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ABSTRACT

Recent work has shown that in a dataset of user ratings on items there exists a group of Core Users
who hold most of the information necessary for recommendation. This set of Core Users can be as
small as 20 percent of the users. Core Users can be used to make predictions for out-of-sample users
without much additional work. Since Core Users substantially shrink a ratings dataset without much
loss of information, they can be used to improve recommendation efficiency. We propose a method,
combining latent factor models, ensemble boosting and K-means clustering, to generate a small set of
Artificial Core Users (ACUs) from real Core User data. Our ACUs have dense rating information,
and improve the recommendation performance of real Core Users while remaining interpretable.

Keywords Recommender Systems · Core Users · Synthetic Data Generation

1 Introduction

Recommendations Systems improve the user experience by providing personalized, curated recommendations in a
large and complex information space. Collaborative Filtering methods exploit community data to uncover correlations
between users and items that can be used to make recommendations. Within collaborative filtering, latent factor models
are considered state-of-the-art; these models approximate highly redundant data with low rank matrix decompositions
(Hu et al., 2008; Koren, 2008; Koren et al., 2009; Shi et al., 2014; Aggarwal, 2016).

Unfortunately, many matrix factorizations methods are transductive and cannot be leveraged to make predictions for
users outside of the original training set (Aggarwal, 2016). Orthonormal matrix factors can be used more easily to make
out-of-sample predictions because the matrix factors capture geometric traits of the item and user spaces. However,
obtaining orthonormal factors can be expensive for large datasets.

The majority of research in recommender systems focuses on developing new collaborative filtering and hybrid methods,
which are often highly optimized for a specific application. There is a smaller body of research looking at identifying
the most useful users who carry most of the relevant information, and separating out those users as Core Users for
making recommendations. With a smaller core set of users, making out-of-sample predictions becomes a reasonable
task. Reducing a dataset size without much loss of information improves recommendation efficiency as well as storage
costs; numerous fields outside of recommender systems would benefit from this ability.

However, available Core User methods have limited representation ability, in that they are selected from existing
user data. In other words, the recommendation success of Core Users is bounded by quality of user data available.
Improving the recommendation accuracy of Core Users makes data abstraction more effective for applications in data
augmentation, bots mimicking population behavior, data mining, privacy, statistics and many more. In this paper, we
develop a method of generating Artificial Core Users (ACUs) that improves the recommendation accuracy of real Core
Users. We combine latent factor models, ensemble boosting and K-means clustering, to generate a small set of Artificial
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Core Users (ACUs) from real Core User data. Our ACUs incur a small amount of additional memory storage when
compared to real Core Users, but remain a reduction in memory storage compared to the original dataset. Artificial
Core Users improve the recommendation accuracy of real Core Users while remaining good centroids for the complete
recommendation dataset. Since ACUs act as good centroids for the complete dataset, ACUs blend in well with the real
dataset even though they are generated artificially. But unlike real Core Users, ACUs have complete ratings on all items,
providing more immediately interpretable information to scientists.

2 Related Work

The inductive matrix completion problem assumes that a ratings matrix is generated by applying feature vectors to
a known low-rank matrix (Jain and Dhillon, 2013; Zhang et al., 2018). This is relevant for making out-of-sample
recommendations if we assume that the latent factors contain some ground truth about the dataset that applies to
out-of-sample users. As mentioned above, latent factors produced by most methods are sadly transductive (Aggarwal,
2016). To combat this, some have worked on improving the efficiency of using a singular value decomposition in
recommender systems (Sarwar† et al., 2002).

Using clustering is one of the earliest attempts to decrease the number of users needed to make recommendations
(Aggarwal, 2016); rating predictions can be made using only information from the relevant cluster. Alternatively, Zeng
et al. (2014) study the relevance of different users and find that there exists an “information core" made up of some key
users. They found that the number of the Core Users is around 20% of the entire dataset, and that the recommendation
accuracy produced by only relying on the Core Users can reach 90 percent of that produced using every user in the
dataset. Zeng et al. (2014) use a generalized K-nearest Neighbor algorithm using various relevancy metrics to measure
‘nearness’. They ran experiments using degree-based, resource-based and similarity-based measures, to select their
Core Users; all of these measures are graphical in nature. Since this work a few other methods for selecting Core Users
have emerged. Li et al. (2016) use a long-tail-distribution-based measure to select their core uses. Cao and Kuang
(2016) introduced a new measure to identify Core Users based on trust relationships and interest similarity; this work
extends beyond graphical knowledge to include the semantic meaning of items. Kuang et al. (2017) use a combination
of the measures proposed in (Cao and Kuang, 2016) and (Li et al., 2016).

Recently, deep learning has made an appearance in recommender systems either in the form of integration models or
neural network models (Zhang et al., 2017). Integration models use neural networks to uncover features in auxiliary
information, like item descriptions (Wang et al., 2015, 2016), user profiles (Li et al., 2015) and knowledge bases (Zhang
et al., 2016). The uncovered features are then incorporated into a collaborative filtering framework to produce hybrid
recommendations. Neural network models on the other hand perform collaborative filtering directly via modeling the
interaction function between users and items (Sedhain et al., 2015; Strub et al., 2016; Wu et al., 2016; He et al., 2017;
Li et al., 2018). Using deep learning to make recommendations means the models are better equipped to recognize
nonlinear relationships in the data, but it also means that the models inherit all the training difficulties neural networks
face compounded by the difficulties of working with sparse data.

There is a small body of work that injects fake users into a recommendation system either for adversarial goals
(OMahony et al., 2002; Lam and Riedl, 2004; Christakopoulou and Banerjee, 2018) or utilitarian data augmentation
goals (Sarwar et al., 1998). Typically, the fake users are hand-coded, but (Christakopoulou and Banerjee, 2018) create
adversarial fake user profiles for a recommendation system using generative adversarial nets. Sarwar et al. (1998) on the
other hand used simple content filtering bots to generate a few users with dense ratings to improve the recommendations.
Tackling the new user, or cold start, problem is an issue in recommender systems that has brought about some work on
determining which item preferences and item features are most informative (Rashid et al., 2002, 2008; Seroussi et al.,
2011).

3 Methodology

We propose an offline technique to generate a small set of Artificial Core Users (ACUs) who’s dense ratings matrix
can be stored in condensed, low order form and used to make recommendations for out-of-sample users without much
additional work. This method uses latent factor models, ensemble boosting and K-means clustering to learn a small
group of artificial users who’s feature vectors capture correlations in the full dataset. This is a collaborative filtering
method that uses an existing sparse ratings matrix for a set of users and items.

The algorithm requires a set of training users represented by their ratings on a given set of items, which will be used to
update ACU ratings during learning. To measure the abstraction of the ACUs, we split the dataset into two mutually
exclusive sets: testing users and training users. Let R be an m× n sparse ratings matrix for m training users and n
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items.1 The ACU set size will be small relative to the size of the dataset; if s is the number of ACUs, we pick s such
that s� m. Let RACU denote the s× n ratings matrix for our ACUs. There are a number of ways one could initialize
the ACU ratings; in our work, ACU ratings will be initialized from Core User ratings. 2

The training algorithm is given in Algorithm 1. We trained row blocks of RACU together using batches of training users.
By learning ACUs in blocks, we incorporate boosting results and reduce our workload (Schapire, 1990; Breiman, 1998).
Algorithm 1 learns orthonormal decompositions for each block, leveraging the relevance of orthonormal decompositions
to out-of-sample relationships.3 Let R(b)

ACU denote the bth row block in RACU , and Ri denote the sparse ratings matrix
of the ith batch of training users. For simplicity, we assume that each block of RACU has the same number of rows and
similarly each training batch has the same number of users. We divide RACU into ζ equal sized row blocks such that
for b ∈ {0, . . . , ζ} R(b)

ACU is a
(
s
ζ × n

)
matrix. Let I denote the training batch index set such that for i ∈ I , Ri is a(

m
|I| × n

)
matrix. The variables α and β are learning rates, while the variables λ and γ are regularization coefficients.

Lines 15 and 20 in Algorithm 1 are derived from stochastic gradient descent algorithms. Line 18 updates the rows of
UACU as the s

ζ -means of m
|I| row vectors in Ui, which is described in detail in Algorithm 3. Embedding Algorithm

3 inside Algorithm 1 effectively trains the Artificial Core User user-space matrix, UACU , with Mini-Batch K-means
(Sculley, 2010). By incorporating Algorithm 3 into the learning process we expect to keep the resulting Artificial Core
User ratings matrix interpretable. That is, we expect the resulting Artificial Core User ratings to resemble that of real
users, but provide complete rating information in place of sparse data. As with any learning method, the amount of
regularization will be problem dependent; one may find that they can get away with λ, γ = 0 because lines 16 and
23-24 in Algorithm 1 have a regularizing effect. Lines 23-24 ensure that we don’t stray to far from an orthonormal
decomposition during learning. The while loop on line 10 takes a simplistic approach to the inductive matrix completion
problem given a set of features; this subprocess could likely be improved by existing work Jain and Dhillon (2013);
Zhang et al. (2018).

Algorithm 1 should be run offline to produce a set of Artificial Core Users. After which, one can use VACUSACU to
make faster recommendations for out-of-sample users. One may also be interested in using RACU as a condensed
version of their dataset.

This process resembles the way one would train a neural network and shares similarities with neural network models
(Sedhain et al., 2015; Strub et al., 2016; Wu et al., 2016; He et al., 2017; Li et al., 2018). Neural network models
generally use autoencoders. One layer Neural Collaborative Autoencoders with no output activation can be reformulated
to parallel matrix factorization (Li et al., 2018). Unlike Algorithm 1, existing these models are not concerned with
interpretability.

We evaluate our work using two metrics: item vectors testing error and sparse K-means error. To measure the item
vectors testing error, we use Algorithm 2 on an independent set of testing users. Algorithm 2 is a simplistic recommender
model that tries to predict missing user ratings. It decomposes the row blocks of RACU into orthogonal components
using a singular value decomposition. Then, for a set of real testing users, Algorithm 2 optimizes a set of unit vectors to
accompany the item vectors extracted from the decomposition of RACU - there is no new learning done in the item
vectors. In this way, Algorithm 2 evaluates the generality of the item vectors extracted from RACU and the potential
for high quality recommendations using a more elaborate learning model. It should be noted that, as a simplistic
recommender model, Algorithm 2 produces far from state-of-the-art recommendation results, but is useful for our
purposes of evaluating whether Artificial Core Users better capture the information in a recommendation dataset than
real Core Users do. To compute the sparse K-means error of RACU we make a few modifications to Algorithm 3
using a sparse first input matrix; this results in Algorithm 4. Algorithm 4 estimates how well the Artificial Core Users
represent an average collection of real users, RACU , by measuring how well the ACUs serve as centroids for our real
testing users.

1We did choose to normalize the variance and mean center the rows of R before proceeding; any adjustments made here can be
accounted for at recommendation time.

2As with any learning process, one can see a lot of improvement by selecting the right initialization. There is room to try
supplementing Core User ratings to improve the initialization of RACU .

3Computing the singular value decomposition of a large matrix is known to be time consuming, so learning in blocks saves quite
a bit of time.
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Algorithm 1 Generate_ACUs(R)
1: Let m be the number of users (row dimension of R) and n be the items (column dimension of R).
2: Initialize constants α, λ, β, γ. Initialize matrix RACU with dimensions s× n.
3: while not done do
4: for b = 0 to ζ do
5: Find orthonomal

(
s
ζ × k

)
matrix U (b)

ACU , orthonomal (n× k) matrix V (b)
ACU and diagonal (k × k) matrix

S
(b)
ACU such that U (b)

ACUS
(b)
ACU

(
V

(b)
ACU

)>
≈ R(b)

ACU and k ≤ min
(
s
ζ , n
)

.

6: Set V (b)
ACU = V

(b)
ACUS

(b)
ACU .

7: Select i randomly from training user batch index set I .
8: Initialize Ui.
9: j = 0.

10: while not done do
11: Compute sparse E = Rwe− Uwe

(
V

(b)
ACU

)>
for the specified entries of Ri. Other entries of E remain

zero.
12: if not done then
13: if j mod 2 = 0 then
14: Uwe← (1− βγ)Uwe+ βEV

(b)
ACU .

15: Normalize the columns of Ui.
16: else
17: if j mod 4 = 1 then
18: Means_Update

(
Ui, U

(b)
ACU

)
.

19: else
20: V

(b)
ACU ← (1− αλ)V (b)

ACU + αE>Ui.
21: end if
22: end if
23: R

(b)
ACU = U

(b)
ACU

(
V

(b)
ACU

)>
.

24: Find orthonomal matricies U
(b)
ACU , V

(b)
ACU and diagonal matrix S

(b)
ACU such that

U
(b)
ACUS

(b)
ACU

(
V

(b)
ACU

)>
≈ R(b)

ACU .

25: Set V (b)
ACU = V

(b)
ACUS

(b)
ACU .

26: j = j + 1.
27: end if
28: end while
29: end for
30: end while
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Algorithm 2 Item_Vectors_Testing_Error(R,RACU , ζ)
1: Let m be the number of users (row dimension of R), n be the items (column dimension of R and RACU ) and s be

the number of ACUs (row dimension of RACU ).
2: Initialize constants β, γ.
3: for b = 0 to ζ do
4: Find orthonomal

(
s
ζ × k

)
matrix U (b)

ACU , orthonomal (n× k) matrix V (b)
ACU and diagonal (k×k) matrix S(b)

ACU

such that U (b)
ACUS

(b)
ACU

(
V

(b)
ACU

)>
≈ R(b)

ACU and k ≤ min
(
s
ζ , n
)

.
5: end for
6: Let VACU =

[
V

(0)
ACU · · ·V

(ζ)
ACU

]
.

7: Aggregate S(b)
ACU for b = 0 to ζ along diagonal blocks to form the diagonal matrix SACU .

8: Set V (b)
ACU = V

(b)
ACUS

(b)
ACU .

9: Randomly select 80% of the nonzero entries in R as training entries and let the other 20% be the probe entries.
10: Define R(T ) as the sparse matrix made up of the training entries of R, and define R(P ) as the sparse matrix made

up of the probe entries of R such that R = R(T ) +R(P ).
11: Initialize U .
12: while not done do
13: Compute sparse E = R(T ) − UV >

ACU for the specified entries of R(T ). Other entries of E remain zero.
14: if not done then
15: U ← (1− βγ)U + βEVACU .
16: Normalize the columns of U .
17: end if
18: end while
19: Compute sparse E = R(P ) − UV >

ACU for the specified entries of R(P ).
20: Return the average absolute value of an entry in the E for the specified entries of R(P ).

Algorithm 3 Means_Update(A,B)
1: Initialize lists Li for we = 0 to the row dimension of B.
2: for r = 0 to the row dimension of A do
3: min_val =∞, min_index = 0.
4: for l = 0 to the row dimension of B do
5: if The distance between the rth row of A and the lth row of B is less than min_val then
6: min_val = this distance.
7: min_index = l.
8: end if
9: end for

10: Lmin_index.push(r).
11: end for
12: for l = 0 to the row dimension of B do
13: if list Ll is non-empty then
14: Set the lth row of B to the weighted average of the rows of A with indices stored in list Ll.
15: end if
16: end for
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Algorithm 4 Sparse_Means_Error(R,RACU )
1: avg_error = 0.
2: entry_count = 0.
3: for r = 0 to the row dimension of R do
4: min_val =∞, min_index = 0.
5: for l = 0 to the row dimension of RACU do
6: if The sparse distance between the rth row of R and the lth row of RACU is less than min_val for specified

entries of R then
7: min_val = this distance.
8: min_index = l.
9: end if

10: end for
11: for sparse entries in the rth row of R do
12: entry_count += 1.
13: temp_err = absolute difference between entry of the rth row of R and the corresponding entry in the

min_index row of RACU .
14: avg_error += (temp_err - avg_error) / entry_count.
15: end for
16: end for
17: Return avg_error.

4 Experimental Results

Our main objective in our experiments is comparability across methods rather than state-of-the-art performance. To
make the error on the probe entry sets comparable when testing with Algorithm 2, we aimed for similar errors on the
training set; to accomplish this goal we stopped the algorithm early when necessary.

All experiments are run on the Bridges’ NVIDIA P100 GPUs through the Pittsburgh Supercomputing Center. We ran
experiments using the MovieLens ml-20m dataset (Harper and Konstan, 2015). We normalized the variance and mean
centered the rows of the dataset ratings matrix before proceeding.4

We will compare our work for generating ACUs to existing methods for selecting Core Users from (Zeng et al., 2014;
Li et al., 2016; Cao and Kuang, 2016; Kuang et al., 2017). All of the methods for finding Core Users tested here are
derived from the K-nearest neighbor algorithm. These methods use some metric to determine the pair-wise similarity
between all existing users. Then, for each user, a list of the top-K most similar users is generated; from these combined
lists the Core Users are selected. In our Core User experiments, we collect the top-50 most similar users for each user.
Existing methods differ in their pair-wise similarity metric for users, and in their selection method within the compiled
top-K most similar user lists.

Recall that the cosine similarity of two vectors A and B is (A ·B)/(||A|| · ||B||). In all of our Core User experiments,
the pair-wise similarity between all existing users will be calculated in one of two ways: it will either be the cosine
similarity of the users’ ratings vectors, or it will be the cosine similarity of their boolean vectors where their boolean
vectors indicate only whether or not an item has been rated - not how well the user liked it.

Once the lists of the top-K most similar users to each user have been generated, one can either count the frequency of
a given user’s appearance in the top-K lists and take the most frequent users as the Core Users, or one can weight a
user’s appearance in a list by the inverse of the rank within the list that user appeared; the first way we will refer to as
frequency-based and the second way we will refer to as rank-based.

The final variant is whether or not to consider ‘hidden’ ratings in the cosine similarity of users. Without considering
hidden ratings, two users with no overlapping rated items would have zero similarity, but if the users have rated items
that are similar to one another this metric seems insufficient. Cao and Kuang (2016); Kuang et al. (2017) consider
semantic relationships between items to determine item similarity, here we will use the cosine similarity of the item
vectors where the item vectors are the rating data from all of the users for the given item.5 After computing the item
similarity, a missing rating may be substituted for with a weighted average of similar rated items, where the item
similarity can be used as the weight.

4Any adjustments made here can be accounted for at recommendation time.
5For each item, a list of the top-K most similar items is generated.

6



Generating Artificial Core Users for Interpretable Condensed Data A PREPRINT

4.1 MovieLens

The MovieLens ml-20m contains ratings for 138493 users on a set of 27278 movies (Harper and Konstan, 2015). This
section will discuss the performance of ACUs compared to existing Core User methods using the MovieLens ml-20m
dataset.

Table 1: Item Vectors Testing Error of 13000 Core Users collected with previously existing methods using the ml-20m
dataset (Harper and Konstan, 2015). We averaged the results of Algorithm 2 over 75 runs where each run was given
200 independent testing users and 2600 of the Core User Item Vectors, or ≈ 50% of the singular value mass. In each
run, we stopped Algorithm 2 when we reached a training error of 0.2.

Item Ratings Frequency- Probe
Similarity Used Based Entry

Used Set Error

yes yes yes 1.41
yes yes no 1.38
yes no yes 1.71
yes no no 1.67
no yes yes 1.45
no yes no 1.39
no no yes 1.73
no no no 1.70

Table 1 shows the performance of the various previously existing Core User selection methods when tested using the
item vectors testing error; each method was used to collect 13000 Core Users or a little under 10% of the original
MovieLens ml-20m dataset size. This is half the number of Core Users necessary to maintain recommendation accuracy
as claimed in (Zeng et al., 2014), but our aim is comparing the viability of these methods. To test each method we
used 13 row blocks, or 1000 users per block. We found that the performance is sensitive to the number of item vectors
retained as latent factors in the line 4 of Algorithm 2; we’ll discuss reasons for this a bit further down. We chose to
use 20% of the singular values, for a total of 2600 latent factors across all the blocks. To make the error on the probe
entry sets comparable across methods, we stopped running Algorithm 2 when the error on the training set had reached
0.2. The average absolute value of an entry in the ratings matrix, after centering, is ≈ 0.8; in other words, the error
when always predicting that a missing rating will be the mean, zero, is ≈ 0.8. Therefore, we ran Algorithm 2 for
various Core User methods until the error on the training set was ≈ 75% better than simply always guessing the mean.
The first column in Table 1 indicates whether or not hidden ratings taken from the item similarities were incorporated
into the calculation of the user similarities. The second column indicates whether the cosine similarity of the user
vectors is taken using the actual item ratings or just the item booleans. The third column indicates whether we used a
frequency-based or a rank-based approach to select the Core Users from the aggregated lists of the top-50 most similar
users to each other user. These results support previous literature suggesting that the best method for selecting Core
Users considers item similarity, compares ratings rather than booleans, and uses a rank-based selection approach.

For all methods used in Table 1, Algorithm 4 returns an error of ≈ 0.715; this error is 12% better than the error when
using only one centroid with the mean at the origin.

Figures 1 and 2 help to explain why the performance of Algorithm 2 is sensitive to the number of item vectors retained
as latent factors in the line 4. They compare the singular values of the 13000 Core User ratings matrix where the
Core Users are selected using the most competitive selection method: the method used in the second row of Table 1
to the singular values of an equivalently sparse matrix with random ratings as the non-zero values. Singular values
lay out the behavior of a matrix as a mapping between spaces, and the Marchenko-Pastur theorem (Marchenko and
Pastur, 1967), describes the asymptotic behavior of the singular values of large random matrices. Figures 1 and 2
show that the singular values of the Core User ratings matrix only significantly differ from those of a random matrix
in the lowest order singular values, which are, by convention, the largest singular values. In fact, beyond the first 1%
of singular values, the singular values of the Core User ratings matrix differ by at most 3.6 from those of a random
matrix, with larger order singular values contributing less influence over the behavior of the matrix. So, while the larger
order singular values of the Core User ratings matrix are non-zero, which is generally how we measure relevance, this
relationship suggests that the larger order singular vectors may not be informative and may actually make learning more
difficult by adding noise.
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We now move to discussing the results of learning ACUs using Algorithm 1. We initialized our ACUs are as Core Users
selected with the most competitive selection method: the method used in the second row of Table 1.

Figures 3 shows the item vectors testing error of 13000 ACUs over iterations, where an by an iteration of Algorithm 1
we are referring to one loop beginning on line 3. For each test, we averaged the results of Algorithm 2 over 20 runs
where each run was given 200 independent testing users and either 2600 or 650 ACU item vectors. As in our Core User
tests, in each run we stopped Algorithm 2 when we reached a training error of 0.2. In both testing and training we used
13 row blocks, or 1000 ACUs per block. Whether we use 2600 or 650 ACU item vectors we can see clear improvement
compared to the real Core User item vectors testing error, which is simply the y−intercept of these graphs. The best
item vectors testing error using 650, or 5% of the 13000 ACU item vectors is better than the item vectors testing error
of 27000 Core Users (20% of the users in the complete dataset) when using using 650 Core User item vectors. The best
item vectors testing error using 650 of the 13000 ACU item vectors is 0.987, while the item vectors testing error of
27000 Core Users when using using 650 Core User item vectors is 1.03.

Since the Core Users are stored in the same memory format as the original complete dataset, retaining only 20% of the
users as Core Users results in approximately a 80% memory reduction. The memory reduction of the Artificial Core
Users depends on the number of latent factors one decides to store. If one chooses to store only 5% of the resulting
latent factors, both user and item vectors, then this results in a 36% reduction in memory compared to the original data
set. If one chooses to store only 5% of the the item vectors then this results in a 57% reduction in memory compared to
the original data set. Additionally, the improvement in the item vectors testing error when using only 5% of the the item
vectors in Algorithm 2 compared to using 20% of the the item vectors as shown in Figures 3 suggests that these extra
vector may be more noisy than informative.
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Figure 3: Item Vectors Testing Error of 13000 ACUs over iterations using the ml-20m dataset (Harper and Konstan,
2015). For each test, we averaged the results of Algorithm 2 over 20 runs where each run was given 200 independent
testing users and (Left) 2600/(Right) 650 ACU item vectors. In each run, we stopped Algorithm 2 when we reached a
training error of 0.2.

Admittedly, Algorithm 1 learns relatively slowly. One loop beginning on line 3 can take up to 4 minutes to complete.
We stopped running Algorithm 1 after 180 iterations at which point we reached an item vectors testing error of 1.36
with 2600 ACU item vectors and 0.99 with 650 ACU item vectors, which outperforms the most competitive real Core
User methods. We also improved the sparse mean error slightly, so our ACUs are a bit better centroids for the testing
users than 13000 real Core Users are. Figure 4 shows the sparse mean error of our ACUs over iterations calculated with
Algorithm 4. The second improvement is marginal, but demonstrates that our ACUs are still resemble an average group
real users.
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Figure 4: Sparse Mean Error of 13000 ACUs using the ml-20m dataset (Harper and Konstan, 2015).

We were able to condense the information of 27000 sparse Core Users into 13000 ACUs or approximately half the
number of users. Since ACUs carry dense information, storing 5% of the 13000 ACUs latent factors takes up about
three times as much memory as 27000 sparse Core Users do, but 5% of the 13000 ACUs latent factors achieves a
smaller item vectors testing error than the same number of Core User latent vectors when using 27000 sparse Core
Users. We can see from Figure 5 that the largest singular values of the ACU ratings matrix, that had matched the largest
singular values of the ratings matrix with 13000 Core Users at initialization, has shifted toward the the largest singular
values of the ratings matrix with 27000 Core Users after 180 training iterations.
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Figure 5: 650 largest singular values of 13000 trained ACU ratings matrix using the ml-20m dataset (Harper and
Konstan, 2015), compared to the largest singular values of the ratings matrix of 27000 Core Users (20% of the users in
the complete dataset) and the largest singular values of the ratings matrix of 13000 Core Users (10% of the users in the
complete dataset).

5 Conclusion

We have shown that our Artificial Core Users improve the recommendation accuracy of real Core Users while mimicking
real user data. Because they act as good centroids for the complete dataset, they can be considered good representatives
for real user clusters. They can be stored efficiently, yet they have dense ratings information which is more immediately
interpretable than sparse data. We have removed the representation limits of Core Users and shown that an iterative
training process can improve the recommendation accuracy of Core Users producing data that continues to resemble
that of real users, conserve memory and improve recommendation efficiency.
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