
ar
X

iv
:1

50
2.

01
43

5v
1

 [c
s.

D
S

]
5

F
eb

 2
01

5

Optimal Component Labeling Algorithms
for Mesh-Connected Computers and VLSI

Quentin F. Stout

Computer Science and Engineering
University of Michigan

Abstract

Given an undirected graphG of n weighted edges, stored one edge per processor in a square mesh of
n processors, we show how to determine the connected components and a minimal spanning forest in
Θ(

√
n) time. More generally, we show how to solve these problems inΘ(n1/d) time when the mesh is

ad-dimensional cube, where the implied constants depend upond.

Keywords: minimal spanning forest, tree, connected components, mesh-connected computer

1 Introduction

Note: these results were first announced by the author in 1984[3], and were obtained contemporaneously
by John Reif. We intended to publish a joint paper, but never got around to doing so. Since the results
have been utilized many times, and over the years I’ve explained the algorithm to several people, I thought
it useful to make this note available. I kept the title of the original announcement despite the fact that very
few talk about algorithms for VLSI anymore.

We give algorithms for determining a minimal spanning forest, and the connected components, of an
undirected graph stored on a mesh-connected computer. Figure 1 a) shows a 2-dimensional mesh-connected
computer. Each processor can directly communicate with its4 neighbors in unit time, and messages to
further away processors must be passed from neighbor to neighbor. A fine-grained model is used, where
each processor has a fixed number of words of memory and does fundamental operations in unit time. This
is a slight extension of cellular automata, where each automaton has only a fixed number of bits of memory.

Meshes have long been used as a fundamental form of parallel computer, and were especially attractive
for VLSI design because very little area was wasted on connections [6]. Meshes, though not as fine-grained,
are once again important for chip design. Recent interest ismotivated by the fact that the distance signals
travel determines the time and energy needed. Energy consumption is becoming a dominant constraint
of chip design, and chips with large numbers of simple processors connected as a mesh are becoming
available [5] (see Figure 1 b)). Several proposed designs ofprocessing chips for exascale computers assume
there will be many RISC cores connected as a 2-d mesh [1, 2].

The input for our problems is the edges of an undirected weighted graphG = (V,E) with n edges,
stored one per processor on a

√
n ×

√
n mesh. Each edge(u, v) has an associated weightw(u, v) ≥ 0,

where for an unweighted graphw(u, v) = 1 is implied. Whenever edges are being moved their weight goes
with them. We assume there is an ordering on the labels of the vertices. To simplify exposition, assume that
each edge is represented twice, so that an edge between verticesu andv is stored as(u, v) and as(v, u).
Further, for every vertexv there is a self-loop, i.e., an edge of the form(v, v). This guarantees that every
vertex is represented. We will show:

1

http://arxiv.org/abs/1502.01435v1

630 3 4

21

5

67

8 9

101112

1314

15

16 17

1819

20

21 22

23 24

25 26

27

2829

30 31 32 33

3435

36

37 38

39 40

41 42

43

4445

46 47

48

4950

515253

54 55

5657

58 59 60

61 62

a) b) Tilera processor

Figure 1: Abstract and Implemented Meshes

Theorem 1 Given an undirected weighted graphG = (V,E) with n edges, stored one edge per processor
on an

√
n ×

√
n mesh computer, inΘ(

√
n) time one can find a minimal spanning forest and label the

connected components.

The algorithm to find a minimal spanning forest (MSF) uses a recursive approach originally used by
Boru̇kva and which has been rediscovered by many others (including Prim). For each vertex an edge is
selected, forming a forest but not necessarily a spanning forest. The edges selected become part of the MSF,
and the trees are supervertices used as the vertices in the next iteration. For example, for the graph in Figure 2
a), the edges selected are shown in b). This is known ascoarsening. The edge between superverticesU and
V is one having minimal weight among the edges connecting a vertex in U with one inV . Ties can be
broken arbitrarily. The result is shown in c). If a supervertex is not connected to any other others then it
is finished. After a coarsening step the number of unfinished supervertices is at most 1/2 the number of
vertices since each such supervertex contains at least two vertices.

Throughout, all sorting is into a space-filling curve ordering, such as the Hilbert ordering illustrated in
Figure 1 a). Sorting in a

√
n×

√
n mesh can be done inΘ(

√
n) time [4].

Minimal Spanning Forest Algorithm:

1) Do coarsening 5 times, leaving at mostn/32 remaining supervertices.

2) In each quadrant of the mesh, recursively solve the MSF problem for the supervertices, using only
the edges in the quadrant. The number of edges in a quadrant’sMSF is no more than the number of
supervertices, so for all of the quadrants combined the number of edges is at most4 · (n/32) = n/8.

3) Move these edges to a submesh of sizen/8 and recursively solve the MSF problem in this submesh.
This uses the fact that a MSF of the union of the MSFs of the subgraphs is a MSF of the entire graph.

Step 1) reduces the number of vertices, then step 2) reduces the number of edges. Without 2), even though
the graph has fewer vertices at the end of 1), the number of edges may not have been reduced much, so step
3) would not have been in a small submesh.

2

a) initial graph b) selected edges c) supervertices

1

5

3

7

9

8

1

2

7

3

4

5

6

3

4

4

11 3

8

6

10
10

7
9

2

1

7

3

4

5

6

3

4

3

6

Figure 2: Coarsening

Coarsening:

a) For every vertexu select the edge(u, v) of minimal weight among all incident edges, where if there
are ties select the one wherev has minimal label. This is an edge in the MSF. If a vertex has noedges
then it is removed from further consideration and already has its label.

b) The selection rule insures that no cycles are created and hence the edges selected form a forest. Label
the trees, creating the supervertices.

c) For every pair of superverticesU , V , choose one of the edges of minimal weight among those with
one endpoint inU and one inV . Ties can be broken arbitrarily. This is the edge betweenU andV in
the coarsened graph. See Figure 2 c).

While the trees created during coarsening are undirected, labeling them involves creating directed subtrees,
with each edge pointing towards the root of its subtree. Furthermore, weights are ignored.

Labeling Trees:

i) Using only the tree edges selected in coarsening, for eachvertexu determine the neighboring vertexv
with the smallest label and create the directed edge(u, v), where the edge is(u, u) if u’s label is less
than all of its neighbors’. This directed edge representsu in the following steps. The edges selected
from each tree form directed subtrees, as shown in Figure 3.

ii) Sort the directed edges by the label of the vertex being pointed at. Because sorting is in space-filling
curve order, vertices in any quadrant can only point to vertices in the same quadrant or a quadrant of
smaller index.

iii) For every vertex, find the label of the root of its subtree. This is done in a bottom-up fashion, using
2×2 meshes, then22×22 meshes, etc. For vertexu letM(u, i) be the2i×2i mesh containingi, and
letA(u, i) be its greatest ancestor (node closest to the root on the pathfrom u to the root) represented
in M(u, i). Thus ifx is A(u, i)’s parent then edge(A(u, i), x) is in M(u, i) while x’s representative
is not inM(u, i). Initially A(u, 0) = v, wherev is the neighbor selected in step i). To determine
A(u, i+1), note that if the parent ofA(u, i) is in M(u, i+1) then it must be in a quadrant of smaller
index since its label is smaller thanA(u, i)’s. Thus by 3 iterations of every quadrant ofM(u, i+1)
searching in the quadrant preceding it,A(u, i+1) can be determined. This is not a recursive call,
merely a merging operation, thus this step can be completed inΘ(

√
n) total time.

3

2
1

3

6

8

4

5

97

0

2
1

3

6

8

4

5

97

0

Figure 3: Forming Directed Subtrees

iv) In the preceding step we don’t actually keep track ofi, but rather just keep updating a valueA(u). At
the end, for each vertexu for whichA(u) = u and no neighbors point tou, if u has neighbors in the
graph (such as vertex 5 in the example), choose an arbitrary neighborv and setA(u) = A(v) If it has
no neighbors thenu’s label isu and it is finished. The number of unfinished subtrees is at most1/2
the number of vertices since each unfinished subtree represents at least 2 vertices.

v) The subtrees are now supervertices for this tree labelingroutine, and for any pair of supervertices
either they are not adjacent in the original tree or there is aunique edge in the original tree that
connects them. Move the the edges connecting superverticesto a submesh and recursively call the
routine starting at step ii).

To analyze the time letTMSF(n), TCoarse(n), TLabel(n) denote the time for finding the minimal spanning
forest, coarsening, and labeling the trees, respectively,on an

√
n×

√
n mesh.

TLabel(n) = TLabel(n/2) + Θ(
√
n)

= Θ(
√
n)

TCoarse(n) = TLabel(n) + Θ(
√
n)

= Θ(
√
n)

TMSF(n) = 5TCoarse(n) + TMSF(n/4) + TMSF(n/8) + Θ(
√
n)

= Θ(
√
n)

For component labeling, at the end of the MSF algorithm one can do tree labeling on the edges selected
to determine the component labels.

Finally, all of the above can be extended tod-dimensional meshes in a straightforward manner, the only
difference being that2d+ 1 vertex reductions are needed in step 1). This gives

Theorem 2 Given an undirected weighted graphG = (V,E) with n edges, stored one edge per processor
on a cubicald-dimensional mesh computer, inΘ(n1/d) time one can find a minimal spanning forest and
label the connected components, where the implied constants depend upond. �

4

References

[1] DOE, “Scientific grand challenges: architectures and technology for extreme scale computing”,Report
of DOE Workshop, Dec. 2009

[2] DOE, “Exascale programming challenges”,Report of DOE Workshop, July 2011.

[3] Stout, Q.F., “Optimal component labeling algorithms for mesh-connected computers and VLSI”,Ab-
stracts AMS5, 1984, 148.

[4] Thompson, C.D. and Kung, H.T., “Sorting on a mesh-connected parallel computer”,Comm. ACM20,
1977, 263–271.

[5] Tilera Corporation, “TILE-Gx8072 Processor Product Brief”,
www.tilera.com/sites/default/files/productbriefs/TILE-Gx8072PB041-04WEB.pdf

[6] Ullman, J.D.,Computational Aspects of VLSI, 1984, Computer Science Press, Maryland.

5

	1 Introduction

