
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/328008637

Training Neural Networks Using Predictor-Corrector Gradient Descent: 27th

International Conference on Artificial Neural Networks, Rhodes, Greece,

October 4–7, 2018, Proceedings, Pa...

Chapter · October 2018

DOI: 10.1007/978-3-030-01424-7_7

CITATIONS

0
READS

119

2 authors:

Amy Nesky

Google Inc.

7 PUBLICATIONS   4 CITATIONS   

SEE PROFILE

Q. F. Stout

University of Michigan

251 PUBLICATIONS   5,241 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Amy Nesky on 20 February 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/328008637_Training_Neural_Networks_Using_Predictor-Corrector_Gradient_Descent_27th_International_Conference_on_Artificial_Neural_Networks_Rhodes_Greece_October_4-7_2018_Proceedings_Part_III?enrichId=rgreq-c468ff6cced40fbcf0009102a32c1b3e-XXX&enrichSource=Y292ZXJQYWdlOzMyODAwODYzNztBUzo3Mjg1MzE4NjA0NTU0MjVAMTU1MDcwNjkzOTYwNw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/328008637_Training_Neural_Networks_Using_Predictor-Corrector_Gradient_Descent_27th_International_Conference_on_Artificial_Neural_Networks_Rhodes_Greece_October_4-7_2018_Proceedings_Part_III?enrichId=rgreq-c468ff6cced40fbcf0009102a32c1b3e-XXX&enrichSource=Y292ZXJQYWdlOzMyODAwODYzNztBUzo3Mjg1MzE4NjA0NTU0MjVAMTU1MDcwNjkzOTYwNw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-c468ff6cced40fbcf0009102a32c1b3e-XXX&enrichSource=Y292ZXJQYWdlOzMyODAwODYzNztBUzo3Mjg1MzE4NjA0NTU0MjVAMTU1MDcwNjkzOTYwNw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Amy-Nesky?enrichId=rgreq-c468ff6cced40fbcf0009102a32c1b3e-XXX&enrichSource=Y292ZXJQYWdlOzMyODAwODYzNztBUzo3Mjg1MzE4NjA0NTU0MjVAMTU1MDcwNjkzOTYwNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Amy-Nesky?enrichId=rgreq-c468ff6cced40fbcf0009102a32c1b3e-XXX&enrichSource=Y292ZXJQYWdlOzMyODAwODYzNztBUzo3Mjg1MzE4NjA0NTU0MjVAMTU1MDcwNjkzOTYwNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Google_Inc?enrichId=rgreq-c468ff6cced40fbcf0009102a32c1b3e-XXX&enrichSource=Y292ZXJQYWdlOzMyODAwODYzNztBUzo3Mjg1MzE4NjA0NTU0MjVAMTU1MDcwNjkzOTYwNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Amy-Nesky?enrichId=rgreq-c468ff6cced40fbcf0009102a32c1b3e-XXX&enrichSource=Y292ZXJQYWdlOzMyODAwODYzNztBUzo3Mjg1MzE4NjA0NTU0MjVAMTU1MDcwNjkzOTYwNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Q-Stout?enrichId=rgreq-c468ff6cced40fbcf0009102a32c1b3e-XXX&enrichSource=Y292ZXJQYWdlOzMyODAwODYzNztBUzo3Mjg1MzE4NjA0NTU0MjVAMTU1MDcwNjkzOTYwNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Q-Stout?enrichId=rgreq-c468ff6cced40fbcf0009102a32c1b3e-XXX&enrichSource=Y292ZXJQYWdlOzMyODAwODYzNztBUzo3Mjg1MzE4NjA0NTU0MjVAMTU1MDcwNjkzOTYwNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Michigan?enrichId=rgreq-c468ff6cced40fbcf0009102a32c1b3e-XXX&enrichSource=Y292ZXJQYWdlOzMyODAwODYzNztBUzo3Mjg1MzE4NjA0NTU0MjVAMTU1MDcwNjkzOTYwNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Q-Stout?enrichId=rgreq-c468ff6cced40fbcf0009102a32c1b3e-XXX&enrichSource=Y292ZXJQYWdlOzMyODAwODYzNztBUzo3Mjg1MzE4NjA0NTU0MjVAMTU1MDcwNjkzOTYwNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Amy-Nesky?enrichId=rgreq-c468ff6cced40fbcf0009102a32c1b3e-XXX&enrichSource=Y292ZXJQYWdlOzMyODAwODYzNztBUzo3Mjg1MzE4NjA0NTU0MjVAMTU1MDcwNjkzOTYwNw%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Training Neural Networks Using
Predictor-Corrector Gradient Descent

Amy Nesky and Quentin F. Stout

University of Michigan, Computer Science and Engineering, Ann Arbor, MI 48109
{anesky,qstout}@umich.edu

Abstract. We improve the training time of deep feedforward neural
networks using a modified version of gradient descent we call Predictor-
Corrector Gradient Descent (PCGD). PCGD uses predictor-corrector in-
spired techniques to enhance gradient descent. This method uses a sparse
history of network parameter values to make periodic predictions of fu-
ture parameter values in an effort to skip unnecessary training iterations.
This method can cut the number of training epochs needed for a network
to reach a particular testing accuracy by nearly one half when compared
to stochastic gradient descent (SGD). PCGD can also outperform, with
some trade-offs, Nesterov’s Accelerated Gradient (NAG).

Keywords: Neural Networks · Accelerated Gradient Methods

1 Introduction

The immense expressional power of artificial neural networks has advanced ma-
chine learning and data science a great deal. Large networks can achieve un-
precedented accuracy in intricate learning problems, yet their size consumes
significant computational resources and, consequently, time [13]. Advances in
compute power allow neural networks with millions of parameters to be trained
on enormous, complex data sets, and the use of GPUs has decreased training
time drastically, but new techniques for reducing network training time must
arise for deep learning to progress.

In this work, we propose a new training technique called Predictor-Corrector
Gradient Descent (PCGD) that reduces the number of iterations required to
learn. In PCGD we monitor the trend of the parameters as the network learns
with gradient descent, and periodically adjust each parameter by inferring future
values from the trend. A number of standard gradient descent iterations between
predictions act to refine the predicted approximations. This alternating process
works in much the same way that predictor-corrector methods for solving or-
dinary differential equations work. We will show that incorporating prediction
into the training process of networks makes learning significantly more efficient.

The human brain already utilizes predictions. Predictions are crucial to sur-
vival because they allow us to respond more appropriately to our surroundings
and they improve reaction time. Perception is also impacted by brain predictions:
our perceptions are a combination of expectations and sensory information [7,



2 A. Nesky and Q.F. Stout

14]. Thus, if we wish to improve artificial neural network efficiency, integrating
prediction into training is a natural modification.1

2 Related Work

There is a plethora of work that supplements standard gradient descent in hopes
of improving neural network training. Gradient noise and stale gradients have
been successful adaptations to gradient descent [8, 15]. Adapative Gradient tech-
niques give frequently occurring features low learning rates and infrequent fea-
tures high learning rates; these methods use the information theoretic idea that
infrequent features carry more information about the data distribution [5, 6, 10,
23, 24]. Momentum and Nesterov’s Accelerated Gradient (NAG) accumulate a
descent direction across iterations to alleviate zig-zagging and accelerate con-
vergence [17, 19] . There are also meta-learning methods that allow networks to
be trained jointly with their learning algorithm. Meta-methods may intelligently
adjust hyperparameters like the learning rate, or learn the entire update term
perhaps as a function of the batched gradient [1, 4]. Each of these techniques
complement gradient descent to improve network learning and can be used in
conjunction with our methods.

Prediction-correction methods are traditionally used in numerical analysis
to integrate ordinary differential equations [22]. Since their inception, predictor-
corrector methods have been used in a variety of fields that require optimization
like theoretical study of chemical reactions and time-varying convex optimization
[9, 21]. Prediction-correction has been incorporated into neural network training
in the past by coevolving a pair of neural networks, a prediction network and a
correction network [25, 26].

Scieur et al. propose a related learning algorithm to the one presented in this
paper called Regularized Nonlinear Acceleration (RNA) [20]. RNA computes
estimates of the optimum from a nonlinear average of a history of iterations
produced by an optimization method like gradient descent. Like in RNA, the
prediction step in PCGD is based on a history of parameter values obtained
with gradient descent. However, our predictions use parameter specific linear re-
gression rather than a nonlinear average of complete historical iterations. Mak-
ing parameter specific predictions with linear regression allows our method to
update predictions incrementally, which removes the need to keep all historical
iterations relevant to a particular prediction. RNA must store the entire iteration
history relevant to a particular prediction, which makes this method unfeasible
for training large neural networks.

3 Methodology

PCGD uses best fit predictions and stochastic gradient descent in tandem. When
estimating the trend in the network parameters through training, we will use fit

1 One caution ought to be mentioned here: brain predictions also enable prejudices,
so one must be careful how much trust is placed in predictions.



Training Neural Networks Using Predictor-Corrector Gradient Descent 3

functions for which the least squares problem has a closed form solution using
the normal equations. One could use more complex fit functions, but we want to
avoid needing an extra iterative process. Using only least squares problems with
closed form solutions to make parameter predictions also saves memory because
they can be solved incrementally, avoiding the need to store a long history of
network snapshots.

We will define the algorithm around the gradient descent iterations. We will
make parameter predictions every p gradient descent iterations and collect snap-
shots of the network parameters every sth gradient descent iteration where p > s
and s|p. Parameter predictions only consider the previous p/s network snapshots.
Since p > s, only a sparse history of snapshots are considered. We’ll call p the
prediction increment and s the snapshot increment. For the remainder of this
paper, the variables p and s will retain this definition.

Suppose our network has n weight and bias parameters. Let f(a, x) : Rc ×
R → R be our chosen fit function class for parameter prediction. For each net-
work parameter, θ, we aim to solve for a, such that f(a, x) estimates a future
value of θ for a chosen prediction length x. f(a, x) has c unknowns where c ≤ p/s.
Define F (A, x) : Rc×n × R → Rn such that the ith entry of F (A, x) is f(ai, x)
where ai is the ith column of A. When using PCGD, network parameter vector
θ ∈ Rn receives the update,

vt =− ε∇L(θt)

θt+1 =

{
F (At+1, lt+1) if t+ 1 ≡ 0 mod p

θt + vt otherwise

(1)

where L is the desired loss function, ε is some learning rate, lt+1 ≥ p/s is an
increasing prediction length and At+1 ∈ Rc×n, minimizes the L2-norms of the
columns of JAt+1 − Θt+1. Here, J ∈ R(p/s)×c has entries Ji,j = ∂f(a, i)

/
∂aj ,

and the ith row of Θt+1 is the vector θ>t+1−p+is for i < p/s and θ>t + v>t for

i = p/s.2 Note that the columns of At+1 each solve independent least squares
problems for particular network parameters; the systems are overdetermined
if c < p/s. We use one fit function class, f , but calculate network-parameter
specific fit function variables. One could easily add regularizers or momentum
to the velocity term, vt. lt+1 is an increasing prediction length dependent on the
gradient descent iteration, but one could also consider an adaptive, or parameter
specific prediction length. Iterations, t, in which t ≡ 0 mod p constitute the
‘predictive’ step in PCGD, and all other gradient descent iterations comprise
the ‘corrective’ step.

We solve for prediction fit function variables At+1 incrementally so as to
minimize the extra storage required to perform PCGD. Fit function variables

are updated at snapshot intervals. Let Θ
(i)
t+1 denote the shorter matrix containing

only the first i rows of Θt+1. Similarly, J (i) is the shorter matrix containing only
the first i rows of J . When c snapshots have been recorded, we solve J (c)At+1 =

Θ
(c)
t+1 for the fit function variable matrix At+1; with c snapshots J (c)At+1 = Θ

(c)
t+1

2 Note that the jacobian, J , is not specific to the column of At+1 .



4 A. Nesky and Q.F. Stout

is a determined system. After this initial solve, only At+1 must still be stored,

Θ
(c)
t+1 is no longer needed. At snapshot intervals c+ 1 through p/s we update the

fit function variable matrix using the incremental least squares algorithm found
in [3]. That is, for i ∈ [c+ 1, p/s], we update,

At+1 ← At+1 + yi

((
θ
(i)
t+1

)>
− j>i At+1

)
(2)

where
(
θ
(i)
t+1

)>
is the ith row in Θt+1, j>i is the ith row of J , and yi is the

solution to
(
J (i)

)>
J (i)yi = ji.

This process then repeats writing over old fit function variables and param-
eter history in memory. Since fit functions variables are parameter specific, they
can be updated layer-wise. If a network has n total parameters, PCGD requires
storing at most an additional O(cn) values in memory at any one time during
training when using a fit function with c unknowns. The size of the extra storage
is c times the size of layers not being currently being updated plus at most 2c
times the size of the layer currently being updated.

By using an incremental least squares approach and solving for parameter
specific best fit functions, we are able to conserve memory during training; with-
out this approach one would need to store np/s parameter history values. This
makes PCGD a feasible technique for training large networks provided c is small.
Given the same history, RNA would solve for p/s coefficients for p/s entire net-
work snapshots to obtain a nonlinear average of the whole snapshots [20]. Hence,
RNA would require storing all np/s parameter history values. However, for the
memory conservation afforded by incrementally updating fix functions, one pays
a little extra work. Rather than solving for At+1 directly, one must perform
p/s− c+ 1 incremental updates to At+1.

It should be noted that this is a general adaptation to stochastic gradient
descent that is not specific to neural networks. This method may also appropriate
for other high dimensional optimization problems.

4 Relationship to Nesterov’s Accelerated Gradient

One could make predictions every iteration, which would bring our method closer
to some existing accelerated gradient schemes. If one made predictions every
iteration using a linear fit function our algorithm could be written,

zt =

θt if t < p

A>t

[
1 lt

]>
otherwise

θt+1 =zt − ε∇L(zt)

where At minimizes the L2-norms of the columns of JAt−Θt. Here, J ∈ R(p/s)×2

has
[
1i−1 2i−1 · · · (p/s)i−1

]>
for its ith column vector, and Θt ∈ R(p/s)×n has



Training Neural Networks Using Predictor-Corrector Gradient Descent 5

θ>t−p+is for its ith row vector. With p = 2 and s = 1, this begins to look quite a
bit like NAG algorithm which makes the update,

zt =(1− γt−1)θt + γt−1θt−1 with z0 = θ0

θt+1 =zt − ε∇L(zt)

for specifically chosen series {γt}∞t=0. With lt = 2 − γt−1 these methods are
identical. For continuously differentiable, smooth, convex loss functions NAG
can achieve a global convergence rate of O(1/t2) [17, 2]. A natural extension of
NAG incorporates a history of three points such that the update is

λt =

(
1 +

√
1 + 4λ2t−r

)/
2

zt =

{
λt−1

λt
θt + (λt−1)

λt
θt−r+1 − (λt−1−1)

λt
θt−r if t > r

θt otherwise

θt+1 =zt − ε∇L(zt)

(3)

where λ0, · · · , λr−1 = 0 and r ∈ Z>0.

Theorem 1. Let L be a convex, continuously differentiable and β-smooth func-
tion that admits a minimizer θ∗ ∈ Rn. Given an arbitrary initialization θ0 ∈ Rn,
for T > r and ε = 1/β, update scheme (3) satisfies,

T∑
t=T−r

b(t+ 1)/rc2 (L(θt+1)− L(θ∗)) ≤ 2β‖zr − θ∗‖22 .

When r = 1 this reduces to NAG. If in addition we assume strong convexity
of our objective function L the convergence rate becomes clearer.

Corollary 1. Let L be strongly convex with parameter m > 0, continuously
differentiable and β-smooth function that admits a minimizer θ∗ ∈ Rn. Given
an arbitrary initialization θ0 ∈ Rn, for T > r and ε = 1/β, update scheme (3)
satisfies,

T∑
t=T−r

b(t+ 1)/rc2 (L(θt+1)− L(θ∗)) ≤β
2‖θ0 − θ∗‖22

mr
.

The order of r in the denominator on each side of the above inequality is
the same. Hence, for m = β, mint∈{T−r,··· ,T}{L(θt+1)−L(θ∗)} converges at the
same rate as NAG. The proof of Theorem 1 and Corollary 1 can be found in
Appendix A [16].

In this well-behaved, theoretical environment, updating based on a linear
combination of older values maintains the convergence rate of NAG. However,
update method (3) is not practical for deep learning because it requires r× the
memory to save a history of network parameter values. Instead, making param-
eter predictions every pth iteration, as in update method (1), makes the addi-
tional memory requirement significantly more practical. In the setting of neural



6 A. Nesky and Q.F. Stout

network parameters, update method (1) has the capacity to outperform NAG.
Considering an evenly distributed history of values extending further in the past
allows one to de-noise trends. By incorporating a longer history, method (1) can
afford to make predictions further into the future while minimizing additional
memory requirements.

In comparison to NAG, employing update scheme (1) requires more memory
for the fit function variables At, but performs less work as snapshot increment
s and prediction increment p increase since fit function updates and parameter
predictions happen less often. One must strike a balance though: for large p
and large p/s one should be able to predict network parameters with more
confidence provided the chosen fit function is well suited for the trend, but large
p will exhibit delayed performance. Method (1) introduces a number of new
hyperparameters that can be tuned for a particular task.

5 Experimental Results

The goal of our approach is to decrease the number of training epochs needed for
a network to reach a particular testing accuracy. To test this, we ran experiments
on the SVHN [18], and CIFAR10 [11] datasets using Krizhevsky’s cuda-convnet
with 4 hidden layers [12]. This net does not produce state-of-art accuracies for
these datasets, but rather highlights the improvement seen by PCGD when com-
pared to SGD. We implement our work in Caffe, which provides this architecture
in their CIFAR10 “quick” example. We trained using batch size 100. Unless oth-
erwise specified, hyperparameters and initialization distributions provided by
Caffe’s “quick” architecture are left unchanged. All experiments are run on the
Bridges’ NVIDIA P100 GPUs through the Pittsburgh Supercomputing Center.
Training is done with batched gradient descent using the cross-entropy loss func-
tion on the softmax of the output layer.

In this paper we will only use linear fit functions to make parameter predic-
tions. That is, the fit function class is f(a, x) = a1 + a2x and the number of
fit function variables to solve for for each network parameter is c = 2. In this
case, a network with n parameters requires storing an additional 2n values. If
m is the maximum number of iterations we will train, p is the prediction incre-
ment and s is the snapshot increment, define g(d,u)(b, t) = b1 + b2 (t/p)

d
where

and b is chosen such that g(d,u)(b, 0) = p/s + u1 and g(d,u)(b,m) = p/s + u2
for some u1, u2 ∈ [0, 2p/s], u1 < u2. We chose our prediction length such that
lt = g(d,u)(b, t). This means that at iteration p, PCGD tries to predict what
the network weights will be at iteration p + su1 and sets the weights to those
predicted values. Similarly, at iteration m, PCGD would try to predict what
the network weights would be at iteration m + su2, but we do not make the
last, or last few, predictions because immediately after predicting there is often
a slight drop in accuracy that needs to be corrected by some gradient descent
steps. This slight drop after predicting could be minimized by less aggressive
predictions or better fit function choices, but we chose to simply leave out the
last few predictions. It is a good idea to have u1 small because parameter trends
can alter and we do not want to be over-influenced by start-up trends.1



Training Neural Networks Using Predictor-Corrector Gradient Descent 7

We will compare PCGD with NAG and SGD. We also consider a hybrid
method combining NAG and PCGD, abbreviated as NAG-PCGD. To combine
the two methods we nest NAG updates inside PCGD updates; the update scheme
for NAG-PCGD is written out explicitly in Appendix B [16]. When training
with PCGD and NAG-PCGD, we use prediction increment p = 150, snapshot
increment s = 15 for all of our experiments. When plotting accuracy results, we
will plot the maximum testing accuracy seen so far by that training iteration
against iterations. While training, testing accuracy is usually noisy, which can
obscure differences in performance when comparing different methods. Plotting
the maximum testing accuracy seen so far displays these differences more clearly.
There was no noticeable difference in the amount of noise seen in the testing
accuracy for the various methods in our experiments.

5.1 SVHN

We experimented on the SVHN dataset with Krizhevsky’s cuda-convnet [12].
The base learning rate was 0.001 and dropped by a factor of 10 after 4,000
iterations. Testing took place every 50 training iterations. When training with
PCGD and NAG-PCGD, we use prediction length lt = g(6,[5,10])(b, t).

Figure 1 (Left) plots the maximum accuracy seen so far against iterations
using standard SGD, NAG, PCGD and NAG-PCGD. Figure 1 (Right) plots the
slopes of the curves in Figure 1 (Left) versus iteration. We show the iterations of
steepest accuracy increase to highlight the difference in convergence rates of the
various methods. NAG and NAG-PCGD initially increase at nearly the same
rate which is ≈ 4× faster than PCGD and SGD. Around iteration 450 PCGD
leaves behind SGD, begins to catch up to NAG and eventually supersedes it.
NAG-PCGD tends to hug the top of all the other curves exhibiting the benefits
of both sub-methods. Confined to 2000 iterations, NAG-PCGD gives the best
results. At iterations 4000 when the learning rate decreases by a factor of 10,
there is another jump in accuracy where we can see the difference in convergence
rates again on a smaller scale.

After 9000 iterations, the network trained using traditional SGD achieves
a final accuracy of 91.96%, NAG has a final accuracy of 92.38%, PCGD has
a final accuracy of 92.42%, and NAG-PCGD has a final accuracy of 92.34%.
SGD hit a maximum testing accuracy of 92.06% at iteration 8600, NAG took
4700 iterations to reach this accuracy level, PCGD also took 4700 iterations
and NAG-PCGD took 5100 iterations. That is, PCGD reached SGD’s testing
maximum in just over half the number of training iterations that SGD took.

5.2 CIFAR10

We also trained Krizhevsky’s cuda-convnet on the CIFAR10 for 195,000 iter-
ations. The base learning rate was 0.001. We dropped the learning rate by a
factor of 10 after 60,000 iterations and again after 125,000 iterations. Testing
took place every 250 training iterations. We used lt = g(4,[5,10])(b, t) for our
prediction length at prediction intervals.



8 A. Nesky and Q.F. Stout

1000 2000 3000 4000

Iterations

65

70

75

80

85

90

95

A
cc

u
ra

cy SGD
NAG
PCGD
NAG-PCGD

0 200 400 600 800 1000

Iterations

0

0.1

0.2

0.3

0.4

0.5

A
cc

u
ra

cy
 S

lo
p

e

SGD
NAG
PCGD
NAG-PCGD

Fig. 1. (Left) Maximum accuracy results on the SVHN data set. Testing takes place
every 50 training iterations (Right) Slope of Left Figure versus iterations.

Figure 2 (Left) shows maximum accuracy results through training using SGD,
NAG, PCGD and NAG-PCGD. Again, we show only the iterations of steepest
accuracy increase. Here, the testing increment is larger than our prediction in-
crement which may hide any initial convergence advantage of NAG over PCGD.
Given more time to excel, PCGD shows performance advantages over NAG;
NAG does not even consistently outperform SGD per iteration. At any one
time, NAG is at most 3.18% more accurate than SGD, PCGD is at most 3.91%
more accurate than SGD, and NAG-PCGD is at most 6.49% more accurate than
SGD.

Figure 2 (Right) shows, for a given accuracy, the percent of SGD iterations
each method took to reach that accuracy. That is, if it took SGD x iterations
to reach a particular accuracy for the first time, and PCGD took y iterations
to reach that accuracy for the first time, then the value plotted for PCGD at
that accuracy is 100× y/x. This figure shows PCGD generally reaching particu-
lar accuracies before SGD and NAG-PCGD generally reaching accuracies before
PCGD. SGD took 114,000 iterations to become 81.7% accurate. Training with
NAG yielded 81.7% accuracy in 73% of the iterations required by SGD to reach
this accuracy, training with PCGD yielded 81.7% accuracy in 56% of the itera-
tions required by SGD and training with NAG-PCGD yielded 81.7% accuracy
in 50% of the iterations required by SGD. That is, PCGD took only 77% of the
iterations required by NAG to reach 81.7% accuracy.

For these values of s and p, using PCGD does not noticeably increase the
average iteration runtime when compared with SGD. For both methods, the av-
erage forward-backward pass took ≈ 46ms when using batch size 100 on Bridges’
NVIDIA P100 GPU; time was measured using caffe time benchmarks.

6 Conclusion

We have developed a general adaptation to gradient descent and considered the
impact in the case of training neural networks. Predictor-Corrector Gradient



Training Neural Networks Using Predictor-Corrector Gradient Descent 9

1 2 3 4 5 6

Iterations ×10
4

65

70

75

80
A

cc
u
ra

cy

SGD
NAG
PCGD
NAG-PCGD

55 60 65 70 75 80

Accuracy

60

80

100

120

140

P
er

ce
n
t 

o
f 

S
G

D
 I

te
ra

ti
o
n
s

SGD
NAG
PCGD
NAG-PCGD

Fig. 2. Results on the CIFAR10 data set. (Left) Maximum Accuracy versus iterations.
Testing takes place every 250 training iterations. (Right) Percent of SGD iterations
each method took to reach a particular accuracy.

Descent reduces the number of iterations required to learn by incorporating
traditional predictor-corrector inspired ideas into classic gradient descent.

We have shown that PCGD can significantly decreases the number of train-
ing epochs needed for a network to reach a particular testing accuracy when
compared to stochastic gradient descent. On both datasets considered, PCGD
reduced the number of required iterations to reach SGD maximum accuracy by
nearly one half. When two identical networks are allowed to train for the same
number of iterations, the networks trained using PCGD regularly outperforms
the network trained using SGD. We have also shown that PCGD can outperform
Nesterov’s Accelerated Gradient for more complex learning problems requiring
more training. By substantially reducing the number of iterations required to
reach a particular accuracy, PCGD can make training large networks more fea-
sible in cases where one can afford to increase the training storage by a small
constant multiple.

We have also considered the theoretical case of a strongly convex, contin-
uously differentiable and smooth objective function and showed that updating
parameters as a linear combination of historical values preserves the convergence
rate of NAG. Although our experimental environment is far from this hypotheti-
cal one, this theory holds true when using PCGD to train neural networks. After
an initial delay, we found PCGD can outperform NAG.

In this work, we only used linear fit functions and a single prediction length
for every network parameter. These choices worked well, but there is room for
additional exploration. One may see further improvement by using a dynamic
value for the prediction interval p.

Acknowledgments. This material is based upon work supported by the Na-
tional Science Foundation Graduate Research Fellowship under Grant No. DGE-
1256260. This work used the Extreme Science and Engineering Discovery En-
vironment, which is supported by National Science Foundation grant number
OCI-1053575. Specifically, it used the Bridges system, which is supported by
NSF award number ACI-1445606, at the Pittsburgh Supercomputing Center.



10 A. Nesky and Q.F. Stout

References

1. Andrychowicz, M., et al.: Learning to learn by gradient descent by gradient descent.
NIPS (2016)

2. Beck, A., et al.: A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. Siam Journal Imaging Sciences 2(1), 183–202 (2009)

3. Cassioli, A., et al.: An incremental least squares algorithm for large scale linear
classification. European Journal of Operational Research 224(3), 560–565 (2013)

4. Daniel, C., et al.: Learning step size controllers for robust neural network training.
AAAI (2016)

5. Dozat, T.: Incorporating Nesterov momentum into Adam. ICLR Workshop (2016)
6. Duchi, J., et al.: Adaptive subgradient methods for online learning and stochastic

optimization. JMLR (2011)
7. Heeger, D.J.: Theory of cortical function. Proceedings of the National Academy of

Sciences of the United States of America 114(8), 1773–1782 (2016)
8. Ho, Q., et al.: More effective distributed ml via a stale synchronous parallel pa-

rameter server. NIPS pp. 1223–1231 (2013)
9. Hratchian, H., et al.: Steepest descent reaction path integration using a first-order

predictor-corrector method. The Journal of Chemical Physics 133(22) (2010)
10. Kingma, D., et al.: Adam: A method for stochastic optimization. ICLR (2015)
11. Krizhevsky, A.: Learning multiple layers of features from tiny images. Tech. rep.,

Computer Science, University of Toronto (2009)
12. Krizhevsky, A.: cuda-convnet. Tech. rep., Computer Science, University of Toronto

(2012)
13. Krizhevsky, A., et al.: Imagenet classification with deep convolutional neural net-

works. NIPS pp. 1106–1114 (2012)
14. Luca, M.D., et al.: Optimal perceived timing: Integrating sensory information with

dynamically updated expectations. Scientific Reports 6(28563) (2016)
15. Neelakantan, A., et al.: Adding gradient noise improves learning for very deep

networks. arXiv:1511.06807 (2015)
16. Nesky, A., et al.: Training neural networks using predictor-corrector gradi-

ent descent: Appendix (2018), http://www-personal.umich.edu/~anesky/PCGD_
appendix.pdf

17. Nesterov, Y.: A method of solving a convex programming problem with conver-
gence rate o(1/sqr(k)). Soviet Mathematics Doklady 27, 372–376 (1983)

18. Netzer, Y., et al.: Reading digits in natural images with unsupervised feature learn-
ing. NIPS Workshop on Deep Learning and Unsupervised Feature Learning (2011)

19. Polyak, B.: Some methods of speeding up the convergence of iteration methods.
USSR Computational Mathematics and Mathematical Physics 4(5), 1–17 (1964)

20. Scieur, D., et al.: Regularized nonlinear acceleration. NIPS (2016)
21. Simonetto, A., et al.: Prediction-correction methods for time-varying convex opti-

mization. IEEE Asilomar Conference on Signals, Systems and Computers (2015)
22. Süli, E., et al.: An Introduction to Numerical Analysis pp. 325–329 (2003)
23. Tieleman, T., et al.: Lecture 6a - rmsprop. COURSERA: Neural Networks for

Machine Learning (2012)
24. Zeiler, M.D.: Adadelta: An adaptive learning rate method. arXiv:1212.5701 (2012)
25. Zhang, Y., et al.: Prediction-adaptation-correction recurrent neural networks for

low-resource language speech recognition. arXiv:1510.08985 (2015)
26. Zhang, Y., et al.: Speech recognition with prediction-adaptation-correction recur-

rent neural networks. IEEE ICASSP (2015)

View publication statsView publication stats

https://www.researchgate.net/publication/328008637

