
“01”
2006/9/6
page 1

i

i

i

i

i

i

i

i

In Proc. 10 th SIAM Conf. Parallel Processing for Sci. Computing (2001).

Parallel Adaptive Blocks
on a Sphere∗

Robert Oehmke and Quentin F. Stout

Abstract

We have developed a flexible tool for efficient parallel adaptive mesh refinement on
a sphere. Adaptive mesh refinement allows one to concentratecomputational resources
on regions of interest, and by extending to spheres we have extended their applicability to
climatology and other large scale planetary phenomena. Thesystem is effective for our
space weather application and as a general purpose object-oriented tool.

1 Introduction
Adaptive mesh refinement is an important technique for saving computational resources
when modeling multi-scale phenomena. Rather than using a uniform grid, which would
have to be at the resolution of the smallest feature of interest, adaptive grids permit one
to use a fine resolution where it is needed, and a coarser resolution elsewhere. This can
result in significant time and space savings over simply using a uniform grid. In this paper
we present a new variation on this technique: flexible, efficient adaptive refinement on a
sphere. Further, our system can provide adaptation on far more general shapes.

We were led to investigate this subject by our involvement inthe CSEM project to
predict geomagnetic storms [4]. These space weather events, which can damage satellites,
astronauts, and power lines, are caused by solar coronal mass ejections. To predict these
storms, a simulation involving the heliosphere and severaldifferent components of the
earth’s atmosphere is performed. Modeling the earth’s atmosphere necessitated our sphere-
based adaptive blocks. Although developed for a specific purpose, this tool could be used
to help model large scale planetary phenomena such as climatology or geology.

∗Work supported by NSF KDI grant ATM-9980078 and by the Centerfor Parallel Computing at the University
of Michigan.

1



“01”
2006/9/6
page 2

i

i

i

i

i

i

i

i

2

2 Previous Work
There has been some previous work in parallel adaptive blocks for Cartesian grids. The
Cartesian system most similar to our’s is BATS-R-US. This project, in which we partici-
pated, developed adaptive blocks to model the heliosphere [8]. We used many of the lessons
learned on that project to improve this one.

Another Cartesian adaptive block system similar to ours is PARAMESH [6]. There
are also some parallel adaptive Cartesian systems which differ from our system more sub-
stantially. These include Chombo [3], Dagh [5], Samrai [7],and Kelp [1].

There has also been some other work on adaptive non-rectangular grids. Overture [2],
for example, could be used for adaptive mesh refinement on a sphere, but it differs greatly
from our project in its mesh structure and implementation ofadaption. Overture’s meshing
of a given object consists of a collection of meshes containing differing numbers of data
cells. In our system, in contrast, every block consists of the same number of data cells
no matter what their actual spatial size. Also, Overture’s adaptation is patch based so
that when a region is being refined a new finer mesh is generatedwhich covers the whole
region. In our system when a region is being refined all the blocks which currently represent
that region are simply broken into four spatially smaller blocks, each containing the same
number of data cells as their parent.

3 System Capabilities
The system consists of several flexible components. The sphere is initially gridded as a
collection of blocks. The grid has a variety of initial configurations and a user-specified
structure at each cell. As refinement or coarsening occurs, the system maintains the adja-
cency information and provides functions for the user to iterate through all of the blocks
and to transfer data efficiently between the blocks.

3.1 Block Structure

Eachblock is a 2-dimensional rectangular array of cells, where the extents of each dimen-
sion, and the extents of the ghost cells, are specified by the user. Each block contains the
same number of cells no matter how often they have been refinedor coarsened. This struc-
ture of multiple cells per block, where all blocks have the same structure, provides several
efficiencies. For example, the inner loops of the user code operate on an array of fixed
structure, which allows various compiler and cache optimizations. Further, the cost of op-
erations such as access and communication are amortized over an entire block, as opposed
to a single cell. Thus adaptive blocks are far more efficient than standard quadtrees.

The structure of the blocks is quite flexible, in that the usercan attach any type of data
in any format to each cell. In particular, this permits user-defined gridding in the altitude.
Besides allowing users to incorporate whatever data their application requires, they can
also format it to achieve maximum efficiency. For example, a block could be an array of
records, or a record of arrays. The user need only provide theappropriate functions to ma-
nipulate their data, and our system does the rest. User functions are needed to manipulate
ghost regions, including coalescing and interpolating cells at boundaries between blocks of
differing resolutions.



“01”
2006/9/6
page 3

i

i

i

i

i

i

i

i

3

Blocks are organized into objects calledblock groups. Every block is a member of
exactly one block group. The block group allows a set of blocks to be operated on as a
whole. In our system there is, in general, a one-to-one correspondence between a shape
and a block group.

3.2 Sphere Structure

The sphere structure is also quite flexible. It may contain any number of blocks. A sphere’s
poles may be either “on” or “off” independently, allowing the creation of “half” spheres
with only one pole or “rings” with none. Also, the spatial distribution of blocks across
the sphere is user definable which, in addition to adaptation, is another method to focus
computational resources where needed. Note that beyond thecreation function our system
does not depend on the shape of the region being gridded, so bysimply writing a new
creation function, it can be extended to operate on a different shape. Adaptation is only
in two dimensions, with the structure in other dimensions fixed and specified by the user.
However, the same system structure described below can easily be extended to arbitrary
dimensions.

4 System Structure
The system is implemented in Fortran 90, and currently uses MPI for communication, so it
is quite portable. It is designed using a layered approach where each layer is composed of
two modules. All the modules are constructed to have a well defined interface to the rest
of the system, which allows our system to be quite flexible. Byreplacing a module with
another with an equivalent interface the system can be givenentirely new functionality, or
better implementations of old functionality. The system isdivided into three layers: the
base layer, the block-move layer, and the grid layer.

4.1 The Base Layer

The base layer contains the most basic functionality upon which the rest of the system
depends. It is composed of two modules: communication and block.

Thecommunication module handles the transfer of system data between the proces-
sors. The rest of the system uses it to do communication. Thisfunctionality is separated
into its own module to allow the communication methods to be easily changed. Currently
our communication is done using MPI, but because of our approach we could easily switch
to another mechanism, such as OpenMP. This module is never directly accessed by the
user.

The block module provides all the basic functionality for operating on blocks and
block groups. This module is responsible for maintaining the block connection information,
and whether a block is currently in use. It also implements the ability to iterate through
active blocks.

4.2 The Block-Move Layer

This layer is composed of the transfer and the load-balancing modules.



“01”
2006/9/6
page 4

i

i

i

i

i

i

i

i

4

Thetransfer module allows the user to transfer their data between blocks. It is respon-
sible for maintaining the proper buffers and deciding what goes where. Using the transfer
module is advantageous for the user because it allows the transfer to be done transparent to
the block location and connections. All messages sent from one processor to another are
accumulated, rather than sending one per block, which results in much greater efficiency.

Theload-balancing module is responsible for distributing the blocks among the pro-
cessors. Currently this module just strives to maintain an equal number of blocks on all
processor, however, in the future we will use a more sophisticated criteria for distribution
(see Section 7). This module is not directly accessed by the user, but the sphere creation
and adaptation modules both use its functionality.

4.3 The Grid Layer

This layer implements operations that operate on the entirenon-uniform grid that our sys-
tem provides to the user. This layer contains the adaptationand sphere modules.

The adaptation module is responsible for implementing the coarsening and refine-
ment of the blocks. This module maintains the information from the user about which
blocks should be refined or coarsened. It is also responsiblefor enforcing restrictions on
adaptation, e.g. many codes require that neighboring blocks differ by no more than one re-
finement level. This module does much of the work for adaptation, using the block module
to actually rearrange the block connections and the load balancing module to distribute its
new blocks.

Thesphere module is responsible for creating the sphere shaped connected group of
blocks and for maintaining the geometric information describing the sphere. Currently our
system only implements the sphere, however, by writing a newmodule similar to this one
an entirely different shape could be easily created. This module calls the block module
to connect the blocks into a sphere, and the load balancing module to distribute its new
blocks.

5 API
This section gives an overview of the major user functions inthe adaptive block API. The
subroutines are grouped by the module. The first part of the subroutine names also encode
their home module (e.g., subroutines whose names start withAB BLK belong to the block
module). We also include a section which describes the subroutines the user must provide
to the system. Note, not every module is represented becausenot every module has user
visible functions. Due to the limited scope of this paper we only sketch the subroutine
behavior. A more complete description will accompany the public release of our system.

Another aspect of the API is that the routines can be easily instrumented. To achieve
this, the subroutine that the user calls, for exampleAB ADPT do, calls another subroutine
that actually implements the functionality,AB ADPT do actual. This allows one to
redefine the user called subroutines to slip measurement code between the user call and the
actual implementation of the subroutine functionality. This is the method used in MPI.



“01”
2006/9/6
page 5

i

i

i

i

i

i

i

i

5

5.1 User Provided Subroutines

These are the subroutines that the user must provide for the system to be able to do inter-
block communication and adaptation. Because the block structure can be arbitrary, any
operation changing block contents must be supplied by the user. Note that this allows the
user to control the interpolation and coalescence operations.

user pack data: Pack the ghost data for transport to the neighboring block atthe
same refinement level.

user pack data split: Here ghost data is moving from a block to two finer neigh-
boring blocks, so the user must split the data and pack it.

user unpack data: Unpack the ghost data and insert it into the block.

user unpack data join: Here ghost data has been transported from two blocks to
a coarser neighbor. Merge the data and insert it into the block.

user refine: Split the block into four sub-blocks.

user coarsen: Merge the four blocks into one block.

5.2 Block Module Subroutines

Note that there isn’t a creation subroutine for the blocks themselves, because they are cre-
ated automatically when an adaptive block group is created.Also, the user never actually
deals with the block objects themselves as they are always referred to by index.

AB BLK GRP create: Create an object which holds a group of blocks.

AB BLK GRP destroy: Remove a group of blocks from the system.

AB BLK ITER create: Create an iteration object associated with a block group.

AB BLK ITER reset: Reset the iteration object to the beginning of the list of blocks
in the associated block group.

AB BLK ITER next: Move to the next block in this block group. Returns a flag when
the last block in the group has been reached.

5.3 Transfer Module Subroutines

These functions implement a transfer of data between each block and its neighbors.

AB XFER create: Create a transfer structure associated with a block group. For this
subroutine the user specifies the size of ghost data transported between neighbors in
every direction, so that proper buffers can be pre-allocated.

AB XFER destroy: Remove a transfer object from the system.

AB XFER start: Start a non-blocking transfer between each block and its neighbors,
using the user pack routines.

AB XFER finish: Finish a transfer, using the user unpack routines.

By breaking the communication into start and finish functions, the user may be able to
perform calculations during the communication and thus hide some of the cost.



“01”
2006/9/6
page 6

i

i

i

i

i

i

i

i

6

5.4 Adaptation Module Subroutines

AB ADPT set adapt: Mark a block to be coarsened or refined. Currently this sub-
routine accepts three values: 1, 0, or -1, where 1 indicates the block should be refined,
0 indicates no change and -1 indicates coarsening. We intendto expand this range to
indicate the priority of the block’s adaptation (see Section 7).

AB ADPT do: Do the adaption indicated by the adaption values set by the previous
subroutine. This routine also takes as input the user coarsen and refine subroutines.

5.5 Sphere Module Subroutines

AB SPH create: Create a sphere object associated with a block group. The user can
specify various geometric parameters such as center and radius. The user also specifies
some of the connection properties of the sphere, for exampleif it is connected across
the poles.

AB SPH destroy: Remove a sphere object from the system.

AB SPH get xyz: Return the rectangular coordinates of a specified data cell in a given
block.

AB SPH get sphr: Return the spherical coordinates of a data cell in a given block.

6 Programming Model
One of the goals of our system was to allow the user as much flexibility as possible in the
structure of their data. Thus we allow the user to be entirelyin charge of their data so
they can structure it however they feel is best. This also allows them to take advantage
of efficiencies which might not be possible when a system manages the user data. For
example, they can use statically allocated arrays. In orderfor our system to refer to a block
we simply use an index, which is more flexible than using a pointer. A pointer would force
each block’s data to be in a contiguous section of memory, or another level of indirection
would be needed. Instead, with the index, if the data is in arrays, as it is in many scientific
codes, then it can all be in one array with one of the indices the block index, or it can be in
separate arrays, or any combination in between. If the data is in a more exotic pointer-based
data structure then an array mapping the index to the pointercan be used.

To use our adaptive blocks, the first step, after calling a couple of setup routines, is
to call the block group creation subroutine (AB BLK GRP create). This routine takes as
input the group’s maximum allowed number of blocks on the calling processor and returns
an empty block group object. Next the sphere creation routine,AB SPH create, is used
to create a sphere object, i.e., the block group now has a set of blocks with connection and
geometric information but no user data.

To loop through a sphere’s blocks on a processor, firstAB BLK ITER create is
called to create an iteration object. One can then iterate through the sphere’s block indices
by usingreset andnext subroutines which operate on the iteration object. The indices
used may change as adaptation occurs but these details are hidden from the user, while still
providing systematic access to the blocks.



“01”
2006/9/6
page 7

i

i

i

i

i

i

i

i

7

To transfer information between blocks, the user first callsAB XFER create to
create a transfer object from the block group object.AB XFER start can then be used
on the transfer object to initiate a non-blocking communication, which is completed by
AB XFER finish. Because the user can have their data in any format they choose, they
must provide functions for packing and unpacking their data.

To do adaptation, the user first usesAB ADPT set adapt to mark blocks for re-
finement or coarsening, and then callsAB ADPT do to do the adaptation. Because we do
not know how the user’s data is arranged, the user must supplyroutines to split or merge
blocks.

When the user is finished with the sphere and associated objects they can call the
various deletion routines to remove them from the system.

7 Future Work
There are several directions in which we intend to advance our work in the future.

One of these is to develop modules to implement non-spherical shapes. More gener-
ally it would be useful to add the functionality for creatingnew shapes without the addition
of a new subroutine for each, for example by implementing a module which takes as input
a data structure indicating the connections between a groupof blocks and then creates the
shape.

Another area we intend to pursue is more intelligent block distribution. Currently
our system just attempts to maintain an equal number of blocks on each processor without
regard to how the blocks are connected. While this achieves good load-balance it can in-
crease the amount of interprocessor communication, because neighboring blocks are often
not assigned to the same processor. This is not usually a serious problem because the com-
munication overhead is amortized over each block, but in thefuture we intend to implement
a dynamic block distribution scheme which attempts to put neighboring blocks on the same
processor, in addition to balancing the numbers of blocks.

An additional goal is to do prioritized adaptation. Currently the user is only able to
indicate whether or not a block should be adapted. In the future we would like to allow the
user to be able indicate how crucial a block’s adaptation is,since the total number of blocks
that can be created by adaptation is limited by memory size. Currently if we do not have
enough blocks to perform the user’s adaptation request we return an error. We would like
to allow the user to assign a priority to blocks which providea basis for choosing which of
a limited number of blocks to refine. This would be very usefulfor codes which are limited
by memory, but is much more complicated to implement when there are restrictions on the
relative refinement levels of neighbors. For example, if neighbors can only differ by one
level, then refining a fine block forces a neighboring coarse block to also refine.

Another aspect we would like to implement is a method for the inclusion of user
information in the block structure for the system to use. Forexample, suppose the amount
of work varied per block. If the user could supply an estimateof the work required by each
block, this could be used by load balancing routines. These routines would have be supplied
by the user, but perhaps this would be a common enough concernthat it would become a
standard module. There would have to be a user function for setting the weights and system
routines for accessing them, and the block header structurewould have to include them. We



“01”
2006/9/6
page 8

i

i

i

i

i

i

i

i

8

would like to develop a general system for the user to be able to choose to include various
types of infrastructure at compile time, using a system moresophisticated and cleaner than
the normal preprocessor directives.

There are also some new grid-level operations which we wouldlike to add to the
system in the future. An example is one which would allow the user to project a regular
grid of arbitrary resolution onto our non-uniform grid. An iterator would be provided which
would allow the user to step through all the points in their grid contained in the blocks on a
given processor. The iterator would return the block and cell in which their grid point was
contained. This type of operation would be very useful for graphics and for mapping data
onto the grid.

Another potential future operation is one which given a spatial location would re-
turn the block and cell containing that location. This wouldbe useful for users trying to
interpolate values at specific spatial locations.

We will also eventually provide the functionality for linking blocks (possibly in dif-
ferent groups) so that the adaptation of one triggers the adaptation of the other. This func-
tionality is useful if you have two models which are touchingand it is required that the
parts that touch have the same resolution.

Lastly, we would like to create interfaces between our system and common science
frameworks to maximize the value of our system to the scientific community.



“01”
2006/9/6
page 9

i

i

i

i

i

i

i

i

Bibliography

[1] Baden, S.B. (1996), “Software infrastructure for non-uniform scientific computations
on parallel processors”,ACM Applied Computing Review 4(1), pp. 7–10

[2] Bassetti, P., et al. (1998), “Overture: an object-oriented framework for high perfor-
mance scientific computing”,Proceedings of ACM/IEEE SC98, 9p.

[3] seesar.lbl.gov/anag/chombo/

[4] Clauer, R., et al. (2000), “High performance computer methods applied to predictive
space weather simulations”,IEEE Trans. Plasma Sci., in press.

[5] www.npac.syr.edu/projects/bh/dagh.html

[6] MacNeice, P., et al. (2000), “PARAMESH: a parallel adaptive mesh refinement com-
munity toolkit”, Computer Physics Communications 126, pp. 330–354.

[7] www.llnl.gov/casc/SAMRAI/

[8] Stout, Q.F., De Zeeuw, D.L., Gombosi, T.I., Groth, C.P.T., Marshall, H.G., and Pow-
ell, K.G., (1997), “Adaptive blocks: A high-performancedata structure”,Proc. SC’97.

9


