasks. As we have shown, the Markov chain is a balanced digraph for p = 0.5,
which means that the steady-state probability of a state is proportional to its (out)degree.

We can find the expected number of working processors at any given time by summing, over all
states, the number of working processors multiplied by the outdegree, which using what we have

shown in Lemma 3.2 is
∑n

k=1 k2k
(n
k

)(n−1
k−1

)
, and normalizing by the total outdegree of all states

(
∑n

k=1 2k
(n
k

)(n−1
k−1

)
). Thus the expected number of working processors is

∑n
k=1 k2k

(n
k

)(n−1
k−1

)
∑n

k=1 2k
(n
k

)(n−1
k−1

) (1)

and the fraction of time a processor is working is this divided by n.
To determine the asymptotic value as n goes to infinity, we estimate each sum. We first find

the k at which the greatest term occurs in each sum. In each case, the terms in the sum are
unimodal, so we look for the k at which the ratio between the (k+1)th and kth term is closest
to 1. In

∑n
k=1 k2k

(n
k

)(n−1
k−1

)
, we have the equation k2k

(n
k

)(n−1
k−1

)
= (k + 1)2k+1

(n
k+1

)(n−1
k

)
. Solving

the resulting quadratic for k results in (2 −
√

2)n ≈ 0.59n. Doing the same for the sum in the
denominator,

∑n
k=1 2k

(n
k

)(n−1
k−1

)
, results in a value of k that approaches (2 −

√
2)n as n goes to

infinity. So the largest term of both sums occurs at k = (2 −
√

2)n.
Let the kth term of the series in the numerator be ak and that of the series in the denominator

bk, and let C = 2 −
√

2. For some ε > 0, consider the ratio of two consecutive terms ak and ak+1

where k = Cn + εn:

ak+1

ak
=

2(1 − C − ε)2

(C + ε)2
(2)

which is less than 1 and decreasing in ε for all 0 < ε <
√

2.
For the series in the denominator, we get

bk+1

bk
=

2n(1 − C − ε)2

C + ε + n(C + ε)2
(3)

≈ 2(1 − C − ε)2

(C + ε)2

=
ak+1

ak

Similarly, we can show that the ratio of two consecutive terms ak and ak−1 where k = CN − εn

is (C−ε)2

2(1−C−ε)2) , and for the series in the denominator, we get an−1

an
.

From 2, 3, and the similar results for decreasing terms, we see that the terms of both series
below k = (C − ε)n and above k = (C + ε)n are falling off geometrically with constant ratios that
are independent of n. Call these ratios κε,1, κε,2, κε,3 and κε,4 respectively. Since ak = kbk, we can
rewrite the ratio in 1 as

κε,1(Cn − εn)bCn−εn +
(∑Cn+εn

k=Cn−εn kbk

)
+ κε,2(Cn + εn)bCn+εn

κε,3bCn−εn +
(∑Cn+εn

k=Cn−εn bk

)
+ κε,4bCn+εn

The middle summation in the numerator is bounded above and below by (Cn+εn)
∑Cn+εn

k=Cn−εn bk

and (Cn − εn)
∑Cn+εn

k=Cn−εn bk respectively. We can see that

Cn+εn∑

k=Cn−εn

bk ≥ 2εn max(bCn−εn, bCn+εn)

since there are 2εn terms and the lowest occur at the beginning and end. So we can rewrite the
ratio as

o
(∑Cn+εn

k=Cn−εn bk

)
+ An

∑Cn+εn
k=Cn−εn bk

o
(∑Cn+εn

k=Cn−εn bk

)
+

∑Cn+εn
k=Cn−εn bk

where C − ε ≤ A ≤ C + ε, which approaches An for large n.
Since a fraction of processors that approaches 2 −

√
2 of the total are expected to be working

at any given time, by symmetry, any given processor will be working for a proportion of the time
that approaches 2 −

√
2.

Corollary 3.4. When G is a directed cycle of n processors and f is the geometric distribution with
p = 0.5,

T ∗
G,f =

2n ·
∑n

k=1 2k
(n
k

)(n−1
k−1

)
∑n

k=1 k2k
(n
k

)(n−1
k−1

)

which approaches 2 +
√

2 ≈ 3.42 as n goes to infinity.

Proof. Whenever a processor is working, it is actively engaged in working on a task; that is, waiting
for a coin to come up heads. The expected amount of time for a fair coin to come up heads is 2, so
T ∗

G,f is 2 divided by the fraction of time the processors are working.

So regardless of how many processors are connected in the directed cycle, the time between
levels will always approach a value that is bounded above by 2 +

√
2. The improvement over the

complete graph holds even for very small graphs. It can be shown by direct calculation that for
geometrically distributed tasks with p = 0.5, the time between levels in a complete graph of 4
processors is 368/105 ≈ 3.5, which already exceeds our upper bound for a directed cycle of any
number of processors. These results also hold for the infinite directed line.

The result for p = 0.5 can be used to give bounds for other values of p. For any graph G,
if T ∗

G,f is the asymptotic time per level using probability distribution f , then αT ∗
G,f + β is the

asymptotic time using distribution f ′(αx + β) = f(x), and if the cdf of f ′′ is less than the cdf of f
then T (f ′′) > T (f). Using this, one can show that if p = 0.25, then the asymptotic time per level
is between 2(2+

√
2) − 1 and 3(2+

√
2) + 2. Similar bounds can be found for all values of p.

Baskett and Smith [3] consider a related problem, in which, at every time step, each of N
processors makes a request of a memory module randomly selected from a group of M modules.
When N = M and N goes to infinity, the proportion of working memory modules approaches 2−

√
2.

However, for finite cases, this problem has slightly different results than the one we consider in this
paper. For example, in the case of 3 processors in a directed cycle, the steady-state proportion of
working processors in our model is 13

19 ≈ 0.684. In the Baskett and Smith model with 3 processors
and 3 memory modules, the steady-state proportion of working memory modules is 43

63 ≈ 0.683.
It should be noted that for the directed cycle with exponentially distributed tasks having ex-

pectation 2, T ∗
G,f approaches 4 [18], even though the exponential distribution is the continuous

analogue of the geometric distribution. However, while this exponential distribution has the same
mean as does the geometric distribution with p = 0.5, its second and all higher order moments
are larger. Figure 3 shows the Markov chain induced by synchronization on a directed cycle with
exponentially distributed tasks; note that states with a high concentration of working processors,
like 000, have a much smaller degree here than they do in the chain for geometrically distributed
tasks, shown in Figures 1 and 2.

000

001010 100

011 101110

012 120 201

Figure 3: The discretized Markov chain induced by directed-cycle synchronization on 3 processors
with exponentially distributed tasks; dashed arcs correspond to rezeroing.

3.2 The undirected cycle: combinatorial properties

The Markov chain for the undirected cycle is not a balanced digraph, so, unlike the one for the
directed cycle, it does not have an obvious closed-form stationary distribution for arbitrary n.
However, we can prove some facts about its combinatorial properties. Here we let Sn be the set of
states in this chain.

Theorem 3.5. The number of states in Sn is Cn+1, the n + 1st central trinomial coefficient.

Proof. The central trinomial coefficients Cn enumerate grand Motzkin paths of length n − 1, that
is, paths beginning at (0, 0) and ending at (n− 1, 0) that consist of horizontal, downward diagonal
and upward diagonal steps (denoted H, D and U), as shown in Figure 4. We can show that there
is a bijection between states of length n and grand Motzkin paths with n steps. Given a state
s = (s1, s2, ..., sn), we can map it to a grand Motzkin path G(s) = m = ((0, 0), (1,m1), ..., (n,mn))
by setting mi = si−sn. For instance, the state 2101 would map to ((0, 0), (1, 1), (2, 0), (3,−1), (4, 0)).
Given a grand Motzkin path m = ((0, 0), (1,m1), ..., (n,mn)), we can map it to state f−1(m) =
(m1 − min(m1, ...,mn), ...,mn − min(m1, ...,mn)). Thus there are exactly as many states of length
n as there are grand Motzkin paths with n steps.

Theorem 3.6. The number of working processors among all states in Sn is n(Cn + Cn−1).

In order to prove this theorem, we partition working processors si into three types and enumerate
each one.

• Type I: si = 0 and sj $= 0 for all j $= i. Example: 110 12.

• Type II: si is such that it cannot be replaced with si−1 to create a legal state, either because
doing so would result in a negative number or because it would result in a processor that is
more than one task ahead of a neighbor. Also, it is not of Type I. Example: 01211.

• Type III: si $= 0 and si−1 = si = si+1. Example: 00111

Lemma 3.7. Every working processor can be classified into exactly one of these three types.

Figure 4: The 19 grand Motzkin paths of length 4. The first 9 are also Motzkin paths, since they
do not go below the center line.

Proof. Consider a working processor sf in a state s. If sf = 0 and is the only 0 in s, then it is of
Type I. If sf = 0 and it is not the only 0 in s, then, since it is not of Type I and cannot be replaced
with any lower number, it must be of Type II.

Now consider the case where sf > 0. As a working processor, it must have neighbors that are
greater than or equal to it. If at least one of its neighbors is greater than it, then it must be of
Type II, since it cannot be replaced with anything smaller without creating an illegal state. If,
however, both of its neighbors are equal to it, then it is by definition of Type III.

Lemma 3.8. There are nMn−1 working processors of Type I among all states of Sn, where Mn is
the nth Motzkin number (Sloane’s A001006).

Proof. The Motzkin numbers Mn enumerate Motzkin paths of length n−1, that is, paths beginning
at (0, 0) and ending at (n−1, 0) that consist of upward diagonal, downward diagonal and horizontal
steps, and that do not go below the line x = 0, as shown in Figure 4. We can show that there
is a bijection between length-n states that begin with a Type I processor and Motzkin paths of
length n− 2. Consider such a state s = (s1, s2, ..., sn). We know that s1 = 0 and that si > 0 for all
i > 1. We can map it to the path m(s) = ((0, s2 − 1), (1, s3 − 1), ..., (n − 1, sn − 1)). Since s2 and
sn must both be equal to 1, and no other si can be less than 1, this path starts and ends at height
0 and never goes below 0, making it a legal Motzkin path. Similarly, we can map a Motzkin path
of length n − 2 to a length-n state that begins with a Type I processor.

We have shown that there are exactly as many length-n states that begin with a Type I processor
as there are Motzkin paths of length n−2. Since every such state has n distinct cyclic permutations,
and every state with a Type I processor is a cyclic permutation of a state with a Type I processor
at the beginning, there are n times as many Type I processors as there are states that begin with
a Type I processor; that is, nMn−1.

Lemma 3.9. There are nCn length-n working processors of Type II among all states of Sn.

Proof. We showed in Theorem 3.5 that there are Tn+1 total states in Sn. We can show that there
are exactly n times as many working processors of Type II among all states of Sn as there are
states in Sn−1.

For each state in Sn−1, there are n places where we can insert a processor to get a state in Sn.
There is exactly one choice for the new processor such that it is a working processor of Type II:
the least possible number that could go there to create a legal state. For example, from the state
0121, we can obtain 00121, 00 121, 01121, 01211 and 01210 .

For each working processor of Type II among the states of Sn, there is exactly one state in
Sn−1 into which it could have been added in this way; removing a working processor cannot create
an illegal state, since its two neighbors cannot differ from each other by more than 1.

So there are exactly n times as many working processors of Type II among all states of Sn as
there are states in Sn−1; that is, nCn.

Lemma 3.10. There are n(Cn−1 − Mn−1) working processors of Type III among all states of Sn.

Proof. We can obtain a grand Motzkin path G(s, sf) from a state s = (s1, ..., sn) with a working
processor sf of Type III as follows: starting at sf , we write H, D or U at each si depending on
whether si is equal to, less than or greater than si−1, respectively.

A Type III working processor must be equal to both of its neighbors, so this path must begin
with HH. We also know that sf must be greater than 0, but that the state s must contain a 0
somewhere for it to be a legal state. This means that at some point, G(s, sf) must go below the
line x = 0, since the path started at (0, 0). So G(s, sf) is a grand Motzkin path, but not a Motzkin
path, since Motzkin paths must stay above that line. Ignoring the beginning HH common to all
grand Motzkin paths obtained in this way, we can think of G(s, sf) as a grand Motzkin path from
(0, 0) to (n − 2, 0).

We can also show that each grand Motzkin path G that is not also a Motzkin path can be
obtained in this way from exactly n ordered pairs (s, sf) of a state in Sn and a Type III working
processor in that state. Taking the (n − 2)-tuple of the path’s y-coordinates, incrementing each
member by the same amount such that the least is 0 and appending the first member to both the
beginning and the end to account for the ignored HH, we get the state s that created this path,
rotated so that the Type III working processor sf is at the beginning. So there are n ordered pairs
that could have been mapped to this path, since there are n cyclic permutations of a length-n state.

There are Cn−1 − Mn−1 grand Motzkin paths of length n − 2 that are not also Motzkin paths.
Since we have shown that there are n times as many working processors of Type III among all the
states of Sn, there are n(Cn−1 − Mn−1) such working processors.

Now we are ready to prove Theorem 3.6. Since all working processors can be classified into
one of the three types, there are nMn−1 + nCn + n(Cn−1 − Mn−1) = n(Cn + Cn−1) total working
processors among all states of Sn. Additionally, Cn + Cn−1 = An is the number of UDU-free paths
of n − 1 upsteps and n − 1 downsteps (Sloane’s A025565) [20].

Now we can calculate the average number of working processors among all states of Sn.

Theorem 3.11. The average number of working processors among all states of Sn is 4
9n.

Proof. The chain has Cn+1 total states and n(Cn + Cn−1) working processors among those states.
So the average number of working processors among all states is

n(Cn + Cn−1)
Cn+1

(4)

From [20], we know that Cn asymptotically approaches d · 3n/
√

n for a constant d ≈ 0.5. So the
expression in 4 approaches

n
(

d·3n
√

n
+ d·3n−1

√
n−1

)

d·3n+1√
n+1

→ 4
9
n (5)

Thus, as n approaches infinity, the proportion of working processors approaches 4
9 .

This implies that if each state in this chain had equal stationary probability, as does each state
in the discretized chain for the directed cycle with exponentially distributed tasks, T ∗

G,f would
approach 4.5. In practice, our simulations show that the actual value for T ∗

G,f in the undirected
cycle with exponentially distributed task times is ≈ 4.77.

We can in fact easily modify the chain for the undirected cycle to construct one with the same
states where every state has equal stationary probability; there is a bijection between states with
indegree a and outdegree b and states with indegree b and outdegree a, so edges can be redirected
from states with greater indegree to states with lesser indegree. This method always redirects edges
from states with fewer working processors to states with more working processors, so it would appear
to be a lower bound on the original chain. However, neither the original chain nor the modified
one is stochastically monotone, so the standard techniques for proving that the modified chain is a
bound, like those described in [22], do not apply. Van Houtum et al. [26] describe a similar method
for constructing bounds on queueing systems considered as Markov reward processes by redirecting
edges, but their methods of proof are not readily applicable here.

4 Random-Neighbor Synchronization

A further extension of our model allows processors to select a random subset of its neighbors in
the synchronization graph with which to synchronize. In the random-neighbor model, a processor
pi selects uniformly at random a subset of ci neighbors at the beginning of its mth task, where
selections at all processors and all levels are independent.

When pi and all of its randomly selected neighbors have finished their mth tasks, pi begins
its (m + 1)st task (selecting another random subset of ci neighbors). Figure 5 illustrates the
dependencies that can result from this process.

This allows us to study synchronization where each processor waits for a constant number of
neighbors despite the fact that the synchronization graph may have degree unbounded in n (e.g.,
random-neighbor synchronization with c neighbors on a complete graph for some constant c). We
can also look at graphs with bounded degree where processors synchronize with the same number
of neighbors as they do in graphs of lower degree.

In the following result, we show that the expected number of dependencies in the undirected
infinite line with random one-neighbor synchronization is the same as the number of dependencies
in the directed infinite line.

Theorem 4.1. For a given processor p in the infinite line with random synchronization, the expected
number of task-completion times that p depends on to start the mth task is m(m+1)

2 − 1, which is
the same as the number for a processor in the (deterministic) infinite line.

Proof. We prove this by induction. First, we show that for a given r < m, the expected number
of task-completion times Tj(m − r) on which pk depends to start the mth task (which we will also
refer to as times on which Tk(m) depends) is m − r + 1. For a given t, let N(Tk(m), t) be the
number of task completion times Tj(t) on which Tk(m) depends.

We know that E[N(Tk(m),m − 1] is 2, since it can depend only on its own time at the pre-
vious task, Tk(m − 1), and exactly one of Tk−1(m − 1) or Tk+1(m − 1), whichever corresponds to
the randomly selected dependency. Now assume that N(Tk(m),m − r) = '. We will show that
E[N(Tk(m),m − r − 1] = ' + 1.

Observe that if Tk(m) depends both on Tj−1(m− r) and Tj+1(m− r), then it also must depend
on Tj(m − r). This follows from the fact that if pk depends on Tx(t) to start a task, then it also
must depend on Tx(t′) for all t′ < t, since self-dependencies always apply. By the definition of
dependency, any task-completion time on which pk depends to start the mth task must have a path
in the dependency graph to Tk(m). So if x < k and pk depends on the task-completion time Tx(t)
for some t to start the mth task, then Tx(t) must appear on a path to Tk(m) in the dependency
graph, and that path must go through Tx+1(τ) for some τ > t; similarly, if x > k, then the path
must go through Tx−1(τ) for some τ > t. But then we also know that Tk(m) depends on Tx+1(τ ′)
(or for x > k, Tx−1(τ ′)) for all τ ′ < τ .

So the ' task-completion times of the form Tj(m − r) on which Tk(m) depends must all cor-
respond to consecutive processors. Let j0 be the least j for which this is true; then j0 + ' − 1 is
the greatest. We already know then that Tk(m) must depend on Tj0(m − r − 1), Tj0+1(m − r −
1), ..., Tj0+#−1(m − r − 1), due to the self-dependency constraint. Tj0(m − r) has probability 1

2 of
depending on Tj0−1(m− r− 1), which does not appear on that list, and probability 1

2 of depending
on Tj0+1(m−r−1), which does. Similarly, Tj0+#−1(m−r) also has probability 1

2 of adding another
dependency to the list, and all other m − r task-completion times have probability 0 of doing so.
So E[N(Tk(m),m − r − 1] = ' + 1

2 · 1 + 1
2 · 1 = ' + 1.

By this result and linearity of expectation,

E
[
Σm−1

r=1 N(Tk(m),m − r)
]

= Σm−1
r=1 E[N(Tk(m),m − r)]

= E[N(Tk(m),m − 1] + (E[N(Tk(m),m − 1] + 1) + ... +
E[N(Tk(m),m − 1] + (m − 2)

= 2 + (2 + 1) + ... + m

=
m(m + 1)

2
− 1

The fact that this is the number that occurs in the undirected case is quite straightforward.

5 Simulation results

To extend the analytic results to additional synchronization graphs and models, we carried out a
variety of simulations. All of the simulations were done in C++ using random number generators
from the GNU Scientific Library.

One of the challenging aspects of some computing tasks is that they can have heavy-tailed
distributions, typically power laws (Pareto distributions) with a pdf of the form x−λ. For example,
file sizes and network traffic have such distributions [2, 8, 17]. For power laws, the probability of
sampling a large value is greatly higher than it is for the other distributions considered, and thus
one would expect that reducing synchronization is even more important. We also studied normally
distributed tasks to show the effects of a distribution that is less heavy-tailed than geometric or
exponential.

i

i-2

i-1

i+1

i+2

1 2 3

pr
oc
es
so
r

task

Figure 5: A possible dependency graph for randomized synchronization on the undirected line.
Solid arrows represent active dependencies; shaded nodes represent the processor-task pairs on
which processor i depends for its 3rd task.

Throughout this section, all of the distributions considered have an expected task time of 2.
We consider the geometric distribution with p = 0.5, the exponential distribution with λ = 0.5,
the Pareto distribution with λ = 2, and the truncated normal distribution with µ = 2 and σ = 0.5.
However, while these distributions have the same mean, their order statistics are quite different.
The expected maximum of n samples (i.e., the expected time per level in the complete graph of n
processors) grows as Θ(log n), Θ(log n), Θ(

√
n), and Θ(

√
log n), respectively.

5.1 Local synchronization

We ran simulations to model local synchronization under a variety of conditions in order to extend
our theoretical results.

In Figure 6, the task time distribution is geometric with p = 0.5. Each simulation ran for
5,000,000 time steps. As n increases, the time between levels in the directed cycle quickly approaches
what we have shown to be its limit, 2+

√
2. The time between levels in the undirected cycle appears

to display similar behavior, increasing rapidly and then leveling out around 3.96. The plot of the
increasing time between levels in the square torus looks much like those for the other two graphs.

We simulated synchronization on the same graphs for the exponential, Pareto, and truncated
normal distributions in Figures 7, 8 and 9 respectively. Each of these simulations ran for 500,000
time steps, with the first 100 tasks for each processor not counted in order to allow the simulation
to approach any possible steady state.

In Figure 10, we compare the values computed from Chang and Nelson’s upper bounds for T ∗
G,f

with the results given by simulation, for exponentially distributed tasks on a variety of synchro-
nization graphs. Recall that their bounds depend only on the degree of the graph, not the specific
graph, and hence the bounds for the undirected cycle and directed 2-dimensional torus are the
same, while the observed behavior is different.

0 200 400 600 800 1000
processors

3.5

4

4.5

5

5.5

6

tim
e

pe
r l

ev
el

3D torus
2D torus
undirected cycle
directed cycle

Figure 6: Asymptotic time per level versus n, geometrically distributed task times with p=0.5.

0 200 400 600 800 1000
processors

4

5

6

7

8

tim
e

pe
r l

ev
el

3D torus
2D torus
undirected cycle
directed cycle

Figure 7: Asymptotic time per level versus n, exponentially distributed task times with λ = 0.5.

0 200 400 600 800 1000
processors

5

10

15

20
tim

e
pe

r l
ev

el

3D torus
2D torus
undirected cycle
directed cycle

Figure 8: Asymptotic time per level versus n, Pareto distributed task times with λ = 2.

0 200 400 600 800 1000
processors

2.4

2.5

2.6

2.7

2.8

2.9

3

tim
e

pe
r l

ev
el

3D torus
2D torus
undirected cycle
directed cycle

Figure 9: Asymptotic time per level versus n, normally distributed task times with µ = 2, σ = 0.5.

directed cycle undirected cycle directed 2d torus 2d torus 3d torus
synchronization graph

3

4

5

6

7

8

9

as
ym

pt
ot

ic
 ti

m
e

pe
r l

ev
el

Chang/Nelson bounds
Simulation results

Figure 10: Comparison of Chang and Nelson’s upper bounds with our simulation results, exponen-
tially distributed task times with λ = 0.5.

5.2 First-neighbor and random synchronization

A relaxation of the synchronization requirements is to allow processor pi to start the next task
as soon as ci of its neighbors have completed their task, where ci is no more than the in-degree
of pi. We call this the first-neighbors model. Note that first-neighbors synchronization is less
restrictive than random synchronization since the ci neighbors are not specified in advance. We
simulated first-neighbors and random synchronization for various synchronization graphs and task
time distributions, where all the ci are the same. Our results comparing the undirected cycle with
random dependencies with the directed cycle under exponential task times are shown in Figure 11.
Here we see that the behavior is nearly identical. This corresponds with our results in Section 4,
where we show that the expected number of task-completion dependencies in the dependency graph
for the random undirected cycle is the same as for the directed cycle.

In Figure 12, we consider the case of first-neighbors synchronization on the complete graph
where processors wait for almost all of their neighbors, c = n−

√
n and c = n− lg(n) respectively,

for both exponential and Pareto task times. For the n −
√

n case, we see that the system with
Pareto task times is faster for fewer than ≈ 380 processors and then becomes slower. For the
n − lg(n) case, the system with Pareto task times is faster for fewer than ≈ 110 processors.

We compare first-neighbors and random synchronization on a square torus with exponential
and Pareto task times in Figure 13. Our results show that, for all n we tested, Pareto-distributed
task times lead to faster synchronization with the first-neighbors model where processors wait for
the first 2 out of the 4 possible neighbors in the square torus. However, when processors wait for
3 out of 4 of their neighbors, Pareto synchronization is faster only up to n = 196, even though the
expected value of the second largest of 4 Pareto random variables is ≈ 1.83, while the expected
value of the second largest of 4 exponential random variables is ≈ 2.17.

These simulations also show that random-neighbor synchronization on the square torus, even

20 40 60 80 100 120 140 160 180
processors

3.8

3.85

3.9

3.95

4

tim
e

pe
r l

ev
el

directed cycle

undirected cycle, random dependencies

Figure 11: Comparison of the undirected cycle with random dependencies and the directed cycle,
with exponential task times.

when processors wait for only one neighbor out of 4, is slower than first-neighbors synchronization,
even when processors wait for 3 out of 4 neighbors. These results hold for even small values of n.
With random-neighbor synchronization, we also see the characteristic difference between the expo-
nential and Pareto distributions that does not seem to appear with first-neighbors synchronization.
With random-neighbor synchronization, varying the number of neighbors waited for seems to mat-
ter less than changing the distribution, whereas with first-neighbors synchronization, the data for
synchronization with 1 neighbor and Pareto-distributed task times appears more similar to that
for synchronization with 1 neighbor and exponential-distributed task times than it does to that for
synchronization with 2 neighbors and Pareto-distributed task times.

In Figure 14, we compare synchronization times on three models where each processor depends
on one neighbor — directed cycle, undirected cycle with random dependencies, and the complete
graph with one random neighbor — with those on three models where each processor depends
on 2 neighbors — undirected cycle, square torus with 2 random dependencies, and the complete
graph with 2 random neighbors. For n > 300, we find that the complete graph with one random
dependency is actually slower than the undirected cycle.

0 100 200 300 400
processors

2

3

4

5

6

7

tim
e

pe
r l

ev
el

Pareto, rst n-log(n)
exponential, rst n-log(n)
Pareto, rst n-sqrt(n)
exponential, rst n-sqrt(n)

Figure 12: Comparison of Pareto and exponential task times on a complete graph, waiting for the
first n − lg(n) and n −

√
n neighbors.

20 40 60 80 100 120 140 160 180 200
processors

4

6

8

10

tim
e

pe
r l

ev
el

Pareto, random 2 neigbors
Pareto, random 1 neighbor
exponential, random 2 neighbors
exponential, random 1 neighbor
exponential, rst 3 neighbors
Pareto, rst 3 neighbors
exponential, rst 2 neighbors
Pareto, rst 2 neighbors

Figure 13: Comparison of random and first-neighbors synchronization on a square torus with Pareto
and exponential task times.

0 50 100 150 200
processors

4

4.5

5

5.5

6

tim
e

pe
r l

ev
el

exponential, complete graph, 2 random neighbors
exponential, square torus, 2 random neighbors
exponential, undirected cycle
exponential, square torus, 1 random neighbor
exponential, directed cycle
exponential, complete graph, 1 random neighbor

Figure 14: Comparison of synchronization with 1 and 2 neighbors with different graph shapes.

0 100 200 300 400 500
time

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

tim
e

pe
r l

ev
el

exponential, undirected cycle, random dependencies

exponential, directed cycle

Figure 15: Comparison of time to converge with exponentially distributed tasks on the directed
cycle and the undirected cycle with random dependencies.

5.3 Comparison of convergence times

We know that the expected synchronization time in the models we study will converge to a constant
if the number of processors n is held constant while the time of the simulation goes to infinity as
long as the task time distribution has finite mean, since the synchronization time cannot exceed the
expected maximum order statistic of n random variables. But how quickly does it approach that
constant? To study this, we simulated synchronization on various graphs with several distributions,
ending the simulation after increasing amounts of time t. That is, the simulation is run up to time
t, and at that point, the total number of tasks completed over all processors is calculated, which
is then used to computer the average time per level over all of the processors. For each t, the
simulation was run 1,000,000 times, and an average was taken over all simulations. The error bars
on some of the graphs represent the sample variance over these 1,000,000 runs of the simulation.

In Figure 15 we see that the synchronization times with exponential task times and 20 processors
on the directed cycle and the undirected cycle with random dependencies are nearly identical for
all of the ending times we studied. Again, this agrees with our results in Section 4.

In Figure 16, we compare synchronization on the directed cycle with exponential task times for
different numbers of processors. After 500 time units, we found that the cycle with 10 processors
had nearly reached its steady-state value while the ones with 20 and 50 were much slower to
converge.

In Figures 17 and 18, we compare synchronization on the directed cycle with normal and Pareto
task times, respectively, for different numbers of processors.

In Figure 19, we compare convergence for synchronization with exponential and Pareto task
times. Our data shows that for small values of t, less than ≈ 100, the directed cycle with Pareto
task times is actually faster, but it becomes slower for larger values.

0 100 200 300 400 500

3.3

3.4

3.5

3.6

3.7

3.8

3.9

n = 20
n = 10

Figure 16: Comparison of time to converge on the directed cycle with exponential task times and
10, 20 and 50 processors.

0 100 200 300 400 500
time

2.25

2.3

2.35

2.4

2.45

tim
e

pe
r l

ev
el

n = 100
n = 10

Figure 17: Comparison of the time to converge on the directed cycle with normal task times and
10 and 100 processors.

0 100 200 300 400 500
maximum time

3

3.5

4

4.5

5

5.5

6

tim
e

pe
r l

ev
el

n = 20
n = 50

Figure 18: Comparison of the time to converge on the directed cycle with Pareto task times and
20 and 50 processors.

0 100 200 300 400 500
time

2.5

3

3.5

4

4.5

5

5.5

tim
e

pe
r l

ev
el

Pareto, n = 100
Pareto, n = 20
exponential, n = 100
exponential, n = 20

Figure 19: Comparison of the time to converge on the directed cycle with exponential and Pareto
task times.

6 Conclusion and Future Work

There are other models of synchronization that correspond to various parallel computing techniques.
One possible new model involves slack, in which the synchronization constraints are enforced with a
“grace period.” This is sometimes used in simulating nonblocking communication. A further model
that may lend itself to the kind of analyses carried out here allows the possibility of processor failure,
similar to the model described by Taylor and Van Dijk [24].

Another way to reduce the effects of synchronization on program efficiency is to batch tasks,
with each processor solving several before synchronizing. For example, this is often used in branch-
and-bound calculations, where occasionally global bounds need to be determined. More generally,
it occurs in many distributed manager-worker programs in which work is occasionally rebalanced,
or in simulations where the workload shifts from one region to another. For this latter situation
typically the shift involves many nearby sites and persistent imbalance for a number of cycles, in
which case the imbalance does not smooth itself out. However, it may be more efficient to wait
many cycles before taking a global picture of the situation, rather than doing so after every cycle.
We have some results on the effects of synchronization with batching.

In addition to the approaches with which we have obtained results, there are other directions
that may yield more advances in this area. One method is a probabilistic-method bounding tech-
nique. In a directed square grid of size n, which corresponds to the task graph of a directed cycle
of n processors after t tasks where n ≥ t, we can show that there are 2n−d−2

(n+d−1
d

)
pairs of paths

that differ in exactly d < n − 1 places. Using a bounding technique like the Chung-Erdös second-
moment method, it may be possible to use this information to get bounds on quantities like the
expected number of paths that contain a certain number of extreme order statistics or values above
a certain threshold.

Many of the Markov models for local synchronization are “almost martingales” in the sense of
Bellare and Impagliazzo [4] when viewed as Markov reward processes where the cost at each state
is the number of waiting processors; both the conditional expectation and greatest possible value
of the change in cost after one time step are bounded. Using the almost martingale extension of
Azuma’s inequality in [4], one may be able to find upper bounds on the probability of being in a
state with very few working processors. Since their model does not assume memorylessness, one
may also be able to use it to obtain results for non-memoryless task distributions. In particular,
the Taylor and Van Dijk model mentioned above can be used to construct Markov models that
obey arbitrarily strict conditional-expectation bounds.

References

[1] F. Baccelli and Z. Liu. On the execution of parallel programs on multiprocessor systems – a
queuing theory approach. Journal of the ACM, 37(2):373–414, 1990.

[2] P. Barford, A. Bestavros, A. Bradley, and M. Crovella. Changes in web client access patterns:
characteristics and caching implications. World Wide Web, 2:15–28, 1999.

[3] F. Baskett and A. Smith. Interference in multiprocessor computer systems with interleaved
memory. Communications of the ACM, 19(6):327–334, 1976.

[4] M. Bellare and R. Impagliazzo. A tool for obtaining tighter security analyses of pseudorandom
function based constructions, with applications to PRP → PRF conversion, 1999.

[5] D. Bertsekas and J. Tsitsiklis. Parallel and Distributed Computing: Numerical Methods. Pren-
tice Hall, 1989.

[6] C. S. Chang and R. Nelson. Bounds on the speedup and efficiency of partial synchronization
in parallel processing systems. Journal of the ACM, 42(1):204–231, 1995.

[7] H. Cohn, N. Elkies, and J. Propp. Local statistics for random domino tilings of the aztec
diamond. Duke Mathematical Journal, 85:117–166, 1996.

[8] A. Downey. The structural cause of file size distributions. In Proc. 2001 SIGMETRICS, pages
328–329, 2001.

[9] A. G. Escribano, V. C. Payo, and A. van Gemund. On the loss of parallelism by imposing
synchronization structure. In Proceedings 1st EURO-PDS Int’l Conference on Parallel and
Distributed Systems, pages 251–256, June 1997.

[10] A. G. Escribano and A. van Gemund. An algorithm for transforming NSP to SP graphs.
Technical report, Technical University, Delft, The Netherlands, 1996.

[11] H. Han, C. Tseng, and P. Keleher. Eliminating barrier synchronization for compiler-parallelized
codes on software DSMs. International Journal of Parallel Programming, 26(5):591–612, 1998.

[12] J. F. C. Kingman. The first-birth problem for an age-dependent branching process. Annals of
Probability, 3(5):790–801, 1975.

[13] G. Korniss, M. Novotny, H. Guclu, Z. Toroczkai, and P. Rikvold. Suppressing roughness of
virtual times in parallel discrete-event simulations. Science, 299:677–699, 2003.

[14] U. Legedza and W. Weihl. Reducing synchronization overhead in parallel simulation. In
Workshop on Parallel and Distributed Simulation, pages 86–95, 1996.

[15] A. Malony, V. Mertsiotakis, and A. Quick. Stochastic modeling of scaled parallel programs.
In Proceedings of the International Conference on Parallel and Distributed Systems, pages
274–279, December 1994.

[16] J. Martin. Last-passage percolation with general weight distribution. Markov Processes and
Related Fields, 12:273–299, 2006.

[17] M. Mitzenmacher. A brief history of generative models for power law and lognormal distribu-
tions. Internet Mathematics, 1:226–251, 2003.

[18] S. Rajsbaum and M. Sidi. On the performance of synchronized programs in distributed net-
works with random processing times and transmission delays. IEEE Transactions on Parallel
and Distributed Systems, 5(9):939–950, 1994.

[19] A. Salamon. Task graph performance bounds through comparison methods. Technical re-
port, Department of Computer Science, University of the Witwatersrand, Johannesburg, South
Africa, Jan. 2001. MSc Dissertation (141 pages).

[20] N. Sloane. The On-Line Encyclopedia of Integer Sequences.
http://www.research.att.com/˜njas/sequences/.

[21] R. Stanley. Enumerative Combinatorics, volume 2. Cambridge University Press, 1999.

[22] D. Stoyan. Stochastic Orders and Their Applications. Wiley, 1983.

[23] T. Tabe, J. Hardwick, and Q. Stout. Statistical analysis of communication on the IBM SP2.
Computing Science and Statistics, 27:347–351, 1995.

[24] P. Taylor and N. van Dijk. Strong stochastic bounds for the stationary distribution of a class
of multicomponent performability models. Operations Research, 46:665–674, 1998.

[25] J. Tsitsiklis and G. Stamoulis. On the average communication complexity of asynchronous
distributed algorithms. Journal of the ACM, 42(2):382–400, 1995.

[26] G. J. van Houtum, W. H. M. Zijm, I. J. B. F. Adan, and J. Wessels. Bounds for performance
characteristics: a systematic approach via cost structures. Stochastic Models, 14:205–224, 1998.

