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Abstract This paper gives algorithms for determining isotonic regressions for
weighted data at a set of points P in multidimensional space with the standard com-
ponentwise ordering. The approach is based on an order-preserving embedding of
P into a slightly larger directed acyclic graph (dag) G, where the transitive closure
of the ordering on P is represented by paths of length 2 in G. Algorithms are given
which, compared to previous results, improve the time by a factor of Θ̃(|P |) for the
L1, L2, and L∞ metrics. A yet faster algorithm is given for L1 isotonic regression
with unweighted data. L∞ isotonic regression is not unique, and algorithms are given
for finding L∞ regressions with desirable properties such as minimizing the number
of large regression errors.

Keywords Isotonic regression algorithm · Monotonic · Multidimensional ordering ·
Transitive closure

1 Introduction

A directed acyclic graph (dag) G = (V ,E) defines a partial order ≺ over the vertices,
where for u,v ∈ V , u ≺ v if and only if there is a path from u to v in G. A real-
valued function h on V is isotonic iff whenever u ≺ v then h(u) ≤ h(v), i.e., it is
a weakly order-preserving map of the dag into the real numbers. By weighted data
on G we mean a pair of real-valued functions (f,w) on G where w, the weights, is

Q.F. Stout (B)
Computer Science and Engineering, University of Michigan, Ann Arbor, MI 48109-2121, USA
e-mail: qstout@umich.edu

Author's personal copy



Algorithmica (2015) 71:450–470 451

nonnegative and f , the values, is arbitrary. Given weighted data (f,w) on G, an Lp

isotonic regression is an isotonic function g on V that minimizes
(∑

v∈V

w(v)
∣∣ f (v) − g(v)

∣∣p
)1/p

if 1 ≤ p < ∞

max
v∈V

w(v)
∣∣ f (v) − g(v)

∣∣ p = ∞

among all isotonic functions. The regression error is the value of this expression, and
g(v) is the regression value of v.

Isotonic regression is an important form of non-parametric regression, and has
been used in numerous settings. There is an extensive literature on statistical uses
of isotonic regression going back to the 1950’s [2, 3, 14, 32, 41]. It has also been
applied to optimization [4, 20, 23] and classification [8, 9, 39] problems. Some re-
cent applications involve very large data sets, including learning [19, 26, 29], ana-
lyzing data from microarrays [1] and general data mining [42]. While the earliest
algorithms appeared in the statistical literature, most of the advances in exact al-
gorithms have appeared in discrete mathematics, operations research, and computer
science forums [1, 20, 23, 36, 39], using techniques such as network flows, dynamic
programming, and parametric search.

We consider the case where V consists of points in d-dimensional space, d ≥ 2,
where point p = (p1, . . . , p2) precedes point q = (q1, . . . , qd) iff pi ≤ qi for all
1 ≤ i ≤ d . q is said to dominate p, and the ordering is known as domination order-
ing, matrix ordering, or dimensional ordering. Here it will be called multidimensional
ordering. While “multivariate isotonic regression” might seem appropriate, this term
already has a different definition [35]. Each dimension need only be a linearly or-
dered set. For example, the independent variables may be white blood cell count,
age, and tumor severity classification I < II < III, where the dependent variable is
probability of 5-year survival. Reversing the ordering on age and on tumor classifica-
tion, for elderly patients the isotonic assumption is that if any two of the independent
variables are held constant then an increase in the third will not decrease the survival
probability. There is no assumption about what happens if some increase and some
decrease.

Figure 1 is an example of isotonic regression on a set of points in arbitrary posi-
tion. There are regions where it is undefined and regions on which the regression is
constant. These constant regions are level sets, and for each its value is the Lp mean
of the weighted values of its points. For L2 this is the weighted average, for L1 it is
a weighted median, and for L∞ is the weighted average of maximal violators, dis-
cussed in Sect. 5. Given data values f , a pair of vertices u and v is a violating pair
iff u ≺ v and f (u) > f (v).

Multidimensional isotonic regression has long been studied [16] but researchers
have cited the difficulties of computing it as forcing them to use inferior substitutes
or to restrict to modest data sets [6, 10, 12, 13, 22, 27, 30, 33, 34, 40]. Faster ap-
proximations have been developed but their developers advised: “However, when the
program has to deal with four explanatory variables or more, because of the com-
plexity in computing the estimates, the use of an additive isotonic model is pro-
posed” [34]. The additive isotonic model uses a sum of 1-dimensional isotonic re-
gressions, greatly restricting the ability to represent isotonic functions. For example,
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Fig. 1 Level sets for
2-dimensional isotonic
regression

a sum of 1-dimensional regressions cannot adequately represent the simple function
z = x · y.

We present a systematic approach to the problem of finding isotonic regressions
for data at points P at arbitrary locations in multidimensional space. P is embedded
into a dag G = (P ∪ R,E) where |R|, |E| = Θ̃(|P |). (The “soft theta” notation, Θ̃ ,
omits poly-logarithmic factors, but the theorems give them explicitly as a function
of the dimension. It is sometimes read as “approximately theta”.) For any u,v ∈ P ,
u ≺ v in multidimensional ordering iff there is an r ∈ R such that (u, r), (r, v) ∈ E.
Further, r is unique. This forms a “rendezvous graph”, described in Sect. 3.1, and
a “condensed rendezvous graph” where one dimension has a simpler structure. In
Sect. 4 we show that an isotonic regression of a set of n points in d-dimensional
space can be determined in Θ̃(n2) time for the L1 metric, Θ̃(n3) for the L2 met-
ric, and Θ̃(n1.5) for the L1 metric with unweighted data. L∞ isotonic regression is
not unique, and in Sect. 5 various regression are examined, exhibiting a range of be-
haviors. This includes the pointwise minimum, pointwise maximum, and strict L∞
isotonic regression, i.e., the limit, as p → ∞, of Lp isotonic regression. All of these
L∞ regressions can be determined in Θ̃(n) time.

For d ≥ 3 all of our algorithms are a factor of Θ̃(n) faster than previous results, and
for L∞ they are also faster when d = 2. Some of the algorithms use the rendezvous
vertices to perform operations involving the transitive closure in Θ̃(n) time, instead
of the Θ(n2) that would occur if the transitive closure was used directly. For example,
the algorithm for strict L∞ regression for points in arbitrary position is Θ̃(n) faster
than the best previous result for points which formed a grid, despite the fact that the
latter only requires Θ(n) edges.

Section 6 has some final comments. The Appendix contains a proof of optimality
of the condensed rendezvous graph for 2-dimensional points.

2 Background

The complexity of determining the optimal isotonic regression is dependent on the
regression metric and the partially ordered set. For example, for a linear order it is
well-known that by using “pool adjacent violators” [2] one can determine the L2 iso-
tonic regression in Θ(n) time, and the L1 and L∞ isotonic regressions in Θ(n logn)

time. For an arbitrary dag with n vertices and m edges, for L1 Angelov, Harb, Kan-
nan, and Wang [1] gave an algorithm taking Θ(nm + n2 logn) time, and for L∞ the
fastest takes Θ(m logn) time [38]. For L∞ with unweighted data it has long been
known that it can be determined in Θ(m) time. For L2, the algorithm of Maxwell
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Fig. 2 Every point a ∈ A is
dominated by every point b ∈ B

and Muckstadt [23], with the modest correction by Spouge, Wan, and Wilber [36],
takes Θ(n4) time. This has recently been reduced to Θ(n2m + n3 logn) [39].

Figure 2 shows that multidimensional ordering on n points can result in Θ(n2)
edges. Since the running time of the algorithms for arbitrary dags is a function of m
as well as n, one way to determine an isotonic regression more quickly is to find an
equivalent dag with fewer edges. A natural way to do this is via transitive reduction.
The transitive reduction of a dag is the dag with the same vertex set but the minimum
subset of edges that preserves the ≺ ordering. However, in Fig. 2 the transitive reduc-
tion is the same as the transitive closure, namely, all edges of the form (a, b), a ∈ A
and b ∈ B .

A less obvious approach to minimizing edges is via embedding. Given dags
G = (V ,E) and G′ = (V ′,E′), an order-embedding of G into G′ is an injective map
π : V → V ′ such that, for all u,v ∈ V , u ≺ v in G iff π(u) ≺ π(v) in G′. In Fig. 2 a
single vertex c could have been added in the middle and then the ordering could be
represented via edges of the form (a, c) and (c, b), i.e., only n edges.

Given weighted data (f,w) on G and an order-embedding of G into G′, an exten-
sion of the data to G′ is a weighted function (f ′,w′) on G′ where

f ′(v),w′(v) =
{

f (u),w(u) if v = π(u)

y,0, y arbitrary otherwise

For any Lp metric, given an order-embedding of G into G′ and an extension of the
data from G to G′, an optimal isotonic regression f̂ ′ on G′ gives an optimal isotonic
regression f̂ on G, where f̂ (v) = f̂ ′(π(v)). For any embedding it will always be that
V ⊂ V ′ and π(v) = v for all v ∈ V , so we omit π from the notation.

3 Multidimensional Ordering

Other than linear orders, the most common orderings for which isotonic regressions
are determined are multidimensional orderings. Algorithms for isotonic regressions
on multidimensional orderings, without imposing restrictions such as additive mod-
els, have concentrated on 2 dimensions [5, 11, 12, 14, 25, 30, 31, 36]. For the L2
metric and 2-dimensional points, the fastest known algorithms take Θ(n2) time if
the points are in a grid [36] and Θ(n2 logn) time for points in general position [39],
while for L1 the times are Θ(n logn) and Θ(n log2 n), respectively [39]. These al-
gorithms, which are based on dynamic programming, are significantly faster than
merely utilizing the best algorithm for arbitrary dags.

There do not appear to be any algorithms giving exact results for dimensions >2
which don’t also apply to arbitrary dags. Applying algorithms for arbitrary dags
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Fig. 3 Rendezvous tree, n = 7

to points in general position results in Θ(n3), Θ(n4), and Θ(n2) time for L1, L2,
and L∞, respectively. Here algorithms will be given which reduce the time by a fac-
tor of Θ̃(n), based on an order embedding into a sparse graph described below.

3.1 Rendezvous Dags

Ordering on a set V of points will be represented by an order-embedding into dag
G = (V ∪ R,E) where |R|, |E| = Θ̃(|V |). G is bipartite, with all edges having one
endpoint in V and one in R. For u,v ∈ V , u ≺ v in multidimensional ordering iff
there is an x ∈ R such that (u, x), (x, v) ∈ E. Further, x is unique.

Since multidimensional ordering and isotonic regression only depend on relative
coordinates, for each dimension i, 1 ≤ i ≤ d , if the points have ni different coordi-
nates in that dimension then we assume they are 0, . . . , ni − 1. We call these normal-
ized coordinates. Points can be converted to normalized coordinates in Θ(dn logn)

time, and in the same time can be sorted into lexical order. Lexical ordering respects
multidimensional ordering. From now on we assume that the points are in normalized
coordinates and in order.

Given an integer n ≥ 1, let # = +log2 n, and let j# · · · j2j1 be the binary representa-
tion of j ∈ {0 . . . n−1}. Define sets of real values r↑(j) and r↓(j) in { 1

2 , 3
2 . . . , n− 3

2 }
as follows:

r↑(j) =
{
j# · · · jk+10111 + 1

2
: 1 ≤ k ≤ #, jk = 0, j# · · · jk+10111 + 1

2
< n − 1

}

r↓(j) =
{
j# · · · jk+10111 + 1

2
: 1 ≤ k ≤ #, jk = 1

}

E.g., if j = 11010 then r↑(j) = {11010.1,11011.1} and r↓(j) = {11001.1,10111.1,

01111.1}. Figure 3 shows that r↑ and r↓ have a simple interpretation: for integers
a < b their least common ancestor s is the unique point in r↑(a)∩r↓(b). We call s the
rendezvous point of a and b. Technically r↑ and r↓ should include n as a parameter,
but since it will always be clear from the context it is omitted.

Rendezvous points provide an order embedding of the linear ordering on V =
{0, . . . , k − 1} into the bipartite dag G = (V ∪ R,E) where

R =
{

1
2
, . . . , k − 3

2

}

E =
k−1⋃

i=0

({
(i, x) : x ∈ r↑(i)

}
∪

{
(y, i) : y ∈ r↓(i)

})
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Fig. 4 Rendezvous vertices in 2
dimensions

For i, j ∈ V , i < j iff there is an s ∈ R such that (i, s), (s, j) ∈ E, and if i 0< j then
there is no path from i to j in G. Thus it is an order embedding. The embedding is not
very efficient, in that |E| = Θ(k logk), but it naturally extends to higher dimensions.

Let V be a set of n points in d-dimensional space. For a point x = (x1, . . . , xd) ∈ V
let R↑(x), R↓(x) be the sets of d-dimensional points:

R↑(x) =
{
(y1, . . . , yd) : yi ∈ r↑(xi) ∪ {xi}, i = 1..d

}
\ {x}

R↓(x) =
{
(y1, . . . , yd) : yi ∈ r↓(xi) ∪ {xi}, i = 1..d

}
\ {x}

Since different points in d ≥ 2 dimensional space may have the same coordinates
in some dimensions, xi is added to r↑(xi) and r↓(xi). However, using this at all
dimensions would give x, so it is removed from R↑(x) and R↓(x). Just as for the
linear order this is an order embedding, and for u,v ∈ V , u ≺ v in multidimensional
ordering iff there is a unique s ∈ R↑(u) ∩ R↓(v). Figure 4 illustrates rendezvous
points, many of which could be pruned if desired. E.g., the point (010.1, 01.1) has
only an incoming edge from C, while (000.1, 10) has only an outgoing edge to B .

The rendezvous dag of V , R(V ), is (V ∪ R,E), where

R =
⋃

v∈V

(
R↑(v) ∪ R↓(v)

)

E =
⋃

v∈V

({
(v, x) : x ∈ R↑(v)

}
∪

{
(x, v) : x ∈ R↓(v)

})

Since |R↑(v)|, |R↓(v)| = Θ(logd n), |R|, |E| = Θ(n logd n). However, there are
Θ(nd) potential rendezvous points, so to efficiently construct R(V ) one needs to
generate only the relevant ones.

Proposition 1 Given a set V of n points in d-dimensional space, d ≥ 1, R(V ) can
be constructed in Θ(n logd n) time, where the implied constants depend upon d .

Proof To construct R(V ), the fundamental difficulty is that to add an edge (v, r) for
some v ∈ V and rendezvous vertex r there is no canonical list of the rendezvous ver-
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Fig. 5 2-d Rendezvous graph for W = (0,0), X = (1,1), Y = (2,0), Z = (2,1)

tices. One could use a d-dimensional array of all possibilities, but that could be of
size Θ(nd). This could be improved through hashing, but that would only give an al-
gorithm with expected time guarantees. Instead, a simple multidimensional structure,
the scaffolding, S , is used to help create R(V ). The top level of S is the rendezvous
tree corresponding to dimension 1, where the nodes point to rendezvous trees corre-
sponding to dimension 2, etc., until dimension d is reached. Each node of the ren-
dezvous trees in the d th dimension points to a vertex of V ∪ R, where each vertex
has linked lists for incoming and outgoing edges. At each level the trees are as in
Fig. 3. If all trees at all levels were complete then the base would correspond to the
d-dimensional array mentioned above. The scaffolding is the part of this tree needed
to reach the potential rendezvous vertices that are actually used. The scaffolding is
used to index vertices but is not part of R(V ) and can be deleted once R(V ) has been
created.

Initially S is empty. Whenever vertices are added to a tree at some dimension,
the entire path to that vertex is created (an initial segment, and perhaps the entire
path, may already exist). I.e., we are not building a binary search tree by the usual
insertion process for maintaining a balanced binary search tree, but rather building
the rendezvous tree, with predetermined shape, for that dimension. For v ∈ V , first v

is inserted, then R↑(v) and R↓(v). The vertices in R↑(v), and similarly R↓(v), are
added in a depth-first order, where the first dimension recursively calls the second
dimension, etc. At the d th dimension all of v’s rendezvous points lie along a single
path, and hence it takes O(logn) time to create them (if they haven’t yet been created
by some other vertex) and add the edges. Since O(logd−1 n) trees are reached in
the d th dimension, the total time is as claimed. Note that if each of v’s edges to
rendezvous points had been inserted one at a time by starting at the top then the time
would have increased by a logarithmic factor. !

Figure 5 is an example of the scaffolding that would be constructed for the points
W = (0,0), X = (1,1), Y = (2,0), Z = (2,1) in [0..2] × [0..1]. The top tree corre-
sponds to the first dimension, and at each of its vertices the dotted vertical lines indi-
cate the tree corresponding the second dimension. Each vertex of the lower tree cre-
ates a vertex of R. The vertices of R are a subset of [0,0.5,1,1.5,2,2.5]×[0,0.5,1].

One can reduce the size of the dag and the time to construct it by observing
that the construction is inefficient for 1-dimensional space. E.g., the rendezvous dag
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for {0,1, . . . ,7} has edges from {0,1,2,3} to rendezvous vertex 3.5, from 3.5 to
{4,5,6,7}, from {0,1} to 1.5, etc., for a total of 24 edges. A more efficient represen-
tation would just have edges from 0 to 1, 1 to 2, etc. We use this linearization of one
dimension in a condensed version of the rendezvous graph.

For a point x ∈ V , where x = (x1, . . . , xd), let R
↑
c (x) and R

↓
c (x) be sets of

d-dimensional points where

R↑
c (x) =

{
(x1, y2, . . . , yd) : yi ∈ r↑(xi) ∪ {xi}, i = 2..d

}
\ {x}

R↓
c (x) =

{
(x1, y2, . . . , yd) : yi ∈ r↓(xi) ∪ {xi}, i = 2..d

}
\ {x}

The condensed rendezvous dag of V , Rc(V ), is (V ∪ Rc,Ec), where

Rc =
⋃

v∈V

(
R↑

c (v) ∪ R↓
c (v)

)

Ec = E′ ∪
⋃

v∈V

({
(v, x) : x ∈ R↑

c (v)
}

∪
{
(x, v) : x ∈ R↓

c (v)
})

and E′ is edges of the form (p, q) where p = (p1, . . . , pd), q = (q1, . . . , qd), pi = qi

for 2 ≤ i ≤ d , p1 < q1, and there is no r = (r1,p2, . . . , pd) in V ∪ Rc such that
p1 < r1 < q1. That is, for all points agreeing on their last d − 1 coordinates, E′ puts
them in linear order by their first coordinate. For two such points u and v, with u ≺ v,
it is no longer true that there is a rendezvous vertex x such that (u, x) and (x, v) are
edges in Rc(V ).

Clearly V is order embedded in Rc(V ) and |Ec|, |Rc| = Θ(n logd−1 n). Figure 6
shows the condensed version of the dag in Fig. 4.

Proposition 2 Given a set V of n points in d-dimensional space with multidimen-
sional ordering, d ≥ 2, in Θ(n logd−1 n) time one can construct Rc(V ), where the
implied constants depend upon d .

Proof A (d − 1)-dimensional scaffolding structure Sc will be constructed, similar
to the scaffolding used in R(V ). Sc corresponds to dimensions 2 . . . d . Instead of
pointing to a vertex, a node in the d th dimension points to a linked list of all vertices
with the same final d − 1 coordinates. Points in V are processed in lexical order.
When x = (x1, . . . , xd) ∈ V is processed, as before it is inserted and then R

↑
c (x) and

R
↓
c (x) are inserted using depth-first recursion. For each y ∈ R

↑
c (x) a vertex will be

added to the tail of the list at the node of Sc representing y, with an edge from x to
this new vertex, and for y ∈ R

↓
c (x) the new tail vertex has an edge to x. !

Even in Rc many of the rendezvous vertices may be unnecessary, raising the ques-
tion of whether the results in Proposition 2 are optimal in terms of the number of
edges required. In the Appendix it is shown that they are optimal for points in 2
dimensions, but the optimality for d ≥ 3 is unknown.

R and Rc have similarities with the “Manhattan networks” in Gudmundsson
et al. [15]. These undirected graphs have their edges parallel to the axes, as does
Rc for 2-dimensional points. For 2-dimensional points they give networks with a di-
ameter vs. size tradeoff, with the smallest diameter being 6 using Θ(n log2 n) nodes
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Fig. 6 Condensed rendezvous
dag corresponding to Fig. 4

and edges, i.e., the same size (in O-notation) as R. (The diameter is the maximum
length, over all pairs of points, of the shortest path between them.) For d-dimensional
points the diameter is Ω(d) since each edge traverses a single dimension. Multidi-
mensional divide-and-conquer is used to create the networks. In contrast, R treats all
dimensions symmetrically (or all but the first, for Rc) and, independent of dimension,
when u ≺ v there is a path of length 2 from u to v.

4 L1 and L2 Isotonic Regression

Recall that for d = 2 there are dynamic programming algorithms which take
Θ(n log2 n) and Θ(n2 logn) time for L1 and L2, respectively [39], and Θ(n logn)

[39] and Θ(n2) [36] time if they form a grid. When d ≥ 3, for a set of n d-dimensional
points, applying the algorithms for arbitrary dags results in Θ(n3) time for L1 [1],
Θ(n4) [23] for L2 and Θ(n2.5 logn) for L1 on unweighted data [39]. If the points are
in a grid the times are Θ(n2 logn), Θ(n3 logn), and Θ(n2.5 logn), respectively. By
using rendezvous graphs one can significantly reduce the times for points in general
position, and for L1 with unweighted data can also reduce the time for points in a
grid. Theorem 3 was also noted in [39] (citing this paper). Rc is used in a straight-
forward manner in Theorem 3, while the structure of R plays an important role in
Theorem 4.

Theorem 3 Given a set V of n points in d-dimensional space with multidimensional
ordering, d ≥ 3, and given weighted data (f,w) on V , an isotonic regression of
(f,w) can be found in

• Θ(n2 logd n) time for the L1 metric, and
• Θ(n3 logd n) time for the L2 metric,

where the implied constants depend upon d .

Proof If N and M represent the number of vertices and edges in Rc(V ), then the
result for L1 comes from using the algorithm of Angelov et al. [1]. It has a number
of stages, each taking Θ(M +N logN) time. The number of stages is linear in n, not
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N , since the flow problem being solved at each stage is only needed for vertices with
nonzero weights. This yields the time claimed for L1.

For L2, the partitioning approach in [39] solves a binary L1 isotonic regression
problem at each stage, using the algorithm just described. The number of stages of
the L2 algorithm is linear in the number of vertices, and here too only the vertices of
nonzero weight are relevant. !

When the data is unweighted a different approach can be used for L1. The algo-
rithm uses stages of isotonic regressions on binary functions. Let h be a {0,1}-valued
function on V . Since the regression values for L1 isotonic regression can always be
chosen to be data values, an L1 regression of h can itself be {0,1}-valued. The viola-
tion graph is (V ,E′), where there is an edge (u, v) ∈ E′ iff u ≺ v and h(u) > h(v),
i.e., iff they are a violating pair. The violation graph can be constructed by pairwise
comparisons in Θ(n2) time, and might have Θ(n2) edges. Using this the approach
below would take Θ(n2 logn) time. However, there are fewer rendezvous vertices,
and they allow one to perform operations involving violating pairs more quickly than
can be done on the violation graph itself.

Theorem 4 Given a set V of n points in d-dimensional space with multidimensional
ordering, d ≥ 3, and given unweighted data f on V , an L1 isotonic regression can
be found in Θ(n1.5 logd+1 n) time, where the implied constants depend upon d .

Proof A sequence of partitioning stages will be used. For data values a < b, where
no data values are in (a, b), let f ′ be the function which is a at v ∈ V if f (v) ≤ a,
and b otherwise. Let g be an {a, b}-valued L1 isotonic regression of f ′ and let Va =
{v ∈ V : g(v) = a} and Vb = {v ∈ V : g(v) = b}. In [39] it is proven that an isotonic
regression of f on V can be formed by an isotonic regression of f on Va where all
regression values are data values ≤ a, and an isotonic regression of f on Vb where
all regression values are data values ≥ b. By choosing a, b so that at least one is a
median data value, after Θ(logn) partitioning stages an isotonic regression has been
determined. Lemma 6 shows that the binary isotonic regression at each stage can be
completed in Θ(n1.5 logd n) time. !

The fact that an L1 isotonic regression of a {a, b}-valued function can be chosen
to be {a, b}-valued greatly simplifies its structure when the data is unweighted.

Lemma 5 Given a dag G = (V ,E) and an unweighted {0,1}-valued function h

on V , let C be a minimum cardinality vertex cover of the violation graph. Then the
function ĥ given by

ĥ(v) =
{

h(v) if v ∈ V \ C

1 − h(v) otherwise

is an L1 isotonic regression of h.

Proof For any isotonic function g on V , the set of vertices where g 0= h must be a
vertex cover of the violation graph. Let C be a minimal cardinality vertex cover. The
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size of C sets a lower bound on the L1 regression error, and the L1 regression error
of ĥ is |C|.

To show that ĥ is isotonic we need only show that no new violating pairs were
introduced. Let Vi = {v ∈ V : h(v) = i} for i ∈ {0,1}. There are two cases, u,v ∈
V0, u ≺ v,u ∈ C but v 0∈ C, or u,v ∈ V1, u ≺ v, v ∈ C but u 0∈ C. Their proofs are
similar, so assume the former holds. Let x ≺ u with x ∈ V1, i.e., they are a violating
pair. Because u ≺ v, then x, v is also a violating pair. Since we assumed that v 0∈ C,
it must be that x ∈ C. However, since this is true for all x for which x, u is violating,
then C \ {u} is also a vertex cover, contradicting the minimality of C. !

Lemma 6 Given a set V of n points in d-dimensional space with multidimen-
sional ordering, d ≥ 2, and given an unweighted {0,1}-valued function f on V ,
an L1 isotonic regression of f , with all regression values in {0,1}, can be found
in Θ(n1.5 logd n) time, where the implied constants depend on d .

Proof A concise representation of the violation graph can be easily constructed
from R(V ). Let Vi = {v ∈ V : f (v) = i}, i ∈ {0,1}. Let R′ be R(V ) minus the
edges in R↑(v) if v ∈ V0, and minus the edges in R↓(v) if v ∈ V1. For u ≺ v ∈ V ,
there is a path of length 2 from u to v in R′ iff they are a violating pair.

Lemma 5 shows that to find an isotonic regression it suffices to find a minimum
cardinality vertex cover of the violation graph. It is well known that such a cover can
be obtained in linear time from a maximum matching of the violation graph. Since the
violation graph is bipartite and unweighted, the Hopcroft-Karp algorithm can be used
to find a maximum matching in Θ(|E|√n) time, where E is the set of edges. We use
R′ to reduce the number of edges required. Without it, the time would be Θ(n2.5).

The Hopcroft-Karp algorithm has O(
√

n) stages, where at each stage a maximal
set of disjoint augmenting paths of minimal length is found. Each stage involves a
breadth-first search followed by edge-disjoint depth-first searches. The time of each
stage is linear in the number of edges, assuming all isolated vertices have first been
removed. It is straightforward to implement each stage using R′ where a path of
length # used in the violation graph is represented by a path of length 2# in R′. E.g.,
there might be vertices A = {a1, . . . , aj } ∈ V1 and B = {bi, . . . , bk} ∈ V0 where all
A, B pairs are violators and share the same rendezvous vertex r . However, in the
Hopcroft-Karp algorithm one never uses more than min{j, k} edges from A to B ,
and any subset of edges of this size can be represented by paths through r in R′.
It remains true that the time is linear in the number of edges, which is Θ(n logd n).
Thus the total time is as claimed. !

5 L∞ Isotonic Regression

Isotonic regression using the L∞ metric is not unique. For example, with unweighted
data 5, −5, 4 on {1,2,3}, an L∞ isotonic regression must be 0 at 1 and 2, with a
regression error of 5. The regression value at 3 can be anything in the range [0,9]
and maintain the isotonic property without increasing the error. This flexibility can
be both a blessing and a curse. In general the algorithms are much faster than those
for L1 and L2, but the regressions produced may have some undesirable properties.
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We slightly extend the definition of violating pairs to weakly violating pairs, i.e.,
pairs of vertices u, v where u 3 v and f (u) ≥ f (v). Note that a single vertex is a
weakly violating pair. For vertices u, v let wmean(f,w : u,v) be the weighted aver-
age (w(u)f (u)+w(v)f (v))/(w(u)+w(v)). Using this as their regression value has
equal error at both vertices, denoted mean_err(f,w : u,v). Using wmean(f,w : u,v)

as the regression value at u and v minimizes their L∞ regression error if they
are violating since if the regression value at u has smaller error then it must be
greater than wmean(f,w : u,v). The isotonic constraint forces the regression value
at v to be at least as large as that at u, which increases the error at v. Similarly,
the error at v cannot be reduced. More generally, for a level set L ⊂ V , its L∞
mean is wmean(f,w : u′, v′), where u′, v′ maximize mean_err(f,w : u,v) among
all u,v ∈ L.

For dag G and data (f,w), let Max denote the pointwise maximum of all L∞
isotonic regressions. It is straightforward to show that Max is an L∞ isotonic regres-
sion, as is Min, which is the pointwise minimum. The fastest algorithm known for L∞
isotonic regression on arbitrary dags produces Max or Min in Θ(m logn) time [38].
It is a slight modification of the approach used in [20], based on a feasibility test
to determine if there is a regression with error ε, using parametric search to narrow
down the range of ε. Parametric search is impractical, and fortunately is not needed
to obtain the results given here. If any L∞ isotonic regression can be found in time
Ω(m), then Max and Min can be found in the same time by using the regression error
of the first in a feasibility test. The feasibility test is essentially based on producing
Max (or Min, at the user’s discretion).

Since the 1970’s the most commonly studied L∞ isotonic regression is Basic [41].
For data (f,w) on dag G, Basic(f,w) at vertex x is wmean(f,w : u′, v′), where u′,
v′ maximize mean_err(f,w : u,v) among all weakly violating pairs u, v such that
u 3 x 3 v. A related L∞ isotonic regression algorithm is Prefix [38]. Let

pre(v) = max
{
wmean(f,w : u,v) : u 3 v

}

Prefix(f,w)(u) = min
{
pre(v) : u 3 v

}

For unweighted data, Basic at v simplifies to
(
max{f (u) : u 3 v} + min{f (u) :

u 4 v}
)
/2, which can be computed in Θ(m) time via topological sort. Prefix can

similarly be computed in the same time. For weighted data, for arbitrary dags the
fastest known approach for computing either is to first determine the transitive clo-
sure. Given the transitive closure, Prefix can easily be determined in Θ(n2) time since
pre(v) only involves predecessors of v. The combination of predecessors and succes-
sors used in Basic makes it more complicated, though it too can be determined in
Θ(n2) time by using an approach described in [24].

The strict L∞ isotonic regression, Strict, is the limit, as p → ∞, of Lp isotonic
regression. It has been called the “best best” L∞ isotonic regression [21], and the
limit process is known as the “Polya algorithm” [28]. For arbitrary dags, given the
transitive closure Strict can be determined in Θ(n2 logn) time [37].

We call the above L∞ isotonic regression mappings since they map a dag G and
weighted data (f,w) to an isotonic function on G. These mappings differ signif-
icantly in their mathematical properties. For example, a mapping M is monotonic
iff for every dag G and weight function w, if pointwise f1 ≤ f2, then pointwise
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M(f1,w) ≤ M(f2,w). Prefix and Basic are monotonic, as can be easily seen from
their construction, and Strict inherits monotonicity since all Lp isotonic regressions
are monotonic for 1 < p < ∞. However, Min is not monotonic as can be seen by
considering the unweighted functions (0,0,0) and (0,2,0), for which Min is (0,0,0)
and (−1,1,1), respectively. Similarly, Max is not monotonic. Also, Prefix, Basic and
Strict always have regression values that are within the range of data values, while
the above example shows that this need not be true for Min, and similarly for Max. In
some applications this would not be acceptable.

Another aspect concerns large regression errors. Strict minimizes the number of
large errors [37], in that, for any dag G and data (f,w), if g 0= Strict(f,w) is an
isotonic function on G, then there is a C > 0 such that g has more vertices with
regression error ≥ C than does Strict(f,w), and for any D > C, g and Strict(f,w)
have the same number of vertices with regression error ≥ D (there might be a d < C
where g has fewer vertices with regression error ≥ d than does Strict, but the empha-
sis is on large errors). For example, for the function with values 3, 1, 2.5 and weights
2, 2, 1, Strict is 2, 2, 2.5, as are all Lp isotonic regressions for 1 < p < ∞, but all of
the other L∞ regression mappings considered here have a nonzero error for the third
value. Prefix and Basic have a weaker property that is straightforward to prove [38]:
let C be the regression error of L∞ isotonic regression. If Prefix has regression error
C at vertex v then all L∞ regressions have the same value at v. The same is true of
Basic. Min and Max have far different behavior, in that at any v, one or both of them
has the largest regression error at v among all L∞ isotonic regressions.

The best previous results are [20, 37, 38]:

• d = 1: Θ(n logn) for all of the regressions mentioned above, and Θ(n) for Prefix
and Basic if the data is unweighted;

• d ≥ 2, points form a grid: Min, Max: Θ(n logn); Prefix, Basic: Θ(n2); Strict:
Θ(n2 logn); and Θ(n) for Prefix and Basic if the data is unweighted;

• d ≥ 2, points in general position: Prefix, Basic: Θ(n2); Stict, Min, Max: Θ(n2 logn);

where the implied constants depend upon d . The results for d ≥ 2 are based on using
the best algorithm for arbitrary dags, though, as noted above, the times for Min and
Max can be reduced to that of Prefix. Note that for weighted data and d ≥ 2, for Prefix,
Basic and Strict there is no difference between points in a grid and points in arbitrary
position, and for points in general position restricting to unweighted data does not
speed up Prefix nor Basic. Also, unlike L1 and L2, the previous results for d = 2 are
no better than those for d ≥ 3.

For points in general position, using rendezvous graphs we will show:

Theorem 7 Given a set V of n points in d-dimensional space with multidimensional
ordering, d ≥ 2, and given weighted data (f,w) on V , an L∞ isotonic regression
can be found in

(a) Θ(n logd−1 n) time for Basic and Prefix (and hence Min and Max) if the data is
unweighted,

(b) Θ(n logd n) time for Prefix (and hence Max and Min),
(c) Θ(n logd+1 n) time for Strict,

where the implied constants depend upon d .
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Fig. 7 Error envelope

The proof will be in parts. Part (a) comes from creating Rc(V ) and then using
the fastest algorithm for arbitrary dags, (b) is proven in Sect. 5.1, and (c) is proven
in Sect. 5.2. Basic can also be determined in Θ(n logd n) time, but the algorithm is
more complicated than that for Prefix and will be omitted.

5.1 Prefix L∞ Isotonic Regression

There is a geometric approach to computing the pre function used in Prefix. On a
graph of regression error as a function of regression value, the ray with endpoint
(f (v),0) and slope w(v) gives the regression error at v of using a regression value
≥f (v). For any u ≺ v, the ray with endpoint (f (u),0) and slope −w(u) gives the re-
gression error at u of using a regression value ≤f (u). If u 3 v are a weakly violating
pair then the intersection of these rays gives their weighted mean and corresponding
error. The set of rays corresponding to all of v’s predecessors is as in Fig. 7. The line
segments corresponding to the maximum error at each regression value is an upper
envelope, which will be called a decreasing error envelope. The intersection of the
increasing ray corresponding to v with the decreasing error envelope corresponding
to its predecessors gives the value of pre(v) and the regression error at v of using this
value. By storing the error envelope in a balanced tree ordered by slope, it is easy
to insert a ray, and determine the intersection of a ray with the envelope, in O(log t)

time per operation, where t is the number of segments in the envelope.

Proof of Theorem 7(b) The time is dominated by the time to compute pre since once
it has been computed a reverse topological sort of Rc(V ) yields Prefix. The moti-
vation behind Rc(V ) will be used, but an order embedding will not be constructed.
Instead, a sweep is made through the first dimension, keeping a (d − 1)-dimensional
scaffolding T corresponding to the union of all rendezvous vertices encountered so
far, merging vertices with the same final d − 1 coordinates. In Rc(V ) a leaf of T

pointed to a linked list of all vertices with the corresponding final d − 1 coordinates,
but now it has an error envelope corresponding to all points which have an incoming
edge to the rendezvous vertices with these coordinates. When the sweep encounters a
new vertex v ∈ V , first pre(v) is computed by computing error envelope intersections
at vertices corresponding to R

↓
c (v). There are only Θ(logd−1 n) of these and thus the

time to compute pre(v) is Θ(logd n). Once pre(v) has been computed, then the ray
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corresponding to v is inserted into the error envelopes corresponding to R
↑
c (v). This

too can be performed in Θ(logd n) total time.
The vertices are processed in topological order, and thus if u is a predecessor of v

then its information has been added to the error envelopes before pre(v) is computed.
Further, any envelope encountered in the calculation of pre(v) will only contain rays
corresponding to predecessors of v. !

5.2 Strict L∞ Isotonic Regression

Algorithm 1 computes Strict. A proof of correctness, and the fact that there are only
n iterations of the loop, appears in [37]. The algorithm in [37], applicable to all dags,
first uses the transitive closure to find all violating pairs. Here rendezvous vertices are
used to find important violating pairs incrementally. L(v) and U(v) are lower and up-
per bounds, respectively, on the regression value at v. Violating pairs are examined in
decreasing order of mean_err, which is how Strict minimizes the number of vertices
with large errors.

As an example, on vertices v1 < v2 < v3 < v4 < v5 < v6 suppose the f values
are (4,3,2,−3,3,0) with weights (1,4,1,4,1,1). The first violating pair exam-
ined is v2, v4, with mean_err = 12 and wmean = 0. At the end of the loop, L is
(−∞,0,0,0,0,0), U is (0,0,0,0,∞,∞), and S is (−,0,−,0,−,−). v2, v6 were a
violating pair with mean_err = 2.4, but v2 was removed from consideration once its S

value was determined, and hence the next violating pair is v1, v6, with mean_err = 2
and wmean = 2. At line 5, U(v1) < y because the constraint lowering U(v1) imposed
by the earlier violating pair forces greater error at v1 than v1 and v6 impose on each
other. S(v1) is thus determined (and assigned in line 11) because any future constraint
on it would have error at most that imposed by v6. Since S(v1) is closer to f (v6)

than f (v1) was, the old constraint is not relevant at v6 and lines 6–9 are skipped.
At the end of the loop S is (0,0,−,0,−,−). The next violating pair is v5, v6, with
mean_err = 1.5 and wmean = 1.5, resulting in S = (0,0,−,0,1.5,1.5). The final
violating pair is v3, v3, with mean_err = 0, wmean = 2, U(v3) = L(v3) = 0. S(v3)

is set to 0 at line 6.
Given the transitive closure, Algorithm 1 is quite simple to implement. The vio-

lating pairs can be determined and sorted in decreasing mean_err value, so line 3 is
merely stepping through this order. Each edge of the transitive closure is used at most
once in terms of updating L or U values, and hence the total time of the while loop is
linear in the number of edges. Thus the total time is dominated by the initial sorting.

Applying this directly would take Θ(n2 logn) time, but this can be reduced via
rendezvous graphs.

Proof of Theorem 7 (c) There are only two important aspects: keeping track of the
L and U values, and determining the violating pair maximizing mean_err. The full
rendezvous dag, R(V ), will be used.

We keep track of L and U values by storing them at rendezvous vertices. When-
ever L(v) is needed (e.g., line 10), the vertices in R↓(v) are examined and the largest
L value is used. Whenever L values are updated (e.g., line 8), they are updated at the
vertices in R↑(v). Similar calculations are done for U(v).

Author's personal copy



Algorithmica (2015) 71:450–470 465

Algorithm 1: Computing S = Strict(f,w) on dag G = (V ,E)

1 for all v ∈ V , L(v) = −∞, U(v) = ∞
2 while there is a violating pair
3 let u 3 v be a violating pair maximizing mean_err(f,w : u,v)

4 y = wmean(f,w : u,v)

5 if y ≤ U(u) then
6 S(v) = max{y,L(v)}
7 for all u′ ≺ v, U(u′) = min{U(u′), S(v)}
8 for all v′ 5 v, L(v′) = max{L(v′), S(v)}
9 remove v from violating pairs

10 if y ≥ L(v) then
11 S(u) = min{y,U(u)}
12 for all u′ ≺ u, U(u′) = min{U(u′), S(u)}
13 for all v′ 5 u, L(v′) = max{L(v′), S(u)}
14 remove u from violating pairs
15 end while

We keep track of the globally worst violating pairs by using a priority queue based
on the rendezvous points. For each rendezvous point its priority is the worst error
among all pairs rendezvousing at that point. Thus line 2 is implemented by removing
the worst pair at rendezvous point at the head of the queue. For the next iteration
of the loop, to efficiently find new maximal violating pairs at line 2 note that only
rendezvous points involving u or v might have a new worst violating pair. Whenever
a rendezvous point’s priority changes its position in the queue may change, moving
it towards the back. There are at most Θ(logd n) rendezvous points involving u or v,
and the time to change their positions in the priority queue is O(logn) per point, so
the total time for maintaining the priority queue over all iterations of the while-loop
is Θ(n logd+1 n).

The only remaining step is to determine maximal violators at rendezvous vertices.
Initially each rendezvous vertex r has an decreasing error envelope of rays corre-
sponding to vertices v ∈ V for which r ∈ R↑(v) and an increasing error envelope
corresponding to vertices u ∈ V for which r ∈ R↓(u). The intersection of these en-
velopes corresponds to the maximal violating pair which rendezvous at r . When a
vertex v is being removed from all violating pairs (e.g., line 9), its ray must be re-
moved from the envelopes at R↑(v) and R↓(v), and at each the (potentially) new
maximal violators are determined. Deleting rays from an envelope is more complex
than inserting them since rays that did not have a segment on the envelope may sud-
denly be uncovered and have one. However, the “repeated violators” lemma in [38]
shows that at a rendezvous vertex with a total of k incoming and outgoing edges,
the total time to do all operations is Θ(k log k). Since there are at most Θ(n logd n)
edges, this completes the proof of the theorem. !

The repeated violators lemma mentioned above is based on the semi-dynamic al-
gorithm of Hershberger and Suri [17], which shows that for a collection of k rays,
after a Θ(k logk) setup phase each deletion takes O(logk) time. “Semi-dynamic”
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refers to the fact that only deletions occur after the setup. There is as of yet no algo-
rithm guaranteeing O(log k) time per operation for both insertions and deletions.

6 Final Comments

Isotonic regression is becoming increasingly important as researchers analyze large,
complex data sets and minimize the assumptions they make [1, 29, 42]. However,
there has been dissatisfaction with the slowness of algorithms for multidimensional
isotonic regression, and researchers have been forced to use approximations and in-
ferior models [7, 10, 12, 30, 34]. As recently as 2011, Saarela and Arjas [33] said
“. . . the question remains whether one can find computationally feasible generaliza-
tions to multiple dimensions”. The algorithms developed here are exact and reduce
the time by a factor of Θ̃(n).

Some of the algorithms merely use the fact that Rc is not very large, while for
others the structure of R plays a central role. The L∞ Prefix and Strict algorithms
for arbitrary dags utilize the transitive closure [37, 38], and the rendezvous vertices
in R were used to perform operations on the transitive closure more efficiently than
can be done on the closure itself. For weighted data and d ≥ 2 these algorithms are
faster for points in general position then the fastest previous results for points in a
grid. The same is true for L1 isotonic regression of unweighted data when d ≥ 3.
For L1 and L2 the algorithms for arbitrary dags do not rely on the transitive closure
[1, 23, 36, 39] and there had been a factor of Θ̃(n) difference in time between grids
and points in arbitrary position for d ≥ 3. Condensed rendezvous graphs narrow the
difference to a poly-log factor by reducing the number of edges.

The results are given for points in general position, but when they form a complete
grid the constants for R (and similarly Rc) are significantly better. For dimension
d ≥ 1, one can show that the number of vertices is < 2dn, not Θ(n logd n), and the
number of edges is < n(1 + log2+n1/d,)d , which is ≈ d−d times the worst case of
n(1 + +log2 n,)d . Of course, this is only relevant for algorithms which utilize the
structure of the rendezvous graph, not merely the fact that it is small, since the grid
has < dn edges.

For L2, one practical aspect is that the worst-case time, Θ̃(n3), requires rather
extreme data. Let g be the isotonic regression. At each stage the weighted average
C of the data values is determined and the vertices are partitioned into those where
g < C and those where g ≥ C (the values of g aren’t known, but it can be determined
where they will be above or below C) [23, 36, 39]. The algorithm is then recursively
applied to each piece. It is possible that at each stage the largest element ends up in
a partition by itself, resulting in n − 1 stages, but in practice the behavior will likely
be more like Θ̃(n2). Luss et al. [22] found such a reduction for the fastest previous
algorithm, with an observed behavior of Θ(n3) time vs. the worst case of Θ(n4).
Whether there is an algorithm for multidimensional orderings which is Θ̃(n2) in the
worst case, and whether there is one which is Θ̃(n3) for arbitrary dags, are open
questions.

Isotonic regression is in general not unique for L1 nor L∞, so natural questions
arise as to the range of the regressions and the properties of the various choices. For
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L∞, Min and Max are the pointwise minimum and maximum, respectively, of all iso-
tonic regressions, and can be determined in Θ̃(n) time (Theorem 7). An important
aspect of achieving this time is that it is based on using Prefix to determine the opti-
mal regression error and then a simple scan using a topological sort to determine Min
an Max (see [38]). For arbitrary dags the fastest algorithm [38] (an improvement of
one appearing in [20]) uses the decidedly impractical parametric search to determine
the error. For L1, algorithms to generate the pointwise minimum and maximum seem
to be more complex than the ones presented here. For L∞ the Strict isotonic regres-
sion has been called the “best best” regression, and Theorem 7 shows that it can be
computed with only Θ(logn) slowdown compared to the time for the fastest, Prefix.
Strict is the limit, as p → ∞, of Lp isotonic regression, so the natural “strict L1” iso-
tonic regression is the limit, as p → 1, of Lp isotonic regression. The author knows
of no algorithms for computing this, though the question of what the level set values
should be was settled by Jackson long ago [18].

Finally, the rendezvous graph itself may be of interest in other settings where a
parsimonious representation of multidimensional ordering is useful. The fact that the
transitive closure was represented by unique paths of length 2 proved quite useful, so
a natural question is to determine which other classes of dags have rendezvous graphs
of size not much more than that of the original vertices.
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Appendix: Optimal Size of Order-Embeddings

For points in 2-dimensional space the condensed rendezvous dag has Θ(n logn)

edges, and here we show that there are sets of points in 2-space for which Ω(n logn)

edges are needed. One example is the bit-reversal permutation: given integer b > 0,
let V be the set of 2-dimensional points {(ibib−1 . . . i1, i1i2 . . . ib) : ij ∈ {0,1}}, i.e., a
point is in V if its b-bit 2nd coordinate, in binary, is the reversal of its 1st coordinate.

Proposition 8 Let V be the b-bit bit-reversal permutation, ordered by 2-dimensional
ordering. Then for any dag G, if there is an order-embedding of V into G then G has
at least 1

2 |V | log2 |V | edges.

Proof Note that G is not restricted to 2-dimensional ordering.
To prove this, let G = (V ′,E′) be a dag and π be an order-embedding of V into G.

Let kr denote the bit reversal of k. Then V = {p(i) : 0 ≤ i ≤ n − 1}, where p(i)

is the 2-dimensional point (ir , i) and n = 2b . Note that p(0),p(1), . . . , p(n − 1)

have been ordered by their second coordinate. Let V0 = {p(2i) : 0 ≤ i < n/2} and
V1 = {p(2i + 1) : 0 ≤ i < n/2}, i.e., Vx is those points where the highest bit of their
first coordinate is x. Elements of V0 can precede elements of V1, but not vice versa.
In particular, for any i, j , where 0 ≤ i, j ≤ n − 1, then p(i) ≺ p(j) if and only if
i < j and either p(j) 0∈ V0 or p(i) 0∈ V1.
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Vertex p(n− 2) ∈ V0 is dominated by p(n− 1) ∈ V1, and thus there is a path in G
from π(p(n − 2)) to π(p(n − 1)). Let e(1) denote the first edge on this path. Since
no other point dominates p(n− 2), removing e(1) from E′ does not alter the fact that
π preserves the 2-dimensional ordering, with the possible exception that there may
be elements p(j) ∈ V0 for which p(j) ≺ p(n − 1) but π(p(j)) no longer precedes
π(p(n − 1)).

Let Ui = {p(n−2j +1) : 1 ≤ j ≤ i} ⊂ V1. By induction, for 1 ≤ i < n/2, suppose
one has found i edges Ei = {e(j) : 1 ≤ j ≤ i} such that, for any p,q ∈ V , if p 0∈ V0
or q 0∈ Ui , then p ≺ q in V if and only if π(p) ≺ π(q) in (V ′,E′ − Ei). To find
edge e(i + 1), since p(n − 2i − 2) ∈ V0 is dominated by p(n − 2i − 1) ∈ V1 − Ui ,
there is a path τ in (V ′,E′ − Ei) from π(p(n − 2i − 2)) to π(p(n − 2i − 1)). Let
v ∈ V ′ be the first vertex on τ such that there is no path from v to any vertex in π(V0).
Since the endpoint π(p(n − 2i − 1)) has this property v must exist, and it cannot be
π(p(n − 2i − 2)) since there must be a path from it to π(p(n − 2i)) ∈ π(V0). Let
e(i + 1) denote the incoming edge at v in τ . This edge cannot be on any path leading
to π(V1 − Ui+1) since otherwise π(p(n − 2i − 2)) would be dominated by such a
point, violating the order-embedding property because p(n−2i−2) is not dominated
by any point in V1 − Ui+1. Similarly, it cannot be on any path that starts in π(V1)
since otherwise such a point would have a path to the predecessor of v in τ , and hence
would have a path to the point π(p(n− 2i)) ∈ π(V0), which is impossible. Therefore
e(i + 1) is only on paths from π(V0) to π(Ui+1). Thus Ei+1 = Ei + e(i + 1) has the
requisite properties for the induction.

Once En/2 has been determined, let E′′ = E′ − En/2, i.e., n/2 edges have been
removed. The dag G′′ = (V ′,E′′) has the property that if p ≺ q and p,q ∈ V0 or
p,q ∈ V1, then π(p) ≺ π(q) in G′′. If we further remove all edges in E′′ which are
not on any path from π(p) to π(q) where p,q ∈ V0 or p,q ∈ V1, then the resulting
dag has the same property. Further, it has connected components, one of which con-
tains π(V0) and another of which contains π(V0). V0 and V1 are both isomorphic to
the b − 1 bit-reversal permutation, and thus we can recursively remove edges from
their components. The process can be repeated b times, removing n/2 edges at each
stage, so there must be at least bn/2 = 1

2 |V | log2 |V | edges. !

A somewhat similar proof appears in [15] when there is no partial ordering on the
points and G is required to be a Manhattan network, i.e., the endpoints of edges differ
in exactly one coordinate.
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