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THE NUMERICAL RANGE OF A WEIGHTED SHIFT
QUENTIN F. STOUT!

ABSTRACT. Let T be a weighted shift on a Hilbert space. We compute the numerical
radius of T when T is finite, circular, Hilbert-Schmidt, periodic, or a finite perturba-
tion of periodic. For several cases we also determine whether the numerical range is
closed, completing the determination of the numerical range and answering a
question of Ridge. An important step is the determination of the eigenvalues of a
selfadjoint tri-diagonal matrix with zeroes on its diagonal. We give a simple formula
for the eigenvalues when the matrix is finite dimensional or Hilbert-Schmidt.

Let 9C be a separable complex Hilbert space. A continuous linear operator 7 on ¥
is said to be a (weighted) shift if there is an orthonormal basis { f,} and a bounded
sequence of scalars {a,} such that T( f,) = «,, f,,,. Shifts are an important class of
operators, and Shields [11] provides a good survey of their properties. The numerical
range of T, denoted W(T), is {(Tx, x): |lx|l = 1}. The numerical range is always
nonempty, convex, and bounded, and for a weighted shift it is circularly symmetric
about the origin (see Shields [11, Proposition 16]). Because of this symmetry, when T
is a weighted shift its numerical range is completely known once one determines

(i) What is the numerical radius of T'? (where the numerical radius of T, denoted
w(T), ismax{|A|: A € W(T)}).

(ii) Is W(T) closed? (always true if 7 has finite rank).

Shields [11, p. 73] has remarked that little is known about these questions. The
only relevant papers known to the author are by Ridge [10], who showed that the
numerical radius of a shift with periodic weights is the same as that of a related
circular shift; Berger and Stampfli [1, p. 1053], who computed the numerical radius
of a unilateral shift with weights &, 1, 1,...; and Eckstein [3], who showed that if
|a,,|* +'| @y |* < 2 for all i then the shift with weights {a;} has a numerical radius
no greater than 1.

This paper gives formulae for the numerical radius in several new cases. Our main
technique is to analyze Re(T) (Re(T) = (T + T*)/2). Re(T) is selfadjoint, so
w(Re(T)) = |IRe(T)ll. Also, W(Re(T)) is the projection onto the real axis of W(T).
If T is a shift then the circular symmetry of W(T') shows that w(T) = w(Re(T)), so
one can compute w(T') by computing |[Re(T)|l. If T is of finite rank then so is
Re(T), in which case [|[Re(T)|l equals the maximum of the absolute values of its
eigenvalues. Further, Re(T) is selfadjoint tri-diagonal with zeroes on its diagonal,
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496 Q. F. STOUT

and we exploit this form to give a simple polynomial whose roots are the reciprocals
of the nonzero eigenvalues of Re(7). This result is extended to some cases where
Re(T) is infinite-dimensional. Tri-diagonal selfadjoint matrices have been exten-
sively studied (see Wilkinson [12, Chapter 5]), but the author has been unable to find
previous mention of the formulae derived in this paper.

The author would like to thank the referee for several helpful suggestions.

I. Preliminaries. Let T be a shift where {f} is an orthonormal basis and
T(f,) = a,f,.,- Wesay T is degenerate if some «, is zero. A nondegenerate shift is
bilateral if n ranges through the integers, unilateral if n ranges through the positive
integers, and finite if there is an N such that n € {1,...,N} and T(f,)=0. A
degenerate shift is a direct sum of finite and forward or backward unilateral shifts.
The numerical range of a backward shift is that of a forward shift with the weights
in reverse order. The numerical range of a direct sum is the convex hull of the
numerical ranges of the summands, so it suffices to analyze only nondegenerate
shifts. We further assume all weights are positive. This is not really a restriction since
a shift with weights {a,} is unitarily equivalent to one with weights {|«,|} (see
Shields [11, Corollary 11]).

If {f)_, is an orthonormal basis for I and if T(f,) = «, f,,, for n < N and
T( fy) = ayf, then T is called a circular shift. Circular shifts are not true shifts, and
the unadorned word “shift” does not include them. We denote bilateral, unilateral,
finite, and circular shifts by B(..., ap,...), U(ay,...), F(a,...,a,), and
C(ay,...,a,), respectively, where the a’s are the weights.

In theory one can compute the numerical radius of an infinite shift by using
Lemma 2 below to compute the numerical radius of a finite shift and noting that
w(U(a,, a,,...)) = lim,_ , w(F(a,;,...,a,)) and w(B(..., ag,...)) =
lim w(F(a_,,...,a,)). However, the limit operation is a formidable obstacle,
and it is the purpose of this paper to remove it in certain cases, leaving only a single
polynomial to solve (or, for the Schatten classes, an entire function). This reduces an
analysis problem to a far simpler algebraic one, permitting exact analysis for many
more shifts.

Our formulae involve the circularly symmetric functions S(a,,...,a,), where n
and r are nonnegative integers. S, is defined to be 1, while for r = 1, S(a,,...,q,) =
2z a7 (1,...,r) = (1,...,n), where m(k) + 1 <@(k + 1) for I <k <r,
and if #(1) = 1 then «(r)  n}. These have a nice description: imagine a regular
n-gon with vertices labeled a, through a,. Draw a convex r-gon in it, with vertices
among the a, with the restriction that it cannot use an edge of the original polygon.
Each termin S/(a,,...,a,) is the product of the vertices of such an r-gon.

These functions satisfy many identities, but we need only the following:

M) Sy(ay,...,a,)=2i_a,ifn>1.

2)S(ay,...,a,)=0if r>n/2.

3) S(ay,...,a,) = S(a,,...,a,, a}).

4 S(ay...,a,,0)= S(ay,...,a,,0,0).

) S,i(ays.-05a,40,0) =S4 4(ay,.. - ,a,,0) + a,,,5(ay,...,a,-),0).

n— 00
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I1. Finite shifts and extensions.

LEMMA 1. Let A be an (n + 1)-dimensional tri-diagonal selfadjoint matrix with
zeroes on its diagonal, and let (a,,. ..,a,) be the sequence of entries on its subdiagonal.
Then

L(n+1)/21

deti(I = pd)= 3 S(la ]2, P 0)(— 1)
=0

PROOF. Let 4’ be the lower right n X n submatrix of 4, and let 4” be the lower
right (n — 1) X (n — 1) submatrix. Let p,(p) = det(d — pAd), p,_(p) =
det(1 — pA’), and p,_,(p) = det(I — pA"). Then p,(p) = p,— (1) — p?|a,[*p, (1),
and the formula is established by induction. [

Since A # 0 is an eigenvalue of A4 if and only if 1/A is a root of det(/ — uA4), we
conclude that if 4 is a finite dimensional tri-diagonal selfadjoint matrix with zeroes
on its diagonal then A is an eigenvalue of 4 if and only if —A is an eigenvalue. If all
subdiagonal entries are nonzero and A is of odd dimension then it has a simple
eigenvalue of 0, while if it is of even dimension then 0 is not an eigenvalue. Further,
Il 41| is the reciprocal of the smallest positive root of det(/ — pA4). Recall that if T is
a shift then w(T) = ||[Re(T)ll, which leads us to the following result.

LEMMA 2. The numerical radius of the finite weighted shift F(a,,...,a,) is 1/Vt,
where t is the smallest positive root of
L(n+1)/21
0= 3 (—1/4)s/(a?,...,a%,0)/. O
1=0

THEOREM 3. Let T = B(..., ay,...) be Hilbert-Schmidt. Then the numerical radius
of Tis 1/t , where t is the smallest real root of the entire function

o(z) = § S(...,a2,...)(—1/4) 2"
1=0

ProOF. T is Hilbert-Schmidt if and only if 3 a} < co. To show that ¢ is entire,
note that S, is defined. Let (/) = (ZL_,, + 2/2)az. Any term of S, is a term of
S,_, multiplied by an a} with k in (—oo, —/) U (/, + o), and so S, <S,_, - &(/).
Therefore each S, is defined, and since e(/) — 0, ¢ is entire.

To complete the proof, let F, = Re F(a_,,...,a,) and let ¢,(p) = det(I — pE?).
Note that w(T') = lim,,_, , w(F,). The roots of ¢,(n) are the squares of the roots of
det(I — pF,), and since x is a root of det(I — pF,) if and only if —x is a root, we
conclude that each root of g,(u) is of order two, implying that ¢,(¢) is a square of a
polynomial. Using Lemma 2 we see that

n+1 2

a.(1) =| 2 (—1/4)i's,(a2,,...,a2,0)
=0
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Re(B) is Hilbert-Schmidt, so Re(B)? is trace class. Thus g, converges on compact
sets to g(n) = det (I — pRe(B)?), and the smallest root of g is 1/[|Re(B)?|l, which
equals 1/[[Re(B)II%. Since g,(p) also converges to [22,S(. .., a3,...)(—1/4)u']?
the result is proven. [

Note that the proof proceeds by showing how to compute the nonzero eigenvalues
of a Hilbert-Schmidt tri-diagonal selfadjoint operator with zeroes on its diagonal.

Given a weight sequence which is in some /7, by applying a root-squaring
technique we can construct an entire function whose smallest real root is a known
power of the numerical radius. For example, suppose the weights {a, ) __ are in
I*.Let P, = det(] — pRe[F(a_,,...,a,)]*) and P = det(] — pRe[B(..., a,....)]*).
Then P, — P uniformly on compact sets, and also to

oo 2

ST(... a2, ) (—1/4) ¥,
(=0
where

i
T(...,a3,...) = lim 3 S,(a2,,...,a2,0)-S,_,(a%,,...,a2,0).
= k=0
Thus Ty = 1, T, = 23 a2, etc. The numerical radius of B(..., a,,...) is s~ /4, where
s is the smallest positive root of 2, (..., a3,...)(—1/4)'s".

Unfortunately we see no way of extending Theorem 3 to arbitrary compact shifts.
This would require constructing a simple function which is similar to ¢ and is
well-defined for arbitrary compact operators.

Despite the concreteness of Theorem 3, it is difficult to apply because of the
difficulty in finding roots of entire functions. For example, if the weights are
1, r,r%..., 0<r <1, then the corresponding entire function is
22 [(—=1/4)"z"r2*=D /II% (1 — r*)]. This is an interesting function, but the
author is unable to find its roots.

THEOREM 4. Let A be a unilateral or bilateral shift with periodic weights (a,,...,a,),
orlet A be C(a,,...,a,). Then w(A) is the largest root of

Ln/21

S (@t a2) (14" = 2(=1/2)" ] a.

=0 i=1

Proor. Ridge [10, Theorem 1] showed all three shifts have the same numerical
radius, but did not determine the polynomial. To do so, let D = Re(C(ay,...,a,)),
let g(A) = det(AI — D), and g;(A) = det(AI — ReC(a,,...,a;_,0,a,,,...,a,)).
By Lemma 2, ¢, = 3j74*%(—1/4)S/(a?,...,a* ,,0,a?,,...,a>)X""%. The coeffi-
cient of X*"* in g is a sum of products of k-tuples of distinct entries of D, with no
two entries occupying the same row or column. If k < n — 1, then each such term
occurs in the coefficient of X*~* for n — k of the g,’s. Summing these shows that
when k < n — 1, N'"* has coefficient S)(a?,...,a2)(—1/4) if k = 2/, and 0 other-
wise.
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We now need only determine the coefficient of A°. It is a sum of terms of the form
(7, am™®) /2", where m(i) € {0,1,2} and T m(i) = n. If some m(i) is 2 then there
is a j such that m( j) is 0, and hence that term is also a term in the coefficient of A° in
g, Using this we find that the sum of all terms having at least one m(i) =2 is 0
when n is odd and S, ,,(af,...,a}) when n is even. The only terms in the coefficient
of A% not yet accounted for are those of the form (II’-,a,)/2". There are 2, both
having an odd or even permutation depending on whether n is odd or even. [J

For even n one can determine w( 4) by solving a polynomial of degree n/2, which
is smaller than one would initially expect. One reason for interest in bilateral
periodic shifts is that they are exactly the reducible nondegenerate bilateral shifts.
See Kelley [7], Nikolskii [9, Theorem 4], or Halmos [6, Problem 129].

II1. Split periodic shifts. If you take a finite, circular, or Hilbert-Schmidt shift and
modify finitely many weights you have one of the same type. However, a finite
change of a periodic shift is not so simple. Berger and Stampfli [1] analyzed such a

shift with weights a, 1,.... To handle these perturbations we introduce the class of
split periodic shifts. We say A = SP(a,,...,a,|b,,...,b,|c,...,c,) if the weights
are ...,4;, a;_qy...,4y, Ay a4y, by by, Cpye 0, €€y, This includes

more than just finite perturbations of periodic shifts, but the techniques used handle
the generality easily. Notice that the similarity class of a bilateral periodic shift is rife
with split periodic shifts with different a and ¢ parts and arbitrary nondegenerate b
parts (see Shields [11, Theorem 2]).

We introduce a new technique to determine the numerical radius, based on a
modification of a theorem of Eckstein and Racz [4, Theorem 2.5].

THEOREM 5 (ECKSTEIN AND RACZ). The numerical radius of B(...,a,,...), a; 0,
is 8, where 8 is the smallest positive number for which one can find {e,} with
€, E[—l, 1] and(an/8)2=(1 +en+1)(1 _en)' 0

To illustrate the use of this theorem we calculate w(SP(0| a| B, v)). SP(0|a| B, v)
is just a unilateral shift with weights a, 8, v, B, v,. . .. If a is at the Oth index then

e, = (/82— 1+ ¢)/ (1 e),
€ = (.32/32 -1+ e21—1)/ (1—ey-,), and
e = (Y/8 — 1+ ey)/(1—ey), i=1

For a fixed §, e, , is monotone increasing in e, when e, is in (—1, 1). Solving for
e, ., in terms of e, i odd, gives

err =[(1 = ¢)(v?/87 = 2) + B2/8%] /[2(1 — &) — B?/87].
The fixed points of this map are
(12— B2 =[(B2 = v2)" + 8(26* — v — p%67)] "7} /452,

There is at least one fixed point iff § = (y + B8)/2, i.e., iff § = w(C(B, v)). Further,
both fixed points are in (—1, 1), so the fact that e, , is an increasing function of e;
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shows that if e, is less than the largest fixed point then so are e, es, etc. The
mapping takes the interval from the largest fixed point to 1 onto the interval from
the largest fixed point to infinity, so if e, is larger than the largest fixed point there
will be an odd » such that e, > 1, which is not allowed. Similar reasoning shows that
if e, is no greater than the largest fixed point then e,, e,, etc. will also be in (—1, 1).

The largest fixed point is monotone in 8, so if e, were specified it would determine
the smallest that § could be and still be able to find the required {e,}. To set the
value of e,, which we want to be as small as possible, we set e, to its minimum
possible value, — 1. Then e, = (a®/8% — 2) /2. Setting this equal to the largest fixed
point gives

d=a- [(a2 + B2 —v?)/4(a* — 72)]1/2,

If a < y this is incorrect, for then the numerical radius is w(C(B, v)). Even if a >y
the value may still be incorrect because it may be that (a?/8% — 2)/2 is less than the
largest fixed point for all values of § greater than or equal to (y + B8)/2, i.e., for all
values for which there really is a fixed point. In this case the answer is again
w(C(B,v)). This occurs in the Berger and Stampfli example of SP(0|a|1) for
1<a<y2. In all cases, w(SP(0|a|pB,v)) is the maximum of (8 + v)/2 and
a-[(a® + B2 —y2)/(a® — y)]'/2.

Technique to compute w(SP(0|b,,...,b,|c,,...,c,)). Set e, = —1 and find e, in
terms of 8. Find e, , in terms of e, find the largest fixed-point of that map, set it
equal to e,, and solve for 8. The numerical radius is the maximum of & and
w(C(cys-..,Cp))-

If the split periodic shift is bilateral then it is not true that e, = —1. As an
example, consider SP(a|B|Y). Now e, = ((a/8)* — 1 + e_,)/(1 — e_;). Solving
x = ((a/8)* — 1 + x)/(1 — x) we find x> = 1 — (a/8)*. The monotonicity of e, , |
in terms of e, shows that e is at least —[1 — (&/8)*]'/?, and similarly e, is at most
[1 — (v/8)*]'/2. We now solve the equations

e, =Vy1-— (7/8)2,
er=[(8/87 — 1= 1= (a/3)*|/[1 + 1 = (/)]

for 8, obtaining a fourth degree polynomial in 82 which simplifies for certain cases.
For example, when a = v, § = (> + 82)/2B. This is the numerical radius if 8 > «,
while if 8 < a the radius is «. To compute w(SP(a,,...,a,|b,,...,b,|c},...,c,)), in
general, first find 8, and then the answer is the maximum of 8, w(C(a;,...,q,)), and
w(C(cy,.--5C,))-

The techniques of this section can be used to find the norm of those tri-diagonal
selfadjoint matrices which have zeroes on their diagonal and a split-periodic subdi-
agonal. Unfortunately, the complexity of the computations increases rapidly as the
number of parameters increases.
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IV. Closure of the numerical range. For the cases considered above we determine
whether the numerical range is a closed or open disk. First we establish a conjecture
of Ridge [10, Note 5].

PROPOSITION 6. Let A be a unilateral or bilateral shift with periodic weights. Then
W(A) is an open disk.

PROOF. Our proof is just a reworking of the Perron-Frobenius theorem. (See
Gantmacher [S, p. 53].) It suffices to consider only bilateral periodic shifts, so let 4
be such a shift and let » = w(A). W(A) is closed if and only if there is a unit vector
x = (x,) such that {(Ax, x)=r. (Re(A)x, x)= r, and since [|[Re(A)ll = r, Re(A)x
= rx. If p is the period of 4’s weights then also Re(A)(x,,,) = r(x,,). Letting
y*=(x,—x,.,) and y = y*/ll y*|l, we also have Re(A4)y = ry and (Ay, y)=r.
Since [[Re A(| x, DIl = IRe(A)x |l = |IRe(A)ll, we may assume x,, = 0 for all n. This
assumption then forces y to have some components positive and some negative,
which we will show is impossible.

Let y = (y,) and assume there is a k such that y,y,,, <0. Then {A(]y,|),
Iy, D)= (Ay, yy= w(A), which is impossible. Therefore it must be that between
components of y of opposite sign there is a 0 component. Assume k is such that
Y« 70 and y, ., = 0. Define the vector z(8) = (z,(8)) by z(8) =|y,|, i #k + 1,
and z,,(8) =8. (Az(0), z(0)>=r and (Az(8), z(8)) increases linearly with §,
while [[z(8)ll = 1 + 8% For sufficiently small 8, {Az(8), z(8))/llz(8)II* >
(Ay, y>= w(A), which again is impossible. Therefore x cannot exist, and W(A4) is
open. O

Let A be a bounded linear operator on JC. The essential numerical range of A,
denoted W,(A), is given by W,(A) = N{W(A + K): K a compact operator on JC}.
W,(A) is always compact, convex, nonempty, and contained in W(A4). 4 is compact
iff W,(A) = {0}. (See Bonsall and Duncan [2, §34].)

PROPOSITION 7. If A is a weighted shift and W, (A) # W(A) then W(A) is a closed
disk.

PROOF. Lancaster [8] showed that the extreme points of W(A) lie in W, (A4) U
W(4). O

COROLLARY 8. Any compact weighted shift has a closed numerical range. O

COROLLARY 9. Let A = SP(a,,...,a,|by,....b,|ci,...,c,). If
w(4) > max{w(C(a,,...,a)), w(C(c,,....c,))}
then W(A) is a closed disk.

PrOOF.

w,(A4) = W,(SP(a,,...,a,|0]cy,...,c,))
= w(C(a,,...,a,)) U W(C(cy,...,c,,))- O
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V. Notes. (1) It would be useful to have formulae for the numerical radius of, say,
a shift which is a Hilbert-Schmidt perturbation of U(1, 1,...). Using techniques from
§I1I one can show that if @, > 1 and S i(a? — 1) > 1, then w(U(a,,...)) > 1.

(2) The algebraic form of our results suggests several questions. For example, the
polynomial in Lemma 1 has a special form. What polynomials arise in this manner?

(3) We have not determined the closure of W(A4) when

A= SP(a,--'al|b,~-bm|c,~-c,,)

and
w(A4) = max{w(F(a, -a,)), w(F(c;--¢,))},

but we conjecture that in this case W( A4) is open.
(4) From all published examples one might conjecture that if A4 is a shift for which

W,(A) =W(A), then W(A) is open. However, easy perturbation arguments show
that there are nondegenerate shifts which are trace-class perturbations of
U2,0,1,0,1,1,0,1,1,1,0,...) and which have equal numerical range and essential
numerical range.
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