2006/9/6
page 1

—p

In Proc. 10" SIAM Conf. Parallel Processing for Sci. Computing (2001).

Parallel Adaptive Blocks
on a Sphere*

Robert Oehmke and Quentin F. Stout

Abstract

We have developed a flexible tool for efficient parallel adegpiesh refinement on
a sphere. Adaptive mesh refinement allows one to concertdoat@utational resources
on regions of interest, and by extending to spheres we haeadsd their applicability to
climatology and other large scale planetary phenomena. system is effective for our
space weather application and as a general purpose objeoteal tool.

1 Introduction

Adaptive mesh refinement is an important technique for gaemmputational resources
when modeling multi-scale phenomena. Rather than usingfaromgrid, which would
have to be at the resolution of the smallest feature of isteedaptive grids permit one
to use a fine resolution where it is needed, and a coarseutigsoklsewhere. This can
result in significant time and space savings over simplygiainniform grid. In this paper
we present a new variation on this technique: flexible, effitbdaptive refinement on a
sphere. Further, our system can provide adaptation on feg general shapes.

We were led to investigate this subject by our involvemerthin CSEM project to
predict geomagnetic storms [4]. These space weather gwanitsh can damage satellites,
astronauts, and power lines, are caused by solar coronal ejextions. To predict these
storms, a simulation involving the heliosphere and sevéiféérent components of the
earth’s atmosphere is performed. Modeling the earth’s sjrhere necessitated our sphere-
based adaptive blocks. Although developed for a specifipgse, this tool could be used
to help model large scale planetary phenomena such as cologgtor geology.

*Work supported by NSF KDI grant ATM-9980078 and by the CefdaeParallel Computing at the University
of Michigan.



2

2 Previous Work

There has been some previous work in parallel adaptive blémkCartesian grids. The
Cartesian system most similar to our’s is BATS-R-US. Thigjgat, in which we partici-
pated, developed adaptive blocks to model the heliospBgréfe used many of the lessons
learned on that project to improve this one.

Another Cartesian adaptive block system similar to oursARAMESH [6]. There
are also some parallel adaptive Cartesian systems whifghr &idbm our system more sub-
stantially. These include Chombo [3], Dagh [5], Samrai §fid Kelp [1].

There has also been some other work on adaptive non-redsaiggids. Overture [2],
for example, could be used for adaptive mesh refinement ohexspbut it differs greatly
from our project in its mesh structure and implementatioad#ption. Overture’s meshing
of a given object consists of a collection of meshes comgiuiiffering numbers of data
cells. In our system, in contrast, every block consists efgame number of data cells
no matter what their actual spatial size. Also, Overturefapation is patch based so
that when a region is being refined a new finer mesh is generdtieth covers the whole
region. In our system when a region is being refined all theksavhich currently represent
that region are simply broken into four spatially smallesdis, each containing the same
number of data cells as their parent.

3 System Capabilities

The system consists of several flexible components. Therspsdnitially gridded as a
collection of blocks. The grid has a variety of initial configtions and a user-specified
structure at each cell. As refinement or coarsening ocduessyistem maintains the adja-
cency information and provides functions for the user teaiie through all of the blocks
and to transfer data efficiently between the blocks.

3.1 Block Structure

Eachblock is a 2-dimensional rectangular array of cells, where thergstof each dimen-
sion, and the extents of the ghost cells, are specified bygte &ach block contains the
same number of cells no matter how often they have been redineshrsened. This struc-
ture of multiple cells per block, where all blocks have thmeastructure, provides several
efficiencies. For example, the inner loops of the user codgatp on an array of fixed
structure, which allows various compiler and cache opftatians. Further, the cost of op-
erations such as access and communication are amortizedroeatire block, as opposed
to a single cell. Thus adaptive blocks are far more efficieahtstandard quadtrees.

The structure of the blocks is quite flexible, in that the usar attach any type of data
in any format to each cell. In particular, this permits udefined gridding in the altitude.
Besides allowing users to incorporate whatever data thpgti@ation requires, they can
also format it to achieve maximum efficiency. For examplelazlbcould be an array of
records, or a record of arrays. The user need only providegheopriate functions to ma-
nipulate their data, and our system does the rest. Userifunscare needed to manipulate
ghost regions, including coalescing and interpolatints@lboundaries between blocks of
differing resolutions.

2006/9/6
page 2

—p



2006/9/6
page 3

—p

Blocks are organized into objects callblebck groups. Every block is a member of
exactly one block group. The block group allows a set of béottkbe operated on as a
whole. In our system there is, in general, a one-to-one spardence between a shape
and a block group.

3.2 Sphere Structure

The sphere structure is also quite flexible. It may contajnrarmber of blocks. A sphere’s
poles may be either “on” or “off” independently, allowingetltreation of “half” spheres
with only one pole or “rings” with none. Also, the spatial Wikution of blocks across
the sphere is user definable which, in addition to adaptai®another method to focus
computational resources where needed. Note that beyorudghgon function our system
does not depend on the shape of the region being gridded, sarip}y writing a new
creation function, it can be extended to operate on a difteshape. Adaptation is only
in two dimensions, with the structure in other dimensionsdiand specified by the user.
However, the same system structure described below caly éasextended to arbitrary
dimensions.

4 System Structure

The system is implemented in Fortran 90, and currently ugekftt communication, so it
is quite portable. It is designed using a layered approadrevbach layer is composed of
two modules. All the modules are constructed to have a wéithelé interface to the rest
of the system, which allows our system to be quite flexible.r&ylacing a module with
another with an equivalent interface the system can be gaéirely new functionality, or
better implementations of old functionality. The systendigded into three layers: the
base layer, the block-move layer, and the grid layer.

4.1 The Base Layer

The base layer contains the most basic functionality upoitlwthe rest of the system
depends. It is composed of two modules: communication amekbl

The communication module handles the transfer of system data between the proces-
sors. The rest of the system uses it to do communication. flihigionality is separated
into its own module to allow the communication methods to &silg changed. Currently
our communication is done using MPI, but because of our amrave could easily switch
to another mechanism, such as OpenMP. This module is nesestlgliaccessed by the
user.

The block module provides all the basic functionality for operating on blscnd
block groups. This module is responsible for maintainiregtitock connection information,
and whether a block is currently in use. It also implemengsahility to iterate through
active blocks.

4.2 The Block-Move Layer

This layer is composed of the transfer and the load-balgnmoiodules.



2006/9/6
page 4

—p

Thetransfer moduleallows the user to transfer their data between blocks. #spon-
sible for maintaining the proper buffers and deciding whadgywhere. Using the transfer
module is advantageous for the user because it allows theférato be done transparent to
the block location and connections. All messages sent froenpyocessor to another are
accumulated, rather than sending one per block, whichtesisuinuch greater efficiency.

Theload-balancing module is responsible for distributing the blocks among the pro-
cessors. Currently this module just strives to maintain guaenumber of blocks on all
processor, however, in the future we will use a more somlaittd criteria for distribution
(see Section 7). This module is not directly accessed by ke but the sphere creation
and adaptation modules both use its functionality.

4.3 The Grid Layer

This layer implements operations that operate on the em¢ireuniform grid that our sys-
tem provides to the user. This layer contains the adaptatidrsphere modules.

The adaptation module is responsible for implementing the coarsening and refine-
ment of the blocks. This module maintains the informatiamfrthe user about which
blocks should be refined or coarsened. It is also responfgiblenforcing restrictions on
adaptation, e.g. many codes require that neighboring bldiffer by no more than one re-
finement level. This module does much of the work for adaptatising the block module
to actually rearrange the block connections and the loaahioalg module to distribute its
new blocks.

The sphere moduleis responsible for creating the sphere shaped connecteg gfo
blocks and for maintaining the geometric information désng the sphere. Currently our
system only implements the sphere, however, by writing amedule similar to this one
an entirely different shape could be easily created. Thidutecalls the block module
to connect the blocks into a sphere, and the load balancirdulado distribute its new
blocks.

5 API

This section gives an overview of the major user functionth@adaptive block API. The
subroutines are grouped by the module. The first part of theostine names also encode
their home module (e.g., subroutines whose names starABitBLK belong to the block
module). We also include a section which describes the stiibes the user must provide
to the system. Note, not every module is represented becenisery module has user
visible functions. Due to the limited scope of this paper viysketch the subroutine
behavior. A more complete description will accompany theljourelease of our system.
Another aspect of the APl is that the routines can be easilyimented. To achieve
this, the subroutine that the user calls, for exanf2eADPT _do, calls another subroutine
that actually implements the functionalitgB_ADPT_do_act ual . This allows one to
redefine the user called subroutines to slip measuremeatetdveen the user call and the
actual implementation of the subroutine functionalityisTis the method used in MPI.



2006/9/6
page 5

—p

5.1 User Provided Subroutines

These are the subroutines that the user must provide foytters to be able to do inter-
block communication and adaptation. Because the blocktstrel can be arbitrary, any
operation changing block contents must be supplied by the iote that this allows the
user to control the interpolation and coalescence op@stio

user pack_data: Pack the ghost data for transport to the neighboring blodket
same refinement level.

user pack_data_split: Hereghostdatais moving from a block to two finer neigh-
boring blocks, so the user must split the data and pack it.

user _unpack_dat a: Unpack the ghost data and insert it into the block.

user _.unpack_dat a_j oi n: Here ghost data has been transported from two blocks to
a coarser neighbor. Merge the data and insert it into thekbloc

user refine: Splitthe block into four sub-blocks.
user coar sen: Merge the four blocks into one block.

5.2 Block Module Subroutines

Note that there isn’t a creation subroutine for the bloclesrtelves, because they are cre-
ated automatically when an adaptive block group is creaddsb, the user never actually
deals with the block objects themselves as they are alwégsed to by index.

AB_BLK GRP_cr eate: Create an object which holds a group of blocks.
AB_BLK_GRP_destroy: Remove a group of blocks from the system.
AB_BLK.| TER creat e: Create an iteration object associated with a block group.

AB.BLK.| TERreset: Resetthe iteration object to the beginning of the list otk
in the associated block group.

AB_BLK_lI TER.next: Move to the next block in this block group. Returns a flag when
the last block in the group has been reached.

5.3 Transfer Module Subroutines

These functions implement a transfer of data between eachk bhd its neighbors.

AB_XFER cr eat e: Create a transfer structure associated with a block groapthis
subroutine the user specifies the size of ghost data traleshbetween neighbors in
every direction, so that proper buffers can be pre-allatate

AB_XFER destroy: Remove atransfer object from the system.

AB_XFER st art: Start a non-blocking transfer between each block and ightairs,
using the user pack routines.
AB_XFERTf i ni sh: Finish a transfer, using the user unpack routines.

By breaking the communication into start and finish fundiiotihe user may be able to
perform calculations during the communication and thug Isioime of the cost.



5.4 Adaptation Module Subroutines

AB_ADPT_set _adapt: Mark a block to be coarsened or refined. Currently this sub-

routine accepts three values: 1, 0, or -1, where 1 indichteblbck should be refined,
0 indicates no change and -1 indicates coarsening. We inteexipand this range to
indicate the priority of the block’s adaptation (see Seciij.

AB_ADPT_do: Do the adaption indicated by the adaption values set by theiqurs
subroutine. This routine also takes as input the user coarsé refine subroutines.

5.5 Sphere Module Subroutines

AB_SPH.cr eat e: Create a sphere object associated with a block group. Thecase
specify various geometric parameters such as center angradhe user also specifies
some of the connection properties of the sphere, for exaihjples connected across
the poles.

AB_SPH._destroy: Remove a sphere object from the system.

AB_SPH get xyz: Return the rectangular coordinates of a specified datarcalbiven
block.

AB_SPH_ get _sphr: Return the spherical coordinates of a data cell in a giveakblo

6 Programming Model

One of the goals of our system was to allow the user as muclbiligxias possible in the
structure of their data. Thus we allow the user to be entirelgharge of their data so
they can structure it however they feel is best. This alsonallthem to take advantage
of efficiencies which might not be possible when a system mesahe user data. For
example, they can use statically allocated arrays. In dodterur system to refer to a block
we simply use an index, which is more flexible than using ateoir\ pointer would force
each block’s data to be in a contiguous section of memorynotheer level of indirection
would be needed. Instead, with the index, if the data is iay&ras it is in many scientific
codes, then it can all be in one array with one of the indicedbthck index, or it can be in
separate arrays, or any combination in between. If the dataai more exotic pointer-based
data structure then an array mapping the index to the paiatebe used.

To use our adaptive blocks, the first step, after calling gpoaf setup routines, is
to call the block group creation subroutirdB BLK_GRP_cr eat €). This routine takes as
input the group’s maximum allowed number of blocks on théirglprocessor and returns
an empty block group object. Next the sphere creation reyiB_SPH.cr eat e, is used
to create a sphere object, i.e., the block group now has d b&iaks with connection and
geometric information but no user data.

To loop through a sphere’s blocks on a processor, ABSBLK | TER cr eat e is
called to create an iteration object. One can then iterateitih the sphere’s block indices
by usingr eset andnext subroutines which operate on the iteration object. Thecesli
used may change as adaptation occurs but these detailsldentitom the user, while still
providing systematic access to the blocks.

2006/9/6
page 6

—p



2006/9/6
page 7

—p

To transfer information between blocks, the user first cABSXFER cr eat e to
create a transfer object from the block group objed_XFER st art can then be used
on the transfer object to initiate a non-blocking commutiteg which is completed by
AB_XFERf i ni sh. Because the user can have their data in any format they ehthey
must provide functions for packing and unpacking their data

To do adaptation, the user first usBB_ADPT_set _adapt to mark blocks for re-
finement or coarsening, and then calB_ADPT _do to do the adaptation. Because we do
not know how the user’s data is arranged, the user must supptines to split or merge
blocks.

When the user is finished with the sphere and associatedtsitfexy can call the
various deletion routines to remove them from the system.

7 Future Work

There are several directions in which we intend to advancevotk in the future.

One of these is to develop modules to implement non-spHetieges. More gener-
ally it would be useful to add the functionality for creatingw shapes without the addition
of a new subroutine for each, for example by implementing duf@which takes as input
a data structure indicating the connections between a grbhjocks and then creates the
shape.

Another area we intend to pursue is more intelligent blocitritiution. Currently
our system just attempts to maintain an equal number of blookeach processor without
regard to how the blocks are connected. While this achiewed tpad-balance it can in-
crease the amount of interprocessor communication, becaighboring blocks are often
not assigned to the same processor. This is not usually@usgrroblem because the com-
munication overhead is amortized over each block, but ifithee we intend to implement
a dynamic block distribution scheme which attempts to pighteoring blocks on the same
processor, in addition to balancing the numbers of blocks.

An additional goal is to do prioritized adaptation. Curkgthe user is only able to
indicate whether or not a block should be adapted. In thedutie would like to allow the
user to be able indicate how crucial a block’s adaptaticsige the total number of blocks
that can be created by adaptation is limited by memory sizere@tly if we do not have
enough blocks to perform the user’s adaptation request tuenran error. We would like
to allow the user to assign a priority to blocks which prowdeasis for choosing which of
a limited number of blocks to refine. This would be very uséfuktodes which are limited
by memory, but is much more complicated to implement wherethee restrictions on the
relative refinement levels of neighbors. For example, iffhbors can only differ by one
level, then refining a fine block forces a neighboring coatselato also refine.

Another aspect we would like to implement is a method for thausion of user
information in the block structure for the system to use. &@mple, suppose the amount
of work varied per block. If the user could supply an estindtihe work required by each
block, this could be used by load balancing routines. Thesgéres would have be supplied
by the user, but perhaps this would be a common enough cotierit would become a
standard module. There would have to be a user function fimge¢he weights and system
routines for accessing them, and the block header struatoutd have to include them. We



2006/9/6
page 8

—p

would like to develop a general system for the user to be abdbbose to include various
types of infrastructure at compile time, using a system rsoghisticated and cleaner than
the normal preprocessor directives.

There are also some new grid-level operations which we wiksdto add to the
system in the future. An example is one which would allow tkeruo project a regular
grid of arbitrary resolution onto our non-uniform grid. Amriiator would be provided which
would allow the user to step through all the points in theid gontained in the blocks on a
given processor. The iterator would return the block antisethich their grid point was
contained. This type of operation would be very useful fapdrics and for mapping data
onto the grid.

Another potential future operation is one which given a ighddcation would re-
turn the block and cell containing that location. This wohkluseful for users trying to
interpolate values at specific spatial locations.

We will also eventually provide the functionality for linkg blocks (possibly in dif-
ferent groups) so that the adaptation of one triggers thptatian of the other. This func-
tionality is useful if you have two models which are touchemd it is required that the
parts that touch have the same resolution.

Lastly, we would like to create interfaces between our sgsa@d common science
frameworks to maximize the value of our system to the sdierommunity.



Bibliography

[1] Baden, S.B. (1996), “Software infrastructure for namfarm scientific computations
on parallel processorsACM Applied Computing Review 4(1), pp. 7-10

[2] Bassetti, P., et al. (1998), “Overture: an object-omeehframework for high perfor-
mance scientific computingProceedings of ACM/IEEE SC98, 9p.

[3] seesar.lbl.gov/anag/chombo/

[4] Clauer, R., et al. (2000), “High performance computethoes applied to predictive
space weather simulationdEEE Trans. Plasma Sci., in press.

[5] www.npac.syr.edu/projects/bh/dagh.html

[6] MacNeice, P., et al. (2000), “PARAMESH: a parallel adeg@imesh refinement com-
munity toolkit”, Computer Physics Communications 126, pp. 330-354.

[7]1 www.lInl.gov/casc/SAMRAI/

[8] Stout, Q.F., De Zeeuw, D.L., Gombosi, T.l., Groth, C.PMarshall, H.G., and Pow-
ell, K.G., (1997), “Adaptive blocks: A high-performancdaatructure”Proc. SC' 97.

2006/9/6
page 9

—p



