
1

The Use of the MPI Communication Library in the
NAS Parallel Benchmarks

Theodore B. Tabe, Member, IEEE Computer Society, and Quentin F. Stout, Senior Member, IEEE

Computer Society

Abstract—The statistical analysis of traces taken from the

NAS Parallel Benchmarks can tell one much about the type

of network traffic that can be expected from scientific appli-

cations run on distributed-memory parallel computers. For

instance, such applications utilize a relatively few number

of communication library functions, the length of their mes-

sages is widely varying, they use many more short messages

than long ones, and within a single application the messages

tend to follow relatively simple patterns. Information such

as this can be used by hardware and software designers to

optimize their systems for the highest possible performance.

Keywords— benchmarks, trace analysis, message-passing,

distributed memory parallel computer, parallel computing

I. Introduction

Parallel computing is a computer paradigm where multi-
ple processors attempt to co-operate in the completion of a
single task. Within the parallel computing paradigm, there
are two memory models: shared-memory and distributed
memory. The shared-memory model distinguishes itself
by presenting the programmer with the illusion of a sin-
gle memory space. The distributed-memory model, on the
other hand, presents the programmer with a separate mem-
ory space for each processor. Processors, therefore, have to
share information by sending messages to each other. To
send these messages, usually applications call a standard
communication library. The communication library is usu-
ally MPI (Message Passing Interface) [1] or PVM (Parallel
Virtual Machine) [2], with MPI rapidly becoming the norm.

An important component in the performance of a
distributed-memory parallel computing application is the
performance of the communication library the application
uses. Therefore, the hardware and software systems pro-
viding these communication functions must be tuned to the
highest degree possible. An important class of information
that would aid in the tuning of a communication library
is an understanding of the communication patterns that
occur within applications. This includes information such
as the relative frequency with which the various functions
within the communication library are called, the lengths of
the messages involved, and the ordering of the messages.

Since it is not realistic to examine all the distributed-
memory parallel applications in existence, one looks to find
a small set of applications that reasonably represents the
entire field. The representative set of applications that
was chosen was the widely-used NAS Parallel Benchmarks

Theodore B. Tabe is with the Advanced Computer Architecture
Laboratory, University of Michigan. Email: tabe@eecs.umich.edu.

Quentin F. Stout is with the Electrical Engineering and Com-
puter Science Department, University of Michigan. Email:
qstout@umich.edu.

(NPB) [3]. The rest of this paper describes in further de-
tail the NPB and the results obtained from analyzing the
frequency and type of message calls which occur within the
NPB.

Section II of the paper describes the NPB. Section III de-
scribes the instrumentation methodology used on the NPB.
Following that is Section IV, which describes the assump-
tions made about the manner in which the MPI message-
passing library was implemented. Section V gives a sum-
mary of the data gathered from the traces. Section VI pro-
vides an explanation for the patterns observed, in terms
of the nature of the communication patterns of the NPB.
Section VII provides some final conclusions.

II. NAS Parallel Benchmarks Description

The NAS Parallel Benchmarks are a set of scientific
benchmarks issued by the Numerical Aerodynamic Simula-
tion (NAS) program located at the NASA Ames Research
Center. The benchmarks have become widely accepted as
a reliable indicator of supercomputer performance on sci-
entific applications. As such, they have been extensively
analyzed [4], [5], [6]. The benchmarks are largely derived
from computational fluid dynamics code and are currently
on version 2.2. The NAS Parallel Benchmarks 2.2 includes
implementations of 7 of the 8 benchmarks in the NAS Par-
allel Benchmarks 1.0 suite. The eighth benchmark shall be
implemented in a later version of the NAS Parallel Bench-
marks. The benchmarks implemented are:

BT: a block tridiagonal matrix solver.
EP: Embarrassingly Parallel, an application where there
is very minimal communication amongst the processes
FT: a 3-D FFT PDE solver benchmark.
IS: integer sort
LU: an LU solver.
MG: a multigrid benchmark.
SP: a pentadiagonal matrix solver.

The benchmark codes are written in Fortran with MPI
function calls, except for the IS benchmark which is writ-
ten in C with MPI function calls. The NAS Parallel Bench-
marks can be compiled into three problem sizes known as
classes A, B, and C. The class A benchmarks are tailored to
run on moderately powerful workstations. Class B bench-
marks are meant to run on high-end workstations or small
parallel systems. Class C benchmarks are meant for high-
end supercomputing.



2

III. Tracegathering

A. Instrumenting the Benchmarks

The source code for the NPB was instrumented by pre-
processing the source code with a filter written in Perl.
Since all MPI function calls have the form:
call MPI function name(parameter1,parameter2,...)

the Perl preprocessor simply uses pattern matching to find
the MPI function calls in the program and inserts code
just before the MPI function call to print out the relevant
parameters of the MPI function call. The static frequency
of MPI function calls was determined by using the grep
utility to search for “MPI ” in all source files.

B. Running the Benchmarks

The benchmarks were compiled as class B benchmarks
and traced on machines at the University of Michi-
gan’s Center for Parallel Computing. When the dy-
namic frequencies of the MPI function calls were calcu-
lated from the traces, the MPI COMM * functions and
the MPI WTIME function were not included because the
beforementioned functions are not inherently involved in
the transfer of data between processors. Also, many of
the benchmarks run an iteration of the code before the
running and timing of the main loop. This is done to min-
imize variations in performance that would be caused by
cache misses, TLB misses, and page faults. The portions
of the traces that correspond to this extra iteration were
not included in the dynamic results due to the fact that we
wished the results to be as close as possible to those which
would be found if the benchmarks were used in real-world
situations.

The BT and SP benchmarks were run with 4, 9, and 16
processors. The FT, IS, LU, and MG benchmarks were run
with 2, 4, 8, and 16 processors. As an example of the type
of information gathered by the traces, for an MPI SEND
function call, the following information is output to stdout:
1. MPI SEND
2. the ID of the sending process
3. number of data items being transferred
4. datatype of the transferred data (i.e. INTEGER, DOU-
BLE, or DOUBLE COMPLEX)
5. the ID of the receiving process
6. the type tag for this interprocess communication

IV. MPI Implementation Model

Given the fact that the low-level implementation of the
MPI library is platform and vendor dependent, there are
then widely varying answers to the question of how many
messages it takes to implement any given MPI function.
Therefore, for this paper, we created a limited MPI imple-
mentation model that we feel reasonably represents how
the MPI library functions found within the NAS Parallel
Benchmark 2.2 could be implemented. Then, for each func-
tion call, we determined how many messages the processor
with pid equal to one would send. The processor with pid
equal to one was chosen as the one to model over the more
typical processor zero is because many times the processor

M
P

I_
A

LL
R

E
D

U
C

E


M
P

I_
A

LL
T

O
A

LL


M
P

I_
A

LL
T

O
A

LL
V



M
P

I_
B

A
R

R
IE

R


M
P

I_
B

C
A

S
T



M
P

I_
IR

E
C

V


M
P

I_
IS

E
N

D


M
P

I_
R

E
C

V


M
P

I_
R

E
D

U
C

E


M
P

I_
S

E
N

D


M
P

I_
W

A
IT



M
P

I_
W

A
IT

A
LL



0

5

10

15

20

25

30

35

40

P
er

ce
n

t 
F

re
q

u
en

cy


M
P

I_
A

LL
R

E
D

U
C

E


M
P

I_
A

LL
T

O
A

LL


M
P

I_
A

LL
T

O
A

LL
V



M
P

I_
B

A
R

R
IE

R


M
P

I_
B

C
A

S
T



M
P

I_
IR

E
C

V


M
P

I_
IS

E
N

D


M
P

I_
R

E
C

V


M
P

I_
R

E
D

U
C

E


M
P

I_
S

E
N

D


M
P

I_
W

A
IT



M
P

I_
W

A
IT

A
LL



MPI Function

Dynamic Frequency of MPI Function Calls

Fig. 1. Dynamic Frequency of MPI Function Calls in the NAS Bench-
marks

with pid equal to zero is used to broadcast information,
causing its traffic pattern to be unrepresentative of that of
a typical node.

Our model is as follows:

MPI ALLREDUCE The MPI ALLREDUCE function
call is modeled as a reduction followed by a broadcast. The
reduction and broadcast are each modeled as occurring via
binary trees. In the binary tree model, one message travels
over each edge. Also, in a binary tree of p vertices, there
are p − 1 edges. Therefore, (p − 1) × 2 total messages are
sent globally for each MPI ALLREDUCE function call. In
this model, processor one sends two messages.
MPI ALLTOALL The straightforward method of hav-
ing each node send out p−1 messages is the model used for
the MPI ALLTOALL function call. Globally, this implies
that p(p− 1) messages are sent for each MPI ALLTOALL
function call. For processor one, the model implies p − 1
messages.
MPI ALLTOALLV It is modeled in the same manner
as the MPI ALLTOALL function call is modeled.
MPI BARRIER It is treated as an MPI ALLREDUCE
where the message length is 4 bytes.
MPI BCAST It is modeled as occurring via a binary
tree-based algorithm. Therefore, p − 1 messages are sent
globally. Processor one sends one message.
MPI IRECV Since a message is received, no messages
are sent by processor one.
MPI ISEND One message is sent by processor one.
MPI RECV Since a message is received, no messages are
sent by processor one.
MPI REDUCE The model assumes a binary tree-based
algorithm, implying p − 1 total messages globally. One
message is sent by processor one.
MPI SEND One message is sent by processor one.

V. Results

A plethora of conclusions can be drawn from the trace
data:



TABE AND STOUT: THE USE OF THE MPI COMMUNICATION LIBRARY IN THE NAS PARALLEL BENCHMARKS 3

Percent
MPI Function Frequency
MPI IRECV 14.4%
MPI SEND 10.6%
MPI ISEND 10.2%
MPI BCAST 9.7%
MPI WAIT 9.7%
MPI ALLREDUCE 7.2%
MPI BARRIER 7.2%
MPI ABORT 4.7%
MPI COMM SIZE 4.2%
MPI WAITALL 3.4%
MPI FINALIZE 3.0%
MPI COMM RANK 2.5%
MPI INIT 2.5%
MPI REDUCE 2.5%
MPI ALLTOALL 1.7%
MPI COMM DUP 1.7%
MPI COMM SPLIT 1.7%
MPI RECV 1.7%
MPI WTIME 0.8%
MPI ALLTOALLV 0.4%

TABLE I

Static Frequency of MPI Function Calls in the NAS

Parallel Benchmarks 2.2

0

5

10

15

20

25

30

35

1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

P
er

ce
nt

 F
re

qu
en

cy

Length (Bytes)

Dynamic Frequency of Message Lengths

Fig. 2. Length of MPI Messages in the NAS Parallel Benchmarks

• One of the most interesting results reached by examin-
ing the traces was that relatively few of the functions in
the MPI library are used by the NAS Parallel Benchmarks.
Table I shows the static frequency in percent of MPI func-
tion calls in the NAS Parallel Benchmarks 2.2. Of the 125
functions in the MPI communication library, only 20 were
actually used in the NAS Parallel Benchmarks. The func-
tions used are:
1. MPI ABORT (abort from MPI)
2. MPI ALLREDUCE (reduction plus a broadcast)
3. MPI ALLTOALL (all-to-all communication where all

the messages are the same length)
4. MPI ALLTOALLV (all-to-all communication where

Static Dynamic
MPI ALLREDUCE 17 268
MPI ALLTOALL 4 128
MPI ALLTOALLV 1 32
MPI BARRIER 17 4
MPI BCAST 23 86
MPI IRECV 34 45,604
MPI ISEND 24 32,436
MPI RECV 4 139,500
MPI REDUCE 6 98
MPI SEND 25 152,628
MPI WAIT 23 27,568
MPI WAITALL 8 16,206

TABLE II

Dynamic versus Static MPI Function Calls

IS non-IS
Percent Percent

MPI Function Frequency Frequency
MPI ALLREDUCE 30.5% 0.1%
MPI ALLTOALL 30.5% 0.0%
MPI ALLTOALLV 24.4% 0.0%
MPI BARRIER 0.0% 0.0%
MPI BCAST 0.0% 0.0%
MPI IRECV 3.1% 11.0%
MPI ISEND 0.0% 7.8%
MPI RECV 0.0% 33.7%
MPI REDUCE 6.1% 0.0%
MPI SEND 2.3% 36.8%
MPI WAIT 3.1% 6.7%
MPI WAITALL 0.0% 3.9%

TABLE III

Dynamic Frequency of MPI Function Calls in the IS

Benchmark vs. the Other Benchmarks

the messages can be of different lengths)
5. MPI BARRIER (barrier synch)
6. MPI BCAST (broadcast)
7. MPI COMM DUP (duplicate a communication group

pointer)
8. MPI COMM RANK (find processor id)
9. MPI COMM SIZE (find number of processors in

group)
10. MPI COMM SPLIT (split current communication

group into two groups)
11. MPI FINALIZE (shut MPI down cleanly)
12. MPI INIT (initialize MPI)
13. MPI IRECV (non-blocking receive)
14. MPI ISEND (non-blocking send)
15. MPI RECV (blocking receive)
16. MPI REDUCE (reduction)
17. MPI SEND (blocking send)
18. MPI WAIT (wait for a non-blocking communication

to complete)
19. MPI WAITALL (wait for a list of non-blocking com-



4

IS non-IS
MPI ALLREDUCE 40 228
MPI ALLTOALL 40 88
MPI ALLTOALLV 32 0
MPI BARRIER 0 4
MPI BCAST 0 86
MPI IRECV 0 45,600
MPI ISEND 0 32,436
MPI RECV 0 139,500
MPI REDUCE 8 90
MPI SEND 3 152,625
MPI WAIT 4 27,564
MPI WAITALL 0 16,206

TABLE IV

Absolute Count of MPI Function Calls in the IS Benchmark

vs. the Other Benchmarks

0

5

10

15

20

25

30

35

40

45

1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

P
er

ce
nt

 F
re

qu
en

cy

Length (Bytes)

Dynamic Frequency of Message Lengths in the IS Benchmark

Fig. 3. Length of MPI Messages in the IS Benchmark

munications to complete)
20. MPI WTIME (system time)

This phenomena is not unique to the NPB, as others have
noted that relatively few MPI commands are needed for
most programs. For example, in the tutorial by Gropp [7],
he states “MPI is small (6 functions) — many parallel pro-
grams can be written with just 6 basic functions.”
• When looking at the dynamic frequency of the MPI func-
tions in the NAS Parallel Benchmarks, as shown in Fig-
ure 1, another interesting result is noted. Fully 89% of the
MPI functions calls are blocking or non-blocking sends and
receives. None of the more complex MPI communication
functions nor even more complex sends or receives such as
buffered sends and buffered receives are used.
• Another interesting result is shown in Figure 2. It
shows that 74.8% of the messages have a message length
of 600, 640, 1240, or 2480 bytes, implying that short
messages dominate NPB network traffic. However, the
mean message length is 73,447 bytes, the median mes-
sage length is 1240 bytes, and the standard deviation is
a rather large 1,594,623 bytes. Thus there was wide vari-
ation in the message lengths. The largest message length

IS non-IS
Benchmark Benchmarks

(bytes) (bytes)
Mean 1,332,196 69,317
Median 4116 1240
Minimum 4 4
Maximum 33,716,496 134,217,728
Standard Deviation 4,568,524 1,574,036

TABLE V

Message Length Statistics for the IS Benchmark vs. the

Rest of the NAS Parallel Benchmarks 2.2

is 128 MB when two nodes exchange 128 MB messages us-
ing MPI ALLTOALL in the 2-processor version of the FT
benchmark. The shortest message length is 4 bytes which is
mainly used by MPI BCAST synchronization messages.
Overall, the conclusion that can be drawn is that inter-
processor communication hardware and software must be
optimized for both short and long messages. It is the norm
now for parallel machines to realize their full bandwidth for
extremely long messages. These traces show that a large
percentage of messages are not extremely long. These short
messages should also be experiencing the full bandwidth of
the interconnect. If this occurred, then many applications
would notice increased performance from their distributed
environment. Note, however, that “short” is not a few
bytes, but hundreds of bytes. Another study has been done
characterizing the amount and type of communication in
distributed memory code [8]. This study also obtained re-
sults indicating that there is a wide variation in the amount
and the size of messages.
• The 80/80 rule states that 80% of the messages on a
network are 256 bytes or less and that 80% of the data on
a network is sent by messages of 8K bytes or greater [9].
For the NPB, one finds that 80% of the messages are 27,040
bytes or less and that 80% of the data is from messages of
length 184,960 bytes or greater. Therefore, the traffic from
the NAS Parallel Benchmarks roughly demonstrates the
characteristics predicted by an 80/80 rule.
• Some more interesting results occur when one contrasts
the statistics for the IS benchmark, which performs inte-
ger computation, against the other benchmarks, which per-
form floating-point computations. Table III indicates that
the IS code is dominated by reductions and all-to-all com-
munication as opposed to the floating-point code which is
dominated by sends and receives. Figure 3 shows the distri-
bution of message lengths in the IS benchmark and Table V
compares the message length statistics of the IS benchmark
versus the rest of the NAS Parallel Benchmarks. It shows
that the mean of the IS benchmark is two orders of mag-
nitude larger than the mean of the rest of the NPB, and
the standard deviation of the IS benchmark is three times
larger than the standard deviation of the rest of the NPB.
Thus the IS benchmark has a wider variation in message
lengths than the rest of the NPB, a fact which may be
indicative of some differences between data-intensive and



TABE AND STOUT: THE USE OF THE MPI COMMUNICATION LIBRARY IN THE NAS PARALLEL BENCHMARKS 5

computation-intensive applications. However, it should not
be taken to be indicative of general differences between
codes dominated by integer operations versus floating-point
operations.
• Just from comparing the total number of dynamic ver-
sus static MPI function calls, as shown in Table II, one can
immediately conclude that some of the function calls in the
NAS application codes are being visited a large number of
times. This would lead one to believe that the communi-
cation patterns of most distributed memory applications
are dominated by their behavior within loops. Section VI
explores this issue further.

VI. NAS Parallel Benchmark Communication

Kernels

Within the NAS Parallel Benchmarks there is a very sim-
ple structure to the communication that occurs between
nodes. The Appendix contains pseudocode delineating the
communication structure of the NPB codes. As the Ap-
pendix shows, the communication is dominated by a loop-
based repetition of a few simple communication calls.

Tables VI and VII are another view of this simple com-
munication structure. It contains equations that describe
the relationship between the frequency of an MPI function
being called and the number of processors a benchmark
is run on for the various NAS Parallel Benchmarks. The
boxes labeled N/A indicate that the MPI function is not
called within the benchmark.

The loop-based patterns mean that the communication
structure is static for long periods of time, leading one to
believe that simple strategies can detect the pattern. Most
likely, there are hardware and software optimizations that
can be used to take advantage of these communication pat-
terns. This is an ongoing area of research for us.

VII. Conclusion

The fact that only the knowledge of a few MPI func-
tions are really necessary in order to create applications is
emphasized to programmers even as early as the first MPI
tutorial [10]. This paper, however, goes one step further
and quantitatively describes which MPI functions are im-
portant. We considered both their static frequency, i.e.,
how often they were written, and their dynamic frequency,
i.e., how often they were executed.

Our statistical analysis of traces taken from the NAS
Parallel Benchmarks can tell one much about the type of
network traffic to be expected from parallel distributed-
memory scientific applications. For instance, these appli-
cations will utilize a relatively few number of communica-
tion library functions, and the length of these messages will
be widely varying. It is also true that they obey an 80/80
rule, in that most of the messages are shorter, but most of
the traffic volume is from long messages. Further, for an
application, the majority of the messages are issued within
loops having a simple communication pattern.

Since communications is a critical component of
distributed-memory parallel computing, it is important

that it be carefully optimized. Studies such as those in
this paper can be used by hardware and software designers
to tune their communications systems to increase their per-
formance on real applications. This in turn should enable
users to achieve higher performance and increased scalabil-
ity of their codes.

Acknowledgments

Computing services were provided by the University of
Michigan’s Center for Parallel Computing.

References

[1] M. P. I. Forum, “MPI: A Message-Passing Interface Standard,”
Technical report, University of Tennessee at Knoxville, May
1994.

[2] A. Beguelin, J. Dongarra, A. Geist, R. Manchek, and V. Sun-
deram, “A User’s Guide to PVM (Parallel Virtual Machine),”
Technical Report ORNL/TM-11826, Oak Ridge National Labo-
ratory, Oak Ridge, TN, July 1991.

[3] D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart, A. Woo,
and M. Yarrow, “The NAS Parallel Benchmarks 2.0,” Technical
Report NAS-95-020, NASA Ames Research Center, December
1995.

[4] E. Strohmaier, “Statistical Performance Modeling: Case Study
of the NPB 2.1 Results,” Technical Report UTK-CS-97-354, Uni-
versity of Tennessee at Knoxville, March 1997.

[5] S. White, A. Ålund, and V. S. Sunderam, “Performance of the
NAS Parallel Benchmarks on PVM-Based Networks,” Journal
of Parallel and Distributed Computing, vol. 26, no. 1, pp. 61–71,
April 1995.

[6] H. D. Simon and E. Strohmaier, “Amdahl’s Law and the Statis-
tical Content of the NAS Parallel Benchmarks,” Supercomputer,
vol. 11, no. 4, pp. 75–88, September 1995.

[7] W. Gropp. Tutorial on MPI: The Message-Passing In-
terface. http://www.mcs.anl.gov/mpi/tutorial/gropp/talk.html
#Node0.

[8] R. Cypher, A. Ho, S. Konstantinidou, and P. Messina, “A Quan-
titative Study of Parallel Scientific Applications with Explicit
Communication,” The Journal of Supercomputing, vol. 10, no.
1, pp. 5–24, 1996.

[9] The Virtual Interface Architecture, Intel Corporation, October
1997.

[10] Maui High Performance Computing Center. MPI SP
Parallel Computing Workshop. http://www.mhpcc.edu/
training/workshop/html/mpi/MPIIntro.html.



6

MPI Function BT FT IS
MPI ALLREDUCE 2 N/A 10
MPI ALLTOALL N/A 22 10
MPI ALLTOALLV N/A N/A if procs = 2, 5

if procs = 4, 8
if procs = 8, 9
if procs = 16, 10

MPI BARRIER N/A N/A N/A
MPI BCAST 3 2 N/A
MPI IRECV 1200

√
procs + 6 N/A N/A

MPI ISEND 1200
√

procs + 6 N/A N/A
MPI RECV N/A N/A N/A

MPI REDUCE 1 20 2
MPI SEND N/A N/A if procs = 2, 0

if procs > 2, 1

MPI WAIT 2400
√

procs − 2400 N/A N/A

MPI WAITALL 201 N/A N/A
TABLE VI

MPI Function Call Frequency in the NAS Parallel Benchmarks 2.2 as a Function of the Number of Processors, Part 1



TABE AND STOUT: THE USE OF THE MPI COMMUNICATION LIBRARY IN THE NAS PARALLEL BENCHMARKS 7

MPI Function LU MG SP
MPI ALLREDUCE 8 46 2
MPI ALLTOALL N/A N/A N/A
MPI ALLTOALLV N/A N/A N/A

MPI BARRIER N/A 1 N/A
MPI BCAST 9 6 3
MPI IRECV if procs = 2, 252 if procs < 16, 2772 2400

√
procs + 6

if procs = 4, 506 if procs = 16, 2572
if procs = 8, 759
if procs = 16, 759

MPI ISEND N/A N/A 2400
√

procs + 6
MPI RECV if procs < 16, 15500 log2(procs) N/A N/A

if procs = 16, 46500
MPI REDUCE N/A 1 1
MPI SEND if procs = 2, 15755 if procs < 16, 2772 N/A

if procs = 4, 31506 if procs = 16, 2532
if procs = 8, 47258
if procs = 16, 47258

MPI WAIT if procs = 2, 252 if procs < 16, 2772 N/A
if procs = 4, 506 if procs = 16, 2572
if procs = 8, 759
if procs = 16, 759

MPI WAITALL N/A N/A 2400
√

procs − 1999
TABLE VII

MPI Function Call Frequency in the NAS Parallel Benchmarks 2.2 as a Function of the Number of Processors, Part 2



8

Appendix

This appendix contains the pseudocode which exposes the structure of interprocessor communication within the
various NAS Parallel Benchmarks. The pseudocode was formulated from the gathered communication traces and is,
therefore, from the viewpoint of the processor with its id equal to 1 running a class B compilation of the benchmark.
The pseudocode contains the variable number of processors which represents the total number of processors uti-
lized during an execution of the application. Within the pseudocode, the variable pid is a number between 0 and
number of processors-1. Each processor’s pid variable is assigned a unique value within the beforementioned range.
Furthermore, all reduction operations have the processor with pid equal to 0 as the root.

The MPI function calls within the pseudocode have been abbreviated for simplicity. A short description of the meaning
of the fields within the pseudocode MPI function calls is, therefore, necessary:
1. mpi allreduce(number of items, data type of items, reduction operation)
2. mpi alltoall(number of items, data type of items)
3. mpi bcast(number of items, data type of items)
4. mpi irecv(number of items, data type of items, destination)
5. mpi reduce(number of items, data type of items, reduction operation)
6. mpi send(number of items, data type of items, destination)
For function calls where the source, destination, or message length cannot be succinctly mathematically expressed, the
function call does not contain any fields.

Finally, the pseudocode for the all benchmarks is appropriate for an arbitrary number of processors except the
pseudocode for the MG benchmark. Within the MG benchmark, multiple grids of varying resolution are used to find the
solution to an equation. The resolution of these fields depends on a variety of factors such as the number of processors,
number of grids, and problem size. As the number of processors increases, then, the communication structure of the
benchmark changes. To reduce the complexity of the pseudocode, we have only given a version appropriate for sixteen
or fewer processors.



TABE AND STOUT: THE USE OF THE MPI COMMUNICATION LIBRARY IN THE NAS PARALLEL BENCHMARKS 9

I. BT Benchmark Code

mpi_bcast(1,MPI_INTEGER)

mpi_bcast(1,MPI_DOUBLE_PRECISION)

mpi_bcast(3,MPI_INTEGER)

do i=1,200

loop()

end do

mpi_allreduce(5,MPI_DOUBLE_PRECISION,MPI_SUM)

mpi_irecv()

mpi_irecv()

mpi_irecv()

mpi_irecv()

mpi_irecv()

mpi_irecv()

mpi_isend()

mpi_isend()

mpi_isend()

mpi_isend()

mpi_isend()

mpi_isend()

mpi_waitall()

mpi_allreduce(5,MPI_DOUBLE_PRECISION,MPI_SUM)

mpi_reduce(1,MPI_DOUBLE_PRECISION,MPI_MAX)

---------------

loop()

{

mpi_irecv()

mpi_irecv()

mpi_irecv()

mpi_irecv()

mpi_irecv()

mpi_irecv()

mpi_isend()

mpi_isend()

mpi_isend()

mpi_isend()

mpi_isend()

mpi_isend()

mpi_waitall()

/* x-axis */

do i=1,sqrt(number_of_processors)

mpi_isend()

mpi_irecv()

mpi_wait()

mpi_wait()

end do

/* x-axis */

do i=1,sqrt(number_of_processors)

mpi_isend()

mpi_irecv()

mpi_wait()

mpi_wait()

end do

/* y-axis */

do i=1,sqrt(number_of_processors)

mpi_isend()

mpi_irecv()

mpi_wait()

mpi_wait()

end do

/* y-axis */

do i=1,sqrt(number_of_processors)

mpi_isend()

mpi_irecv()

mpi_wait()

mpi_wait()

end do

/* z-axis */

do i=1,sqrt(number_of_processors)

mpi_isend()

mpi_irecv()

mpi_wait()

mpi_wait()

end do

/* z-axis */

do i=1,sqrt(number_of_processors)

mpi_isend()

mpi_irecv()

mpi_wait()

mpi_wait()

end do

}



10

II. FT Benchmark Code

count=33554432/(number_of_processors*number_of_processors)

mpi_bcast(3,MPI_INTEGER)

mpi_bcast(1,MPI_INTEGER)

mpi_alltoall(count,MPI_DOUBLE_COMPLEX)

do i=1,20

mpi_alltoall(sendbuf,count,MPI_DOUBLE_COMPLEX)

mpi_reduce(1,MPI_DOUBLE_COMPLEX,MPI_SUM)

enddo



TABE AND STOUT: THE USE OF THE MPI COMMUNICATION LIBRARY IN THE NAS PARALLEL BENCHMARKS 11

III. IS Benchmark Code

do i=1,10

loop()

end do

mpi_reduce(1,MPI_DOUBLE_PRECISION,MPI_MAX)

if (pid > 0)

mpi_irecv(1,MPI_INTEGER,pid-1)

end if

if (pid < number_of_processors-1)

mpi_send(1,MPI_INTEGER,pid+1);

end if

mpi_wait()

mpi_reduce(1,MPI_INTEGER,MPI_SUM)

---------------------------------

loop()

{

mpi_allreduce(1029,MPI_INTEGER,MPI_SUM)

mpi_alltoall(1,MPI_INTEGER)

mpi_alltoallv()

}



12

IV. LU Benchmark Code

mpi_bcast(1,MPI_INTEGER)

mpi_bcast(1,MPI_INTEGER)

mpi_bcast(1,MPI_INTEGER)

mpi_bcast(1,MPI_DOUBLE_PRECISION)

mpi_bcast(1,MPI_DOUBLE_PRECISION)

mpi_bcast(5,MPI_DOUBLE_PRECISION)

mpi_bcast(1,MPI_DOUBLE_PRECISION)

mpi_bcast(1,MPI_DOUBLE_PRECISION)

mpi_bcast(1,MPI_DOUBLE_PRECISION)

do i=1,2

mpi_irecv()

if (number_of_processors > 4)

mpi_send()

end if

mpi_wait()

if (number_of_processors > 4)

mpi_irecv()

end if

mpi_send()

if (number_of_processors > 4)

mpi_wait()

end if

if (number_of_processors > 2)

mpi_send()

mpi_irecv()

mpi_wait()

end if

end do

mpi_allreduce(5,MPI_DOUBLE_PRECISION,MPI_SUM)

mpi_barrier()

do i=1,249

j_loop()

k_loop()

mpi_irecv()

if (number_of_processors > 4)

mpi_send()

end if

mpi_wait()

if (number_of_processors > 4)

mpi_irecv()

end if

mpi_send()

if (number_of_processors > 4)

mpi_wait()

end if

if (number_of_processors > 2)

mpi_send()

mpi_irecv()

mpi_wait()

end if

end do

j_loop()

k_loop()

mpi_allreduce(5,MPI_DOUBLE_PRECISION,MPI_SUM)

mpi_irecv()

if (number_of_processors > 4)

mpi_send()

end if

mpi_wait()

mpi_send()

if (number_of_processors > 4)

mpi_wait()

end if

if (number_of_processors > 2)

mpi_send()

mpi_irecv()

mpi_wait()

end if

mpi_allreduce(5,MPI_DOUBLE_PRECISION,MPI_SUM)

mpi_allreduce(1,MPI_DOUBLE_PRECISION,MPI_MAX)

mpi_allreduce(5,MPI_DOUBLE_PRECISION,MPI_SUM)

if (number_of_processors > 2)

mpi_irecv(()

mpi_wait()

end if

if (number_of_processors > 4)

mpi_irecv()

mpi_wait()

end if

mpi_send()

mpi_allreduce(1,MPI_DOUBLE_PRECISION,MPI_SUM)

if (number_of_processors > 4)

mpi_irecv()

mpi_wait()

end if

mpi_send()

mpi_allreduce(1,MPI_DOUBLE_PRECISION,MPI_SUM)

if (number_of_processors == 4)

mpi_irecv()

mpi_wait()

end if



TABE AND STOUT: THE USE OF THE MPI COMMUNICATION LIBRARY IN THE NAS PARALLEL BENCHMARKS 13

mpi_allreduce(1,MPI_DOUBLE_PRECISION,MPI_SUM)

---------------------------------------------

j_loop()

{

do j=1,62

mpi_recv()

if (number_of_processors > 4)

mpi_send()

end if

if (number_of_processors > 2)

mpi_send()

end if

end do

}

---------------------------------------------

k_loop()

{

do k=1,62

if (number_of_processors > 4)

mpi_recv()

end if

if (number_of_processors > 2)

mpi_recv()

end if

mpi_send()

end do

}



14

V. MG Benchmark Code

if (number_of_processors < 16)

{

mpi_bcast(1,MPI_INTEGER)

mpi_bcast(1,MPI_INTEGER)

mpi_bcast(1,MPI_INTEGER)

mpi_bcast(1,MPI_INTEGER)

mpi_bcast(1,MPI_INTEGER)

mpi_bcast(8,MPI_INTEGER)

mpi_barrier()

do i=1,10

loop3()

end do

mpi_barrier()

do i=1,2

loop1()

end do

do i=1,23

loop2()

end do

mpi_barrier()

do i=1,10

loop3()

end do

mpi_barrier()

loop2()

mpi_barrier()

loop1()

do i=1,459

loop2()

end do

loop1()

mpi_reduce(1,MPI_DOUBLE_PRECISION,MPI_MAX)

}

else

{

mpi_bcast(1,MPI_INTEGER)

mpi_bcast(1,MPI_INTEGER)

mpi_bcast(1,MPI_INTEGER)

mpi_bcast(1,MPI_INTEGER)

mpi_bcast(1,MPI_INTEGER)

mpi_bcast(8,MPI_INTEGER)

mpi_barrier()

do i=1,10

loop3()

end do

mpi_barrier()

do i=1,2

loop1()

end do

do i=1,6

loop2()

end do

mpi_irecv()

mpi_irecv()

mpi_wait()

mpi_wait()

do i=1,5

loop2()

end do

mpi_barrier()

do i=1,10

loop3()

end do

mpi_barrier()

loop2()

mpi_barrier()

loop1()

do i=1,6

loop2()

end do

do i=1,19

mpi_irecv()

mpi_irecv()

mpi_wait()

mpi_wait()

do j=1,21

loop2()

end do

end do

mpi_irecv()

mpi_irecv()

mpi_wait()

mpi_wait()



TABE AND STOUT: THE USE OF THE MPI COMMUNICATION LIBRARY IN THE NAS PARALLEL BENCHMARKS 15

do j=1,14

loop2()

end do

mpi_reduce(1,MPI_DOUBLE_PRECISION,MPI_MAX)

}

---------------------------------------------

loop1()

{

loop2()

mpi_allreduce(1,MPI_DOUBLE_PRECISION,MPI_MAX)

mpi_allreduce(1,MPI_DOUBLE_PRECISION,MPI_SUM)

}

---------------------------------------------

loop2()

{

mpi_irecv()

mpi_irecv()

mpi_send()

mpi_send()

mpi_wait()

mpi_wait()

mpi_irecv()

mpi_irecv()

mpi_send()

mpi_send()

mpi_wait()

mpi_wait()

mpi_irecv()

mpi_irecv()

mpi_send()

mpi_send()

mpi_wait()

mpi_wait()

}

---------------------------------------------

loop3()

{

mpi_allreduce(1,MPI_DOUBLE_PRECISION,MPI_MAX)

mpi_allreduce(1,MPI_DOUBLE_PRECISION,MPI_MAX)

mpi_allreduce(1,MPI_DOUBLE_PRECISION,MPI_MIN)

mpi_allreduce(4,MPI_INTEGER,MPI_MAX)

}



16

VI. SP Benchmark Code

mpi_bcast(1,MPI_INTEGER)

mpi_bcast(1,MPI_INTEGER)

mpi_bcast(3,MPI_INTEGER)

loop()

mpi_barrier()

do i=1,400

loop()

end do

mpi_allreduce(5,MPI_DOUBLE_PRECISION,MPI_SUM)

mpi_irecv()

mpi_irecv()

mpi_irecv()

mpi_irecv()

mpi_irecv()

mpi_irecv()

mpi_isend()

mpi_isend()

mpi_isend()

mpi_isend()

mpi_isend()

mpi_isend()

mpi_waitall()

mpi_allreduce(5,MPI_DOUBLE_PRECISION,MPI_SUM)

mpi_reduce(1,MPI_DOUBLE_PRECISION,MPI_MAX)

---------------------------------------------

loop()

{

mpi_irecv()

mpi_irecv()

mpi_irecv()

mpi_irecv()

mpi_irecv()

mpi_irecv()

mpi_isend()

mpi_isend()

mpi_isend()

mpi_isend()

mpi_isend()

mpi_isend()

mpi_waitall()

/* x-axis */

do i=1,sqrt(number_of_processors)-1

mpi_isend()

mpi_irecv()

mpi_waitall()

end do

/* x-axis */

do i=1,sqrt(number_of_processors)-1

mpi_isend()

mpi_irecv()

mpi_waitall()

end do

/* y-axis */

do i=1,sqrt(number_of_processors)-1

mpi_isend()

mpi_irecv()

mpi_waitall()

end do

/* y-axis */

do i=1,sqrt(number_of_processors)-1

mpi_isend()

mpi_irecv()

mpi_waitall()

end do

/* z-axis */

do i=1,sqrt(number_of_processors)-1

mpi_isend()

mpi_irecv()

mpi_waitall()

end do

/* z-axis */

do i=1,sqrt(number_of_processors)-1

mpi_isend()

mpi_irecv()

mpi_waitall()

end do

}


