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Abstract

We give an algorithm for determining an optimal step function approximation of weighted data, where the
error is measured with respect to theL∞ norm. The algorithm takesΘ(n+ log n · b(1 + log n/b)) time and
Θ(n) space, whereb is the number of steps. Thus the time isΘ(n log n) in the worst case andΘ(n) when
b = O(n/ log n log log n). A minor change determines the optimal reduced isotonic regression in the same
time and space bounds, and the algorithm also solves thek-center problem for 1-dimensional data.
Keywords: step function approximation; reduced isotonic regression; variable width histogram; k-center

1 Introduction

Step functions are a fundamental form of approximation, arising in variable width histograms, databases,
segmentation, approximating sets of planar points, piecewise constant approximations, etc. Here we are
interested inL∞ stepwise approximation of weighted data. By weighted data(y,w) on 1 . . . n we mean
values(yi, wi), 1 ≤ i ≤ n, whereyi is an arbitrary real number andwi (the weight) is a nonnegative real
number. For integersi ≤ j let [i : j] denotei . . . j. A function f on [1 : n] is a b-step functioniff there
are indicesj1 = 1 < j1 < . . . < jb+1 = n + 1 and real valuesCk, k ∈ [1 : b], such thatfi = Ck for
i ∈ [jk : jk+1−1]. f is anoptimalL∞ b-step approximation of(y,w) iff it minimizes the weightedL∞

error,max{wi · |fi− yi| : i ∈ [1 :n]}, among allb-step functions. Since a step can be split into smaller ones,
we do not differential between “b steps” and “no more thanb steps”.

Several authors have developed algorithms forL∞ b-step regression [2, 3, 4, 5, 7, 8, 10, 11, 12, 13].
The fastest practical algorithm for weighted data takesΘ(min{n log2 n, n log n + b2 log4 n}) time and
Θ(n log n) space [2]. There is aΘ(n log n) time algorithm [5, 10], but it is decidedly impractical. As
Fournier and Vigneron noted [5], “it would be interesting tohave a practicalO(n log n)-time deterministic
algorithm”. We present such an algorithm, and improve upon the time bound whenb = o(n). Further, it
uses onlyΘ(n) space.

With a small change the algorithm also produces a “reduced isotonic” b-step function.f is anisotonic
function iff f1 ≤ f2 ≤ . . . ≤ fn, and is anoptimalL∞ b-step reduced isotonic regression of(y,w) iff
it minimizes theL∞ error among all isotonicb-step functions. Isotonic regression is an important form
of nonparametric regression that allows researchers to replace parametric assumptions with weaker shape
constraints [1, 14]. Some researchers were concerned that it can overfit the data and/or be too complicated [9,
15, 16] and resorted to reduced isotonic regression. However, they used approximations because previous
exact algorithms were too slow.

2 L∞ b-Step Approximation

Algorithm A is similar to those in [2, 4] where a tree structure is used to determine theL∞ error of an optimal
step on a given interval. They also utilize a feasibility test, i.e., a decision procedure which is givenǫ andb
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build an interval tree of bounded envelopes,
utilizing feasibility tests during the construction

use search in a sorted matrix to determine minimum feasible error ǫ,
exploiting the fact that evaluations at one stage are related to those in the previous stage

use ǫ to generate an optimal approximation

Algorithm A: OptimalL∞ stepwise approximation or reduced isotonic regression

and decides if there is ab-step approximation with error no more thanǫ. If there is such an approximation
then the test produces it. We incorporate important improvements to this basic approach. Feasibility tests
are used to build the tree, not just during the search, and we exploit the fact that the values being determined
at one stage of the search are related to those determined previously. We will show:

Theorem 1 Given weighted data(y,w) and number of stepsb, Algorithm A finds an optimalL∞ b-step
approximation, or an optimalL∞ b-step reduced isotonic regression, inΘ(n+ log n · b(1 + log n/b)) time
andΘ(n) space.

Given a set(y,w) of weighted values andk ∈ [1 :n], the1-dimensional weightedk-center problemis
to find a setS = {s1, . . . , sk} of real numbers that minimizesmax{d(yi, S) : i ∈ [1 : n]}, whered(·, S)
is the weighted distance toS, i.e.,d(yi, S) = min{wi · |yi − sj| : j ∈ [1 : k]}. This can be determined by
finding an optimalk-step approximation of the values in sorted order, using thestep values as the elements
of S. Thus Algorithm A also solves thek-center problem for sorted weighted data in the time indicated.

From now on we generally omit mention of “L∞” and “optimal” since they are implied. To simplify
exposition we assume thatn is an integral power of 2.

2.1 Tree of Bounded Envelopes

For a weighted value(y,w), the error of usingz ≥ y as its regression value is given by the ray in the
upper half-plane that starts at(y, 0) with slopew. Given a set of weighted data(y,w), its upward error
envelopeis the topmost sequence of line segments corresponding to all such rays. For eachz, it gives the
maximum error of usingz as the regression value for all points(yi, wi) wherez ≥ yi. Thedownward error
envelopeuses rays in the upper half-plane starting at(yi, 0) with slope−wi, representing the error of using
a regression value≤ yi. The intersection of the downward and upward error envelopes gives the regression
value minimizing the error over the entire set, i.e., the weightedL∞ mean, and its error.

An interval treehas a root which corresponds to the interval[1 :n], its children correspond to[1 :n/2]
and[n/2 + 1:n], their children represent intervals of lengthn/4, etc. The leaves are the intervals of length
1, i.e., 1, 2, . . .n. The intervals represented in the tree will be calledbasic intervals.

Several authors [2, 4, 8] used an interval tree where each node contains the upward and downward error
envelopes of the data in its interval, but most of the rays areunnecessary. Letǫ∗ be the (unknown) error of
an optimalb-piece approximation, and letǫlow < ǫ∗ ≤ ǫhigh. Thenǫ∗ can be determined using only the rays
representing errors in(ǫlow, ǫhigh). All others are discarded, and the remaining ones are abounded envelope.
See Figure 1. In our interval tree each node contains its upward and downward bounded envelopes.

Given a set of intervals that have been merged into a single step, and givenǫ ∈ (ǫlow, ǫhigh], one can
quickly determine the error of the step relative toǫ. Let U be the union of the segments in the intervals’
upward bounded envelopes andD the union of the segments in their downward bounded envelopes. For ray
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a, b, andy are in bounded envelopes;c, x andz are discarded
Sinceb−1(ǫlow) < y−1(ǫlow), interval error< ǫlow

Figure 1: Downward and upward bounded envelopes

r let r−1(y) denote thex such thatr has errory atx. Letu = min{r−1(ǫ) : r ∈ U} andd = max{r−1(ǫ) :
r ∈ D}. u andd are the points with errorǫ on the upward and downward, respectively, envelopes of the
union of the intervals. Then the step has error<, =, or > ǫ if u > d, u = d, or u < d, respectively. This
bounding testcan be decided in time linear in the total number of rays in theintervals’ bounded envelopes.

The bounded envelopes are stored as a doubly-linked list in order of slope. Whenever a node is visited,
rays with segments outside(ǫlow, ǫhigh) are discarded. The time to perform this is charged to the rays, not
the search, and the time is linear in the number of rays discarded. Whenever the number of remaining rays
is counted, the count is only of those that would not be discarded given the current(ǫlow, ǫhigh).

2.2 Feasibility Tests

An arbitrary interval[i : j] can be decomposed intoΘ(log(j − i + 1)) basic intervals where the sizes
increase at each step and then decrease, with perhaps two intervals of the same size in the middle. E.g.,
[2 : 13] = [2 : 2] ∪ [3 : 4] ∪ [5 : 8] ∪ [9 : 12] ∪ [13 : 13]. These can be generated inΘ(log n) time by a tree
traversal starting ati, moving upward to the least common ancestor ofi andj, and then downward toj.
Suppose, giveni andǫ ∈ (ǫlow, ǫhigh), we want to determine the maximumj such that the error of making
[i : j] a single step is≤ ǫ. We do this by locatingj + 1. By incrementally updatingu andd used in the
bounding test, on the upward pass at each nodep one can determine ifj + 1 is less than or equal to the
largest value inp’s subtree by using the bounded envelopes inp’s right subtree to decide if adding the right
tree gives an error> ǫ. On the downward pass one can decide ifj + 1 is in p’s right subtree by deciding
if adding the left subtree gives an error> ǫ. Not counting the queries of children’s envelopes, the nodes
visited are the same as those in going fromi to j + 1 whenj + 1 is known.

Given b andǫ ∈ (ǫlow, ǫhigh), a feasibility testdetermines if there is ab-step function with regression
error≤ ǫ. This can be accomplished by starting at 1 and determining the largestj1 for which the error of
making[i :j1] a single step is≤ ǫ, then starting atj1+1 and determining the largestj2 for which the error of
making[j1 +1:j2] a single step is≤ ǫ, etc. If thebth step is finished beforen is reached thenǫ is infeasible
and the test stops. Otherwise,ǫ is feasible and the steps have been identified.

A feasibility test forb-step reduced isotonic regression is essentially the same.The regression value
used for the first step is the smallest possible with error≤ ǫ, i.e.,d. Denoting this asd1, in the search for the
second step itsd value is initialized tod1, not−∞, and then the search continues as before, always using
the final value ofdk to initialize dk+1. For both tests the time is linear in the number of rays encountered.

LetW be the set of nodes visited in a feasibility test. The test visits each node ofW at most twice, once
on an upward phase and once on a downward phase. Thus at any level at mostb nodes are visited. The top
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⌊lg b⌋ levels have a total ofΘ(b) nodes. There are⌈lg n⌉−⌊lg b⌋ = Θ(log n/b) levels below this, so in total
Θ(b(1 + log n/b)) nodes are visited. Feasibility tests during tree construction have a slight change in that
when levelk is being constructed, at levelk the search goes sideways, not upwards, from one node to the
next at the same level. Thus the number of nodes visited increases by at mostn/2k.

2.3 Constructing the Tree

A straightforward generation of bounded envelopes first constructs standard error envelopes withΘ(n log n)
total segments and then eliminates rays. To reduce the spaceand time we interleave constructing the interval
tree of bounded envelopes with continually narrowing the gap betweenǫlow and ǫhigh. At the end of the
construction,(ǫlow, ǫhigh] will be so small that each bounded envelope is a single ray.

First a feasibility test withǫ = 0 is performed using only the base level. If it passes then the algorithm
is done. Otherwise, setǫlow = 0, ǫhigh = ∞. At level 0 each interval is a singleton, with single rays
in its upward and downward envelopes for a total of2n rays. At the next level envelopes from below are
merged, forming≤ 2n segments (some rays may be completely covered and hence immediately discarded),
and there are≤ n segment endpoints (e.g., the endpoint ofa and b in Fig. 1). Put the errors of these
endpoints in a multisetR and move up to level 2. Throughout,R is an unordered multiset of endpoint errors
in (ǫlow, ǫhigh), where|R| is the total number of rays in envelopes in all of the envelopes created so far,
minus the 1 per envelope required and minus those that will bediscarded when their node is visited. For
any feasibility test the time is at worst linear in the time itwould take if there were only 1 ray per envelope
(analyzed in Section 2.2) plus the size ofR.

To describe the procedure for levelk, let m = n/2k. At the start|R| ≤ 4m. There are4m envelopes
at levelk − 1, each requiring one ray, and all of the entries inR might correspond to additional rays at that
level, so when the envelopes are merged to form the2m envelopes at levelk there may be8m− 2m = 6m
segment endpoints. Add those endpoint errors which are in(ǫlow, ǫhigh) to R, which may now have size
10m. Take the median error inR and do a feasibility test of it. Depending on the outcome, oneof ǫlow and
ǫhigh is adjusted, and at least 1/2 the entries inR can be eliminated. Doing this 3 times results in|R| < 2m,
completing the procedure for levelk.

When the top is reached|R| ≤ 4 and by using feasibility tests all the endpoint errors can beeliminated,
i.e., (ǫlow, ǫhigh) has been narrowed so that at every node of the interval tree the upward and downward
bounded envelopes have only one ray. Go through the tree and remove all rays with segments outside
(ǫlow, ǫhigh), takingΘ(n) time. This completes the tree construction. There areΘ(log n) feasibility tests,
each involving time added by moving sideways at levelk, rather than up and down in the tree. The total
sideways time isΘ(n), so the time to construct the tree isΘ(n+ log n · b(1 + log n/b)).

2.4 Search for Minimal Feasible Error

TheL∞ error of a stepwise approximation is the maximum of theL∞ errors of its steps. Thus there is an
interval [i : j] such that the error of an optimalb-step approximation is the error of using the weightedL∞

mean as the step value on[i :j]. A search on such errors, coupled with a feasibility test, can find the minimal
feasible error. “Parametric search” was used in [5, 10] but this is only of theoretical interest since parametric
search is completely impractical, involving very complex data structures and quite large constants.

Search in a sorted matrixprovides a practical approach (see [6]). LetE be then × n matrix where
E(i, j) is the error of using theL∞ mean on[i : j] if i ≤ j, and is 0 ifi > j. E is not actually created, but
rather serves as a conceptual guide. Its rows are nondecreasing and the columns are nonincreasing, so for
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any submatrix its largest entry is in the upper right and the smallest is in the lower left. The algorithm has
stages0 . . . lg n −1, where at the start of stagei there is a collection of disjoint square submatrices of size
n/2i. Note that the minimal feasible error is one of the entries ofE.

Stage 0 starts with all ofE. At each stage, divide all of the matrices into quadrants, and letǫ1 be a median
of the lower left entries of the quadrants, i.e., a median of their smallest values, and letǫ2 be a median of
the upper right entries. Ifǫ1 is feasible then any quadrant with smallest value≥ ǫ1 is eliminated and
ǫhigh = min{ǫhigh, ǫ1}, while if ǫ1 is not feasible then any quadrant with largest value≤ ǫ1 is eliminated
and ǫlow = max{ǫlow, ǫ1}. Similar eliminations are done based on the feasibility ofǫ2. The remaining
quadrants are the matrices that start of the next stage. After the last stage, when the remaining matrices are
1× 1, a standard binary search on these values is used to locate the minimal feasible error.

This search usesΘ(log n) feasibility tests, and, as proven in [6], onlyΘ(n) entries ofE are evaluated.

2.5 Evaluating E

For intervalsI, J ⊆ [1 :n] let E(I, J) denote the submatrix{E(i, j) : i ∈ I, j ∈ J}, i.e., the submatrix of
all intervals starting at somei ∈ I and ending at somej ∈ J . Search in a sorted matrix has the property
that at the start of stages there is a collection of submatrices of the formE(I, J) for basic intervalsI, J
of sizen/2s. Either I = J , or I is to the left ofJ and there is a (perhaps empty) intervalK between
them with length an integral multiple ofn/2s. During stages, I andJ are cut in half intoI1, I2 andJ1,
J2, respectively, and the smallest and largest values inE(I1, J1), E(I1, J2), E(I2, J1), andE(I2, J2) are
determined. Leti′1 denote the smallest index inI1 and i′′1 its largest index, and letj′1, j′′1 be the smallest
and largest, respectively, indices inJ1. Then the smallest value inE(I1, J1), i.e., E(i′′1 , j

′

1), is the error
of making the intervali′′1 ∪ I2K ∪ j′1 a single step, and the largest value inE(I1, J1), E(i′1, j

′′

1 ), is the
error of the intervalI1I2KJ1. Similarly the smallest and largest values in each ofE(I1, J2), E(I2, J1) and
E(I2, J2) are the errors of intervals which are the union of consecutive elements of{I1, I2,K, J1, J2}, with
perhaps additional singleton indices at the start or end. The upward and downward envelopes forE(i′′1 , j

′

1)
have single rays forI2, i′′1 , andj′1, so the time to determine their intersection, or decide it isoutside of
(elow, ehigh), is linear in a constant plus the size of the bounded envelopes forK. Similar results hold for all
of the other values needed at this stage.

Associate the bounded envelopes forK with E(I, J), and if, say,E(I1, J1) is kept for stages+ 1 then
the envelopes forI2K are associated with it, and similarly for each of the other children ofE(I, J). Just as
for the upward construction of the tree, as the search in a sorted matrix is proceeding top-down, in addition
to the feasibility tests for the basic search we reduce the number of rays by interleaving tests based on the
endpoints of the segments. Each bounded envelope can be copied 4 times, and each child may add up to 2
rays, so by using 2 additional tests at each step the total number of rays in the bounded envelopes at stages
isΘ(2s). Since the time to evaluate an entry ofE is linear in the number of rays involved, the total time for
the evaluation of entries ofE over all steps of the algorithm isΘ(n), and the total time for the feasibility
tests isΘ(log n · b(1 + log n/b)).

3 Final Comments

Step function approximation arises in a variety of guises and contexts, as does isotonic regression (see
the myriad citations to [1, 14]). For weighted data, Algorithm A finds anL∞ b-step approximation, an
L∞ b-step reduced isotonic regression, or solves the 1-dimensional k-center problem for sorted data, in
Θ(n+logn · b(1+ log n/b)) time. Previous algorithms had slower worst-case time [2, 3,4, 7, 8, 11, 12, 13]
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or, as their authors noted, were highly impractical [5, 10] (and these too were slower whenb = o(n)).
Further, they all usedΩ(n log n) space, while Algorithm A uses onlyΘ(n). The algorithm even improves
upon the previous fastest algorithm for unweighted data, which takesΘ(n+ b2 log3 n) time [8].
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