
ar
X

iv
:1

50
7.

02
22

6v
2

 [
cs

.D
S]

 2
2

Ju
n

20
17

L∞ Isotonic Regression for Linear, Multidimensional, and Tree Orders

Quentin F. Stout

qstout@umich.edu

University of Michigan

Ann Arbor, MI

Abstract

Algorithms are given for determining L∞ isotonic regression of weighted data. For a linear order, grid in

multidimensional space, or tree, of n vertices, optimal algorithms are given, taking Θ(n) time. These im-

prove upon previous algorithms by a factor of Ω(log n). For vertices at arbitrary positions in d-dimensional

space a Θ(n logd−1 n) algorithm employs iterative sorting to yield the functionality of a multidimensional

structure while using only Θ(n) space. The algorithms utilize a new non-constructive feasibility test on a

rendezvous graph, with bounded error envelopes at each vertex.

Keywords: weighted L∞ isotonic regression, shape-constrained nonparametric regression, linear order,

multidimensional domination, tree, rendezvous graph, coordinate-wise ordering

1 Introduction

This paper gives efficient algorithms for determining optimal L∞ isotonic regression functions for weighted

data. For example, consider predicting weight as a function of height and S < M < L < XL shirt size.

Average weight is an increasing function of height and of shirt size, but there may be no assumptions about

the relative weights of people shorter and with a larger shirt size vs. taller and smaller shirt size. A parametric

model, such as linear regression, may not be justified, and would require a metric on shirt sizes, not just an

ordering. Isotonic regression is useful here since it merely assumes a direction on each variable.

Isotonic regression is a fundamental nonparametric regression, long used for numerous applications [3,

38] and mathematically equivalent problems [24], and is getting increased attention in machine learning and

data mining due to its flexibility and minimal assumptions [8, 9, 16, 21, 25, 32, 34, 36, 49]. For example,

the Isotron algorithm provably learns single index models [21]. As another example, a classification system

may have some confidence that an item in an image is squirrel, of it being a rat, a mammal, etc., with the

isotonic requirement that as one moves up the taxonomy tree the confidence does not decrease [22, 34].

Formally, given a directed acyclic graph (dag) G = (V,E), for vertices u, v ∈ V , u ≺ v iff there is a

path in G from u to v. A real-valued function f on V is isotonic iff whenever u ≺ v then f(u) ≤ f(v).
By weighted data (y,w) on G we mean functions y,w on V where y(v) is an arbitrary real value and w(v)
(the weight) is nonnegative, for v ∈ V . Given weighted data (y,w), an isotonic function f on V is an Lp

isotonic regression iff it minimizes the weighted Lp error

(
∑

u∈V w(u)|y(u) − f(u)|p
)1/p

1 ≤ p < ∞

maxu∈V w(u) |y(u) − f(u)| p = ∞

among all isotonic functions. See Figure 1. Note that when V is points on the real line, f is not necessarily

defined at points not in V . For example, if all weights are the same and the (x, y) values are (1,7), (2,5),

1

http://arxiv.org/abs/1507.02226v2

Figure 1: Isotonic Regression on 4×3 Grid

(3,8), then for all p an optimal regression is 6 on [1,2] and 8 at 3, but for any x ∈ (2, 3) and y ∈ [6, 8] there

is an optimal isotonic regression f for which f(x) = y. Further, while isotonic regression is unique when

1 < p < ∞, for p = ∞ it is not necessarily unique. For example, given values 4, 1, 3, with weights 1, 1, 1,

on 0, 1, 2 with the natural ordering, a function is an L∞ isotonic regression iff its values are 2.5, 2.5, c, for

c ∈ [2.5, 4.5].
For a dag of n vertices and m edges, previous algorithms for weighted L∞ regression were Ω(m log n)

no matter what the dag was [24, 27, 29, 44], though a randomized algorithm taking Θ(m) expected time

appears in [26]. Here we give Θ(n) algorithms for the dags of most interest, namely linear, tree, and multidi-

mensional grids. We also give an algorithm for arbitrary points in d-dimensional space with component-wise

ordering, d ≥ 2, taking Θ(n logd−1 n) time and only Θ(n) space. For all 1 ≤ p ≤ ∞, previous algorithms

for Lp isotonic regression for such inputs required Ω(n logd−1 d) space and more time.

2 Preliminaries

For linear orders it is well known that the L1, L2, and L∞ isotonic regressions can easily be found in

Θ(n log n), Θ(n) time, and Θ(n log n) time, respectively, by using “pool adjacent violators” (PAV) where

whenever adjacent level sets are not isotonic they are pooled together into a larger set where all the re-

gression values are the same. Algorithms for multidimensional orderings have concentrated on 2 dimen-

sional grids [5, 12, 13, 17, 31, 35, 37, 42], with the fastest taking Θ(n log n) time for L1 [43], Θ(n2) for

L2 [42], and Θ(n log n) for L∞ [44]. For grids of dimension > 2, and d-dimensional points in arbitrary

positions, d ≥ 2, the fastest algorithms just apply the fastest algorithm for arbitrary dags, which takes

Θ(nm + n2 log n) time for L1 [2] (Θ(min{nm + n2 log n, n2.5 log n}) if the data is unweighted [45]),

Θ(nm log n) for L2 [20], and Θ(m log n) for L∞ [44] (Θ(m) if the data is unweighted).

Given data (y,w) on dag G = (V,E), for u, v ∈ V , with u ≺ v and y(u) ≥ y(v), let mean(u, v) =
(y(u)w(u) + y(v)w(v))/(w(u) + w(v)) and mean err(u, v) = w(u)w(v)(y(u) + y(v))/(w(u) + w(v)).
For any isotonic function f , the weighted error of at least one of f(u) and f(v) is ≥ mean err(u, v), which

is minimized when f(u) = f(u) = mean(u, u). Because of the isotonic restriction, a larger value at u
forces a larger value at u, increasing the error there, and, similarly, a smaller value at v increases the error at

u. The most widely known L∞ isotonic regression f is given by f(x) = mean(u′, v′), where

(u′, v′) = argmax{mean err(u, v) : u, v ∈ V, u � x � v, y(u) ≥ y(v)}

Note that the optimal regression error, ǫopt, is max{mean err(u, v) : u � v, y(u) ≥ y(v)}.

A simplistic use of this could take Θ(n3) time, so more efficient methods are used instead. Given an

ǫ > 0, to decide if ǫ ≥ ǫopt, for x ∈ V let h(x) = y(x)− ǫ/w(x), i.e., the smallest value at x with weighted

error no more than ǫ, and let g(u) = max{h(x) : x � u}. g(u) is the smallest possible value at u of any

isotonic function with error ≤ ǫ on u and its predecessors, and thus there is an isotonic function with error

2

e

r

r

o

r
essential

segment
endpoint
errors

ɛhigh

ɛ low

a

b

c

d

regression value

mean

mean error

only b, c, d are essential

Figure 2: Standard error envelopes and a bounded downward error envelope

≤ ǫ iff g is one, i.e., iff g(u) ≤ y(u) + ǫ/w(u) for all u ∈ V . This is usually called a feasibility test, but

here will be called a feasibility construction. It can be computed in Θ(m) time via topological sort.

For the L∞ metric, isotonic regression and related nonparametric regressions such as b-step (where

the regression is piecewise constant with at most b pieces), researchers have used an approach based on

searching through mean err values to find ǫopt, using a feasibility construction to guide the search and to

generate the final regression [11, 15, 18, 23, 24, 28, 44]. Ω(log n) feasibility constructions are performed,

so the time is Ω(m log n).
This paper gives a technique for determining ǫopt more rapidly, using a nonconstructive feasibility test

(“pairwise feasibility test”, Sec. 2.3). It utilizes a “rendezvous graph” (Sec. 2.2) as a succinct representation

of the transitive closure of the original dag. This graph has Θ(log n) levels, with the base corresponding to

the vertices of the original dag. The algorithm traverses the rendezvous graph level by level, with “bounded

error envelopes” (Sec. 2.1) used to generate mean err values and for the pairwise error test.

2.1 Bounded Error Envelopes

There is a geometric interpretation of mean and mean err: for a weighted value (a, b), the ray in the up-

per half plane that starts at (a, 0) with slope b gives the error of using a regression value greater than a
(this will be called the upward ray) and the ray that starts at (a, 0) with slope −b gives the error of us-

ing a smaller value (this will be called the downward ray). If y1 < y2 then mean((y1,w1), (y2,w2)) and

mean err((y1,w1), (y2,w2)) are given by the intersection of the upward ray of (y1, w1) and the downward

ray of (y2, w2). Given disjoint sets V1, V2 ⊆ V , let s = max{mean err(v1, v2) : v1 ∈ V1, v2 ∈ V2, y(v1) ≥
y(v2)}. If every element of V1 precedes every element of V2, then any isotonic function must have error at

least s. To determine s let D be the set of downward rays corresponding to the elements of V1 and U the

set of upward rays corresponding to elements of V2. The downward envelope of V1 is the piecewise linear

function which is the pointwise maximum over all rays in D, and the upward envelope of V2 is the pointwise

maximum of all rays in U (see Figure 2). The value of s is the error of the intersection of the downward

envelop of V1 and the upward envelope of V2 (if they don’t intersect then s = 0), and the ordinate of this

intersection is the regression value achieving s.

While error envelopes have been used by many authors, in general not all of the segments in the en-

velopes are necessary. Suppose bounds ǫlow, ǫhigh are known, where ǫlow ≤ ǫopt < ǫhigh. Then only the

portions of the envelopes representing errors in (ǫlow, ǫhigh) are needed to determine ǫopt. The segments

of the envelope representing errors in (ǫlow, ǫhigh) are essential, and the others are inessential and can be

pruned. The essential segments form a bounded envelope, as shown in Figure 2. The interval [ǫlow, ǫhigh] is

continually narrowed. However, this is only used to reduce the number of essential segments at the current

level or above: nodes at lower levels are never revisited.

Bounded envelopes will be associated with vertices of the rendezvous graph described below, where the

3

G

R

.

To simplify the description of the algorithm, labels of rendezvous graph
leaf nodes are twice that of the linear order node they cover.

0 1 2 3 4 5

8 100 2 4 6

951

3 11

7

Figure 3: Rendezvous graphs: generic, and for linear order, n=6

downward bounded envelope at vertex u is denoted denv(u) and its upward bounded envelope is uenv(u).
Since we will always have an upper bound ǫhigh > ǫopt, and the intersection of denv(u) and uenv(u) is no

greater than ǫopt, with bounded envelopes we can determine the intersection of denv(u) and uenv(u) if it

is ≥ ǫlow, and if it is < ǫlow then we can determine that fact though not necessarily its (not needed) value.

Bounded envelopes are stored as simple lists ordered by slope, and all operations on bounded envelopes can

be done in time linear in the number of segments.

2.2 Rendezvous Graphs

For a dag G = (V,E), a rendezvous graph R = (VR, ER) is used to help speed up the calculations. These

were introduced in [45], though here they are modified slightly. The nodes of R have height 0, . . . , h, for

some h ≥ 1, where the leaves are at height 0 and correspond to the vertices of G. A node at height i only

has edges to nodes at height i− 1 and i+ 1. For dags more complicated than a linear order the rendezvous

graph is not a tree, but we will still call the adjacent nodes below children and adjacent nodes above parents

(see Figure 3). A node r ∈ VR covers a set S(r) ⊂ V , where S(r) corresponds to the set of leaf nodes in the

descendants of r. A node r may have several children, but there is a unique small child, denoted rS , and a

unique large child, denoted rL, such if v, u ∈ V and rS covers u and rL covers v, then u ≺ v in G. Further,

for every pair of vertices u, v ∈ V , if u ≺ v then there is a vertex r ∈ VR such that u is covered by rS and

v is covered by rL. This is their rendezvous node. Here their rendezvous node is unique, but the algorithm

only depends upon the existence of at least one rendezvous for them.

To explain the presence of other children, suppose r covers a rectangular matrix, with children nodes r00,

r01, r10, and r11, each covering a quadrant of the rectangle. If r00 covers the lower left quadrant (in standard

ordering), then it is the small child, and if r11 covers the upper left quadrant it is the large child. Both of r01
and r10 cover vertices that are successors of some vertices covered by r00 but not all, and vertices that are

predecessors of some elements covered by r11 but not all. Vertices in V covered by r00 or r11 rendezvous

with those covered by r01 or r10 at lower levels. However, data values in all 4 quadrants are needed to

construct r’s bounded error envelopes to be used at higher levels.

For every vertex r ∈ VR, the intersection of denv(rS) and uenv(rL) gives

ǫr = max{mean err(v,w) : v ∈ V covered by rS , w ∈ V covered by rL, y(v) ≥ y(w)}

mean err values involving vertices not in rS nor rL, are ignored. Since every pair u ≺ v in G rendezvous

somewhere, ǫopt = max{ǫr : r ∈ VR}. Whenever ǫr is calculated we set ǫlow = max{ǫlow, ǫr} and never

revisit r.

4

2.3 Pairwise Feasibility Test and Reducing the Number of Segments

A pairwise feasibility test is given δ > ǫlow, and determines if mean err(u, v) ≤ δ for all pairs u ≺ v where

y(u) ≥ y(v). If true, ǫhigh = min{ǫhigh, δ}. It can be proven by showing ǫr ≤ δ for all rendezvous nodes r.

Let D(r, x) = denv(r)−1(x), i.e., the regression value of the point on denv(r) with error x, and U(r, x) =
uenv(r)−1(x) be the corresponding value for the upward envelope. Then ǫr ≤ x iff U(rS , x) ≤ D(rL, x).
A test is initiated at level h after ǫr has been determined for all vertices r at level h and below, in which case

ǫlow is the largest such value (ǫr isn’t computed exactly if U(r, ǫlow) ≤ D(r, ǫlow) since ǫr ≤ ǫlow). Thus we

only need to determine if ǫr ≤ δ for vertices at level h+1 and above. First, for all vertices v ∈ VR at height

h, construct denv(v) and uenv(v) from the union of the envelopes of all of v’s children.

For a pairwise feasibility test of ǫlow < δ < ǫhigh initiated at level h:

1. For all vertices v at height h, compute D(v, δ) and U(v, δ).

2. Level by level, starting at level h + 1, for a vertex r, if D(rS , δ) > U(rL, δ) then the test fails.

Otherwise, D(r, δ) = max{D(v, δ) : v a child of r} and U(r, δ) = min{U(v, δ) : v a child of r}.

The pairwise feasibility test succeeds iff it does not fail anywhere, in which case ǫhigh = δ. Its time is the

time to compute the bounded envelopes at level h, which is linear in the number of envelope segments at

that level, plus time linear in the sum, over all nodes at height h + 1 and above, of the number of children.

The algorithms insure that both terms are O(n/2h).
To reduce the time the number of envelope segments is continually reduced. After denv(r) and uenv(r)

are created for all nodes r at height h, for a bounded upward or downward envelope at a node, consider the

errors of the endpoints of its essential segments (see Fig. 2) and let E be the union of these errors over all

nodes at level h (E is a multiset). Then either ǫopt ∈ E or there are two consecutive errors ǫ1, ǫ2 ∈ E such

that ǫ1 < ǫopt < ǫ2 (or ǫopt is less than the smallest, or greater than the largest, value in E). By taking the

median error δ in E and using a pairwise feasibility test to determine if δ ≥ ǫopt one can eliminate 1/2 of

the endpoint errors in E and eliminate corresponding segments in the envelopes. This is not quite the same

as eliminating 1/2 the segments since each bounded envelope has at least one segment, hence the number of

essential segments is 2x+ |E|, where x is the number of vertices at level h.

Observation 1: Let c < 1 be given. Suppose there are ≤ 3x essential segments at level h, each rendezvous

node has at most k parents (and hence each bounded envelope from level h is used at most k times to create

envelopes at level h+1), and the number of nodes at level h+1 is ≤ cx. Then initially there are at most 3kx
essential segments at level h + 1, and hence at most this many segment endpoint errors. Using the median

⌈lg 3k/c⌉ times to reduce the number of segments errors results in at most cx segment endpoint errors, and

thus at most 3cx essential segments, at level h + 1. Thus if we always use the median this many times at

every level and start with 2n segments at the base there will be ≤ cℓn essential segments at level ℓ.

3 d-Dimensional Points in Grids and Arbitrary Position

For points in d-dimensional space, d ≥ 1, the component-wise ordering, also known as domination or

product order, is used, i.e., (a1, . . . , ad) ≺ (b1, . . . , bd) iff aj ≤ bj for all 1 ≤ j ≤ d. Since it is only

the ordering of the independent variable that is important, not their values, for linear orders we assume the

values are {0, . . . , n − 1}. A d-dimensional grid of size n1 × . . . × nd has vertices (i1, . . . id), where

0 ≤ ij ≤ nj − 1 for all 1 ≤ j ≤ d. To avoid degeneracy we assume that nj ≥ 2 for all 1 ≤ j ≤ d. For

points in arbitrary position the ith coordinate, 1 ≤ i ≤ d, has values 0 . . . ni − 1, where each value appears

at least once. If the original coordinates are different they can be converted to this form in Θ(n log n) time,

but this is only needed for points in arbitrary position.

5

1 for every rendezvous vertex r at height 0 initialize denv(r), uenv(r) {single rays}
2 ǫlow = 0; ǫhigh = ∞
3 for h = 1 to ⌈lg n⌉ {number of segments in envelopes at level h− 1 is ≤ ⌈3n/2h−1⌉}
4 E = ∅ {E is multiset of segment endpoint errors}
5 for every vertex r at height h {modifications needed for r > 2n− 2 since no large child}
6 rS = r − 2h−1; rL = r+ 2h−1 {small and large child, respectively}
7 ǫlow = max{ǫlow, error of intersection of denv(rS) and uenv(rL)}
8 denv(r) = merge(denv(rS), denv(rL)); uenv(r) = merge(uenv(rS), uenv(rL))
9 add endpoint errors of denv(r) and uenv(r) that are in (ǫlow, ǫhigh) to E

10 repeat 3 times {insures final |E| ≤ ⌈n/2h⌉}
11 δ = median error of values in E

12 if pairwise feasibility test(δ) then ǫhigh = δ else ǫlow = δ
13 remove errors in E outside (ǫlow, ǫhigh)
14 for every vertex r at level h

15 remove inessential segments from r′s envelopes

16 construct isotonic regression using ǫlow {at this point ǫlow = ǫopt}

Algorithm A: L∞ Isotonic regression of linear order using rendezvous graph

For grids the input is a n1 × . . . × nd array, but for points in arbitrary position we merely assume the

data is given in a list or linear array format since it may be that n ≪ n1 × . . .× nd.

Theorem 1 Given weighted data (y,w) on a set of n vertices in d-dimensional space with component-wise

ordering, d ≥ 1, an L∞ isotonic regression of the data can be determined in

a) Θ(n) time and space if the vertices form a grid, and

b) Θ(n logd−1 n) time and Θ(n) space if the vertices are in arbitrary positions,

where the implied constants depend upon d.

a) is proven in Sec. 3.1 for linear orders and in Sec. 3.2 for d-dimensional grids. b) is proven in Sec. 3.3.

3.1 Linear Orders

Let G = (V,E) be a linear order with vertices {0, . . . , n − 1}. The rendezvous graph R = (VR, ER) for

G is a simple binary tree (see Figure 3). The only unusual aspect is that the vertices in VR at height 0 have

labels twice that of the ones they correspond to in V , which is used merely to simplify the description of the

algorithm. A vertex i in VR at height h ≥ 1 has two children i± 2h−1, though the larger child will be absent

if i > 2n− 2. The maximum height is L = ⌈lg n⌉ and |VR| < 2L+1 + L < 3n.

Algorithm A gives the algorithm for isotonic regression on a linear order. It finds the optimal regression

error by using denv and uenv to compute the maximum error at the rendezvous nodes. Technically line

7 is skipped if it is determined that the intersection is less than ǫlow. For the repeat loop, lines 10–13,

Observation 1 shows that only 3 iterations are required to insure that the number of essential segments at

level h is ≤ ⌈3n/2h⌉ (a more careful analysis shows that 2 suffice).

To determine the time of the pairwise feasibility test, in Section 2.3 it was shown that a test started at

level h is linear in the time for determining denv(r)−1(δ) and uenv(r)−1(δ) for all nodes at level h, which

is linear in the number of segments in envelopes at level h, plus time linear in the number of nodes at

higher levels. Both terms are Θ(n/2h), and thus for each iteration of the for-loop at lines 3—15 the time is

Θ(n/2h). Summing over all levels gives Θ(n), proving Theorem 1 a) for linear orders.

6

3.2 Multidimensional Grids

Let G = (V,E) be a n1 × . . . × nd d-dimensional grid. Its rendezvous graph R has vertices R(n1) ×
. . .×R(nd), where R(i) is the rendezvous graph for a linear order on 0 . . . i− 1. For vertex with label s in

R(i) let P (s) denote the label of its parent and height(s) its height (these are independent of i). For vertex

r = (r1, . . . , rd) of R, height(r)=max{height(rj) : 1≤ j≤d}. As before, V corresponds to the vertices

of R of height 0.

The parents of rendezvous node x = (x1, . . . , xd) are of the form w = (w1, . . . , wd), x 6= w, where

wj =

{

P (xj) if height(xj) > 0
xj or P (xj) othewise

Thus x has at most 2d − 1 parents. If any of x’s components are already at the maximum height in their

dimension then x has no parents.

For example, suppose d = 2 and x = (3, 8). Then height(3) = 1, height(8) = 0 (see Fig. 3). x’s

parents are (7,8) and (7,9). The ancestors of x that keep 8 as their second coordinate are part of the 1-

dimensional tree that covers a single row. Meanwhile, (7, 9) covers a 4 × 2 array, its unique parent (15,11)

covers a 8× 4 array, etc., with all of its ancestors covering a rectangle with twice as many rows as columns.

Let x = (x1, . . . , xd), y = (y1, . . . , yd), x 6= y, be vertices in G. If x ≺ y then their rendezvous node

in R is r = (r1, . . . , rd) where ri is the rendezvous node of xi and yi in the linear ordering on dimension i.
Since xi ≤ ri ≤ yi for all i, xi is in the small child of r and y is in its large child.

A simple weak upper bound on the number of rendezvous nodes at height h is if one of the coordinates is

at height h, and all others are unconstrained. A linear order of size nj has ⌈nj/2
h⌉ < nj/2

h−1 rendezvous

nodes at height h ≤ ⌈lg nj⌉ and < 3nj total rendezvous nodes, so an overestimate is

d
∑

i=1

ni

2h−1

d
∏

j=1, j 6=i

3nj =
d3d−1

2h−1
· n

For fixed d this is cd · n/2h for a constant cd. Further, each node as at most 2d − 1 parents, and thus

Observation 1 shows that for a fixed d only a constant number of pairwise feasibility tests using the median

(lines 10-13 in Algorithm A) are needed. Thus the total time is as claimed in Theorem 1 a).

3.3 Points in Arbitrary Position

For points at arbitrary positions in d-dimensional space their ordering is given implicitly via their coor-

dinates, but representing this with an explicit set of edges can result in a large dag. For example, for

2-dimensions, let A = {(−n, 0), (−n + 1,−1), (−n + 2,−2), . . . , (0,−n)} and B = {(0, n), (1, n −
1), . . . (n, 0)}. Then every point in A is dominated by every point in B and representing this explicitly in

a dag requires Θ(n2) edges. However, in a dag G with vertices A ∪ B ∪ (0, 0) the ordering can be repre-

sented by an edge from each vertex of A to (0, 0) and an edge from (0, 0) to each vertex of B, using only

Θ(n) edges. This is an order-preserving embedding of A∪B with coordinate-wise ordering into a dag with

slightly more vertices but significantly fewer edges. (0, 0) is sometimes called a Steiner point.

This observation was used in [45] to create an order-preserving embedding of a set of n points in d-

dimensional space into a dag of Θ(n logd−1 n) vertices and edges. Modifying the construction slightly, let

a(i, h) be the index of the ancestor of i at height h in 1-dimensional rendezvous graphs and let r(i, j) be

the index of the rendezvous node for i ≤ j in 1-d rendezvous graphs (these do not depend on the size of

the linear ordering as long as it is large enough for them to be defined). For d-dimensional points x =

7

0

1

2

3

4

5

A

B

C

D

E

F

G

10 2 3 4 5 6 7 8

0

1

2

3

4

5

A

B

C

D

E

F

G

0 1 2 3 4

Figure 4: 2-dimensional points in arbitrary position and their rendezvous lines

1 ǫlow = 0

2 for h1 = 0 to ⌈lg n1⌉
3 for h2 to ⌈lg n2⌉
4 · · ·
5 for hd−1 = 0 to ⌈lg nd−1⌉
6 sort points into lexical order a(x1, h1)a(x2, h2) · · · a(xd−1, hd−1)xd
7 {in case of ties, break them by sorting in x1x2 . . . xd order}
8 ǫlow = max{ǫlow,max mean err on lines parallel to dimension d}
9 construct isotonic regression using ǫlow, following a similar iterated sorting approach

Algorithm B: L∞ Isotonic regression for points in arbitrary positions in d-dimensional space

(x1, . . . , xd), y = (y1, . . . , yd), if x ≺ y then a natural place for them to rendezvous is the d-dimensional

vertex (r(x1, y1), . . . , r(xd, yd)). This was used for grids, but here they rendezvous at a line in the dth

dimension, with its other coordinates being r(x1, y1), . . . r(xd−1, yd−1) (see Figure 4). x is mapped to point

xd on this line.

To determine ǫopt we need only find the maximum over all rendezvous lines of the maximum mean err

on the line. The lines are independent of each other and we do not use bounded envelopes from one for

another. Each point is mapped to ⌈lg n1⌉ × · · · ⌈lg nd−1⌉ lines. The points are first sorted into lexical

order a(x1, 0)a(x2, 0) · · · a(xd−1, 0)xd and the max mean err on the lines is determined, then into order

a(x1, 0) · · · a(xd−1, 1)xd, etc., as shown in Algorithm B.

In Algorithm B the structure in Figure 4 is never explicitly constructed. Instead, sorting puts the vertices

in a line into consecutive locations, and iterating through the sorting orders creates all of the rendezvous

lines. Thus the total space is only Θ(n) instead of the Θ(n logd−1 n) needed in [45] to create a multidimen-

sional structure. Each sort can be done in Θ(n) time by using radix sort (the implied constants depend on

d), and the maximum mean err on a line can be found in time linear in the number of points on the line

(Algorithm A), so the total time is Θ(n logd−1 n).
There are some aspects in this process that need to be explicated. While the maximum mean err on

a line can be determined in time linear in the length of the line, n1 may be superlinear in this length.

However, if a given line has k points their actual first coordinate is ignored and they are treated as if the

coordinates are 0, . . . , k − 1. Thus the time to find maximum mean err is Θ(k). Further, on each line

one only uses downward bounded envelopes from the small points rendezvousing here, and only upward

bounded envelopes from the large points. If x = (x1, . . . , xd) rendezvouses at line (z2 . . . , zd), it is a small

point iff xi ≤ zi for 1 ≤ i ≤ d− 1, and is large iff zi ≤ xi for 1 ≤ i ≤ d− 1. If neither of these conditions

hold then it is ignored. All of the bookkeeping necessary to determine a point’s rendezvous coordinates

8

0

1

2

3

4

5

depth

Figure 5: The two steps in going from one level to the next in rendezvous graphs for trees

in each iteration, and whether it is small or large, can be done in Θ(1) time, where the implied constants

depend on d.

This concludes the proof of Theorem 1 b).

4 Trees

Recent applications of isotonic regression on trees include taxonomies and analyzing web and GIS data [1,

9, 22, 34]. Here the isotonic ordering is towards the root. For trees the previously fastest isotonic regression

algorithms take Θ(n log n) time for the L1 [43], L2 [33], and L∞ metrics [44]. We will show:

Theorem 2 Given weighted data (y,w) on a rooted tree of n vertices, an L∞ isotonic regression of the

data can be determined in Θ(n) time.

The algorithm is based on a hierarchical decomposition. First, given a rooted tree T = (V,E) one can

convert it to a rooted binary tree T ′ by replacing a vertex v with k > 2 children by a binary subtree with

k − 1 vertices. The parent of the root of this subtree is v’s parent, and the k external leaves are links to v’s

children. The number of vertices in T ′ is less than twice the number in T . Data (y,w) on T it is extended

to data on T ′ by assigning y(v), w(v) to all vertices in the binary tree representing v. An optimal isotonic

regression of this data on T ′ yields an optimal isotonic regression on T by assigning to v ∈ V the value of

the regression at the root of the subtree representing v in T ′. Because all of the above transformations can

be done in linear time, from now on we assume the tree is binary.

The rendezvous graph is created incrementally, with each level being constructed from the one below.

Each rendezvous node r covers a subtree of Sr of T , where at most 2 of the leaves of Sr aren’t also leaves

of T . No two nodes at one level cover the same vertex in T , and thus each level partitions T into subtrees

and the nodes at that level form a binary tree. This is similar to the partitioning for a linear order, where

the partitioning was into subintervals. The tree edges within a level are not used, but serve as a guide to

construct the level above.

Given a tree Th at level h of the rendezvous graph, to create the tree Th+1 at level h+ 1,

1. First make a copy of Th.

2. For every vertex v of this copy, if v has a single child then if v is at an odd depth it merges with its

parent and otherwise merges with its child.

3. In the resulting tree, every leaf merges with its parent, finishing the construction of Th+1.

See Figure 5. This 2-step process is repeated level by level until only a single node remains. Note that the

rules insure that the tree remains binary at each level.

9

When nodes merge they are rendezvousing. With r is stored the downward envelop of all of the vertices

in Sr (the envelope could be viewed as being associated with the root of Sr), and for each of the ≤ 2 leaf

nodes of Sr that aren’t leaf nodes of T it has the upward envelope of the vertices in Sr on the path to the leaf.

There are ≤ ⌊m/2⌋ nodes with 2 children, and all other nodes must merge with some node, hence the next

level has ≤ 3m/4 nodes (better bounds are possible), and thus the total size of the rendezvous graph is linear

in the size of the original tree. To determine the number of pairwise feasibility tests needed at each level,

downward envelopes are merged at most twice, while upward envelopes are only merged once, so k = 2
and c = 3/4 in Observation 1, so using 3 tests to reduce the number of segment endpoint errors suffices.

This proves Theorem 2.

5 Final Remarks

Isotonic regression is a fundamental nonparametric regression, making only a weak shape-constrained as-

sumption. It can be applied to linear and multidimensional orders without artificially requiring a metric on

natural orderings such as S < M < L < XL, and can be applied to more general ordering such as classi-

fication trees. This makes it of increasing interest in machine learning and data mining [8, 9, 14, 16, 21,

32, 34, 36, 49]. The algorithms herein improve upon previous results by Ω(log n) and are optimal for grids

and trees. This improvement also occurs for d-dimensional points in general position, an area where pre-

vious algorithms were criticized as being too slow, forcing researchers to use inferior substitutes such as

approximations or additive models [7, 16, 30, 39, 40, 46].

The algorithms use a mix of a nonconstructive feasibility test, rendezvous graphs, and bounded error en-

velopes. The test and bounded envelopes are new to this paper. The nonconstructive pairwise test allows one

to move up the rendezvous graph, rather than continually returning to the base graph for the constructive test

used previously. Bounded error envelopes are important since standard error envelopes require Θ(n log n)
time and space just to build them [10, 18, 45].

Rendezvous graphs for isotonic regression on multidimensional points in arbitrary position were intro-

duced in [45] (a preliminary version was posted in 2008). Two variants were introduced: one had a strong

property that, given a set of d-dimensional points P , the rendezvous dag R = (V,E) had P ⊂ V , and for

any p, q ∈ P , p ≺ q iff there is a rendezvous node r ∈ V \ P such that (p, r), (r, q) ∈ E. If p 6≺ q then

there is no path in R from p to q, and thus the transitive closure of the domination ordering is represented

by paths of length 2. This is also known as a Steiner 2-transitive-closure spanner, and its size, Θ(n logd n),
is optimal [6]. The second variant corresponds to the form used here, reducing the size to Θ(n logd−1 n),
though the transitive closure can involve paths of length Θ(n) (this can be reduced to Θ(log n) by replacing

lines with binary trees). This is the smallest known dag where its vertices contain the original points and

there is a path in the dag from point p to point q iff p ≺ q. For d > 2 the optimal size of such a dag is an

open question. Optimality for d = 2 appears in [45].

Finally, the iterative sorting approach in Algorithm B, which uses only Θ(n) space to provide the func-

tionality of a multidimensional rendezvous dag with Θ(n logd−1 n) edges, gives simple solutions to other

multidimensional problems such the domination and empirical cumulative distribution function (ECDF)

problems in [4]. It gives the same time bounds but without needing modified algorithms for all lower di-

mensions. The approach can also produce the transitive closure in Θ(n logd−1 n+K) time and Θ(n+K)
space, where K is the number of edges in the transitive closure. Further, all previous algorithms for Lp iso-

tonic regression on d-dimensional points, for any 1 ≤ p ≤ ∞, required that the dag be given explicitly, and

hence took Ω(n logd−1 n) space. The only exception is that one can do unweighted L∞ isotonic regression

in Θ(n) space since it only utilizes simple operations that can be accumulated pairwise, but this approach

takes Θ(n2) time.

10

References

[1] Agarwal, PK, Phillips, JM, and Sadri, B (2010), “Lipschitz unimodal and isotonic regression on paths

and trees”, LATIN 2010, LNCS 6034, pp. 384–396.

[2] Angelov, S, Harb, B, Kannan, S, and Wang, L-S (2006), “Weighted isotonic regression under the L1

norm”, Symp. Discrete Algor. (SODA), pp. 783–791.

[3] Barlow, RE, Bartholomew, DJ, Bremner, JM, and Brunk, HD (1972), Statistical Inference Under Order

Restrictions: The Theory and Application of Isotonic Regression, John Wiley.

[4] Bentley, JL (1980, “Multidimensional divide-and-conquer”, Comm. ACM 23, pp. 214–229.

[5] Beran, R and Dümbgen, L (2010), “Least squares and shrinkage estimation under bimonotonicity

constraints”, Statistics and Computing 20, pp. 177–189.

[6] Berman, P, Bhattacharyya, A, Grigorescu, E, Rashkhodnikova, S, Woodruff, DP, and Yaroslavtsev, G

(2014), “Steiner transitive-closure spanners of low-dimensional posets”, Combinatorica 34, pp. 255–

277.

[7] Burdakov, O, Grimvall, A and Hussian, M (2004), “A generalized PAV algorithm for monotonic re-

gression in several variables”, Proceedings of COMPSTAT’2004

[8] Caruana, R and Niculescu-Mizil, A (2006), “An empirical comparison of supervised learning algo-

rithms”, Proc. Int’l. Conf. Machine Learning.

[9] Chakrabarti, D, Kumar, R and Punera, K (2007), “Page-level template detection via isotonic smooth-

ing”, Proc. 16th Int’l. World Wide Web Conf.

[10] Chen, DZ and Wang, H (2013), “Approximating points by a piecewise linear function”, Algorithmica

66, pp. 682–713.

[11] Dı́az-Báñnez, JM and Mesa, JA (2001), “Fitting rectilinear polygonal curves to a set of points in the

plane”, Eur. J. Operational Res. 130, pp. 214–222.

[12] Dykstra, R, Hewett, J and Robertson, T (1999), “Nonparametric, isotonic discriminant procedures”,

Biometrika 86, pp. 429–438.

[13] Dykstra, RL and Robertson, T (1982), “An algorithm for isotonic regression of two or more indepen-

dent variables”, Annals of Statistics 10, pp. 708–716.

[14] Feelders, Ad (2010), “Monotone relabeling in ordinal classification”, Proc. IEEE Int?l Conf. Data

Mining (ICDM), pp. 803–808

[15] Fournier, H and Vigneron, A (2013), “A deterministic algorithm for fitting a step function to a weighted

point-set”, Info. Proc. Let. 113, pp. 51–54.

[16] Gamarnik, D (1998), “Efficient learning of monotone concepts via quadratic optimization”, Proceed-

ings of Computational Learning Theory (COLT), pp. 134–143.

[17] Gebhardt, F (1970), “An algorithm for monotone regression with one or more independent variables”,

Biometrika 57, pp. 263–271.

11

[18] Guha, S and Shim, K (2007), “A note on linear time algorithms for maximum error histograms”, IEEE

Trans. Knowledge and Data Engin. 19, pp. 993–997.

[19] Hardwick, J and Stout, QF (2012), “Optimal reduced isotonic reduction”, Proc. Interface 2012.

[20] Hochbaum, DS and Queyranne, M (2003), “Minimizing a convex cost closure set”, SIAM J. Discrete

Math 16, pp. 192–207.

[21] Kalai, A.T. and Sastry, F. (2009), “The Isotron algorithm: High-dimensional isotonic regression”,

COLT ’09.

[22] van de Kamp, R, Feelders, A, and Barile, N, (2009), “Isotonic classification trees”, Advances in Intel.

Data Analysis VIII, LNCS 5772, pp. 405–416.

[23] Karras, P., Sacharidis, D., and Mamoulis, N. (2007), “Exploiting duality in summarization with deter-

ministic guarantees”, Proc. Int’l. Conf. Knowledge Discovery and Data Mining (KDD), pp. 380–389.

[24] Kaufman, Y and Tamir, A (1993), “Locating service centers with precedence constraints”, Discrete

Applied Math. 47, pp. 251–261.

[25] Kotlowski, W and Slowinski, R (2013), “On nonparametric ordinal classification with monotonicity

constraints”, IEEE Trans. Knowledge and Data Engin. 25, pp. 2576–2589.

[26] Kyng, R, Rao, A, and Sachdeva, S (2015), “Fast, provable algorithms for isotonic regression in all

ℓp-norms”, Proc. NIPS, pp. 2719–2727.

[27] Lin, T.-C., Kuo, C.-C., Hsieh, Y.-H., and Wang, B.-F. (2009), “Efficient algorithms for the inverse

sorting problem with bound constraints under the l∞-norm and the Hamming distance”, J. Comp. and

Sys. Sci. 75, pp. 451–464.

[28] Liu, J-Y (2010), “A randomized algorithm for weighted approximation of points by a step function”,

COCOA 1, pp. 300–308.

[29] Liu, M-H and Ubhaya, VA (1997), “Integer isotone optimization”, SIAM J. Optimization 7, pp. 1152–

1159.

[30] Luss, R, Rosset, S and Shahar, M (2010), “Decomposing isotonic regression for efficiently solving

large problems”, Proceedings of Neural Information Processing Systems (NIPS).

[31] Meyer, M (2010), “Inference for multiple isotonic regression”,

www.stat.colostate.edu/research/TechnicalReports/2010/2010 2.pdf

[32] Moon, T, Smola, A, Chang, Y and Zheng, Z (2010), “IntervalRank — isotonic regression with listwise

and pairwise constraints”, Proc. Web Search and Data Mining, pp. 151–160.

[33] Pardalos, PM and Xue, G (1999), “Algorithms for a class of isotonic regression problems”, Algorith-

mica 23, pp. 211–222.

[34] Punera, K and Ghosh, J (2008), “Enhanced hierarchical classification via isotonic smoothing”, Pro-

ceedings International Conference on the World Wide Web 2008, pp. 151–160.

[35] Qian, S and Eddy, WF (1996), “An algorithm for isotonic regression on ordered rectangular grids”,

Journal of Computational and Graphical Statistics 5, pp. 225–235.

12

[36] Rademacker, M, De Baets, R, and De Meyer, H (2009), “Loss optimal monotone relabeling of noisy

multi-criteria data sets”, Info. Sciences 179, pp. 4089–4096.

[37] Robertson, T and Wright, FT (1973), “Multiple isotonic median regression”, Annals of Statistics 1,

pp. 422–432.

[38] Robertson, T, Wright, FT, and Dykstra, RL (1988), Order Restricted Statistical Inference, Wiley.

[39] Saarela, O and Arjas, E (2011), “A method for Bayesian monotonic multiple regression”, Scandinavian

Journal of Statistics 38, pp. 499–513.

[40] Salanti, G and Ulm, K (2001), “Multidimensional isotonic regression and estimation of the threshold

value”, Discussion paper 234, Institute für Statistik, Ludwig-Maximilians Universität, Munchen.

[41] Salanti, G and Ulm, K (2003), “A nonparametric changepoint model for stratifying continuous vari-

ables under order restrictions and binary outcome”, Stat. Methods Med. Res. 12, pp. 351–367.

[42] Spouge, J, Wan, H, and Wilber, WJ (2003), “Least squares isotonic regression in two dimensions”,

Journal of Optimization Theory and Applications 117, pp. 585–605.

[43] Stout, QF (2013), “Isotonic regression via partitioning”, Algorithmica 66, pp. 93–112.

www.eecs.umich.edu/ ˜qstout/abs/L1IsoReg.html

[44] Stout, QF (2013), “Weighted L∞ isotonic regression”, submitted.

www.eecs.umich.edu/ ˜qstout/abs/LinfinityIsoReg.html

[45] Stout, QF (2015), “Isotonic regression for multiple independent variables”, Algorithmica 71, pp. 450–

470. www.eecs.umich.edu/ ˜qstout/abs/MultidimIsoReg.html

[46] Sysoev, O, Burdakov, O, Grimvall, A (2011), “A segmentation-based algorithm for large-scale partially

ordered monotonic regression”, Computational Statistics and Data Analysis 55, pp. 2463–2476.

[47] Thompson,WA Jr (1962), “The problem of negative estimates of variance components”, Annals of

Math. Stat. 33, pp. 273–289.

[48] Ubhaya, VA (1974), “Isotone optimization, I, II”, J. Approx. Theory 12, pp. 146–159, 315–331.

[49] Velikova, M and Daniels, H (2008), Monotone Prediction Models in Data Mining, VDM Verlag.

13

http://www.eecs.umich.edu/~qstout/abs/L1IsoReg.html
http://www.eecs.umich.edu/~qstout/abs/LinfinityIsoReg.html
http://www.eecs.umich.edu/~qstout/abs/MultidimIsoReg.html

	1 Introduction
	2 Preliminaries
	2.1 Bounded Error Envelopes
	2.2 Rendezvous Graphs
	2.3 Pairwise Feasibility Test and Reducing the Number of Segments

	3 d-Dimensional Points in Grids and Arbitrary Position
	3.1 Linear Orders
	3.2 Multidimensional Grids
	3.3 Points in Arbitrary Position

	4 Trees
	5 Final Remarks

