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Abstract: To estimate a success probabilityp, two experiments are available: individual Bernoulli(p) trials or the

product ofr individual Bernoulli(p) trials. This problem has its roots in reliability where either single components

can be tested or a system ofr identical components can be tested. A total ofN experiments can be performed,

and the problem is to sequentially select some combination (allocation) of these two experiments, along with an

estimator ofp, to achieve low mean square error of the final estimate. This scenario is similar to that of the better-

known group testing problem, but here the goal is to estimate failure rates rather than to identify defective units. The

problem also arises in epidemiological applications such as estimating disease prevalence.

Information maximization considerations, and analysis of the asymptotic mean square error of several estimators,

lead to the following adaptive procedure: use the maximum likelihood estimator to estimatep, and if this estimator

is below (above) the cut-pointar, then observe an individual (product) trial at the next stage. In a Bayesian setting

with squared error estimation loss and suitable regularity conditions on the prior distribution, this adaptive procedure,

replacing the maximum likelihood estimator with the Bayes estimator, will be asymptotically Bayes.

Exact computational evaluations of the adaptive procedure for fixed sample sizes show that it behaves roughly as

the asymptotics predict. The exact analyses also show parameter regions for which the adaptive procedure achieves

negative regret, as well as regions for which it achieves normalized mean squared error superior to that asymptotically

possible.

An example and a discussion of extensions conclude the work.
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1 Introduction

Consider a sequence of Bernoulli trials with success probabilityp. To estimatep, two experiments can be performed:

either an individual trial outcome can be observed (thep-experiment) or the product ofr individual trial outcomes

can be observed (thepr-experiment), wherer is an integer� 2. A total ofN experiments (tests) can be performed,

and the problem is to select some combination (allocation) of these two experiments along with an estimator ofp

to achieve low mean square error of the terminal estimator. The experiments can be selected sequentially, so that at

each stage, information available at that stage can be used to determine which experiment to carry out at the next

stage.

Before continuing, some comments on the origin and application of this problem are in order. Thepr-experiment

is a slightly disguised version of the well-studied grouped data experiment with groups of sizer. In the grouped

data setting, the goal is to estimate the failure probability,q = 1 � p, and using groups of sizes other than 1 can

reduce the cost of testing (Sobel and Elashoff, 1975) and can lower the variance of the resulting estimator (Chen

and Swallow, 1990). Reliability settings, in which components can be tested either individually or as a system ofr

identical components in series, are prime examples of situations in which group testing can be useful (Easterling and

Prairie, 1971). Other group testing scenarios arise in environmental monitoring where sample units of soil or plant

matter are combined and tested for toxins. In these settings, the term “group testing” is often replaced by “composite

sampling”. See Lancaster and Keller-McNulty (1996) for a review of composite sampling methods.

A further application, examined in some detail in Section 9, is that of estimating prevalence. Gastwirth and

Hammick (1989), for example, apply group testing methods to estimate the prevalence of HIV antibodies among

subpopulations. In screening scenarios of this sort, group testing is particularly desirable because it provides for

donor privacy, an issue of serious concern among individuals at risk for HIV. The “pooled testing” of Tu, Litvak and

Pagano (1995) is another example in which group testing is used to estimate HIV prevalence.

In the problem considered here, it is assumed that a “natural”r exists for the grouping of items. In this case, the

sampling options are restricted to only the two experiments: thep-experiment and thepr-experiment. The reliability

setting, in which a system requires thatr units in series be tested, represents a scenario in which such an assumption

is clearly viable. Note, however, that it is sometimes useful to seek the optimalr for a specific application. This

point is discussed briefly in Section 9 and addressed more thoroughly via the two-stage sampling procedures of

Hughes-Oliver and Swallow (1994).

In Section 2, notation is given and the problem is precisely defined. In Section 3, allocation that maximizes

information is derived, and in Section 4, pooling data across experiments is discussed and several estimators are

analyzed. In Section 5, allocation that minimizes asymptotic mean square error is derived for each of the estimators.

In Section 6, an ad-hoc adaptive allocation procedure is proposed, and it is shown that not all of the estimators

are consistent when combined with an arbitrary allocation procedure. In Section 7, the problem is placed in a

Bayesian framework with squared error estimation loss. Then, under regularity conditions, the adaptive allocation

of Section 6, replacing the maximum likelihood estimator with the Bayes estimator, is shown to be asymptotically

Bayes. In Section 8, an exact approach is taken to evaluating and optimizing allocation policies for fixed values of

N . Here it is shown that the ad-hoc adaptive rule of Section 6 has negative regret with respect to the optimal best

fixed sample size rule that can be generated when the parameter is known. It is also shown that, for some values of

the parameter, the ad-hoc adaptive rule achieves a normalized mean squared error that is smaller than the asymptotic
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limit. For comparison purposes, the optimal adaptive allocation rule is also computed, assuming that the parameter

is known. In Section 9, an application of the methods in Section 6 is discussed. There, the group testing approach of

Gastwirth and Hammick (1989) is compared with the individual testing approach of Nusbacher et al. (1986) and with

the methods proposed in the present article. Finally, in Section 10 the extension from 2 experiments to arbitrarily

many is briefly examined.

2 Notation and Problem Statement

The problem is set up in its fully sequential form although much of the development in the next sections will not

use all of this notation. LetX11;X12; : : : be a sequence of independent and identically distributed Bernoulli(p) ran-

dom variables that are independent ofXr1;Xr2; : : :, independent and identically distributed Bernoulli(pr) random

variables. The success probabilityp is restricted to (0,1) throughout the paper.

A total of N tests (experiments) will be done, where at each stage the decision to observe anX1 or anXr can

be made based on past observations. More precisely, an allocation rule is a sequenced = (d1; : : : ; dN ) such that

for k = 1; : : : ; N , dk takes values 0 or 1, and is measurablefZ1; : : : ; Zk�1g, whereZi = diX1i + (1 � di)Xri.

Thus,di indicates the population from which theith observation or test is sampled, with “1” indicating anX1-

observation or thep-experiment, and “0” indicating aXr-observation or thepr-experiment. Aterminal estimator of

p must be measurablefZ1; : : : ; ZNg. Finally, letmk =
Pk

i=1 di be the total number of observations taken from the

p-experiments at stagek, and letnk = k �mk be the total number of observations taken from thepr-experiment at

stagek, wherek = 1; 2; : : : ; N . Sometimes thek subscript will be dropped.

Since the final goal is estimation ofp, an allocation scheme and estimator will be evaluated as a pair by the mean

square error of the terminal estimator. That is, the mean square error of using allocationd and estimator̂p is given

by MSEp(d; p̂) = Ep(p̂� p)2. In the Bayesian framework, the problem of selecting both the allocation rule and the

estimator reduces to selecting only the allocation rule and using the Bayes estimator. However, in the non-Bayesian

framework, the choice of estimator is not so obvious, and as will be noted in Section 6, the allocation rule and the

estimator can interact.

3 Maximum Information Allocation

In this section, the problem of selecting an estimator ofp is ignored, and only allocation is considered. The criterion

used for allocation will be maximizing the Fisher information, and the best nonrandom allocation will be found.

As is typical with such optimal nonrandom allocations, the rule will depend on the unknown parameterp, but will

suggest the form of an adaptive rule, and the relationship between the MSE’s of estimators and Fisher information

will make the adaptive rule efficient.

In typical sequential allocation problems, the different experiments give information about different parameters.

However, in this problem both experiments give information about the same parameter, although one experiment

will give more information depending on the actual value of the parameter. In particular, the Fisher information

aboutp contained in a single observation of thep-experiment is

IX1
(p) =

1

pq
; where q = 1� p;
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r 2 5 10 20 50 100

ar 0.333 0.536 0.679 0.792 0.892 0.937

Table 1: Cut-point Values

and the Fisher information aboutp contained in a single observation of thepr-experiment is

IXr(p) =
r2pr�2

1� pr
:

It is easy to show thatIX1
(p) > IXr(p) if and only if p < ar, wherear is the unique root in (0,1) of the equation in

p,

pr(1� r2) + r2pr�1 � 1 = 0:

Note thatar is a function only ofr, which is known, and hencear can be determined explicitly.

Proposition 3.1 If N tests are available, then the allocation that maximizes the information aboutp is

mN =

8>><
>>:

N (observe allX1’s) if p < ar

0 (observe allXr ’s) if p > ar

arbitrary if p = ar

(The informations are equal atp = ar). 2

Thus, the maximum information allocation is to observe onlyX1’s (thep-experiment) ifp < ar, or onlyXr’s

(the pr-experiment) ifp > ar. This will be denoted asar-cut allocation, and recall thatar depends only onr.

However, the region where one experiment is better than the other depends on the unknown parameterp. Thus, the

obvious adaptive rule is suggested wherep is estimated at each stage, and the next observation is allocated depending

the relationship between the estimatedp and the cutar.

Some of the values ofar (first reported in Loyer, 1983) are noted in Table 1. Asr increases to infinity, the

cut-pointar tends to 1, and the region over which thepr-experiment is better shrinks.

This section is concluded by evaluating the need for sequential allocation. This is done by comparing the

information in each experiment. Consider the ratio

minfIX1
(p);IXr(p)g

maxfIX1
(p); IXr(p)g

over the range ofp. Were this ratio bounded below by, say, .98, then using the nonoptimal experiment would never

result in more than a 2% loss of information, greatly limiting the worth of adaptive allocation. Since adaptive

allocation is somewhat more complicated than fixed allocation, there needs to be sufficient benefit to justify its

utilization.

Proposition 3.2

IX1
(p)

maxfIX1
(p);IXr (p)g

=

(
1

(1� pr)=r2qpr�1 (which is� 1=r)

for p � ar

for p > ar

IXr(p)

maxfIX1
(p);IXr (p)g

=

(
r2qpr�1=(1� pr) (which tends to 0 asp tends to 0)

1

for p � ar

for p > ar
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Proof. This is simply algebra.2

Proposition 3.2 indicates that if thepr-experiment is used, then forp sufficiently small, the information obtained

can be arbitrarily close to 0% of that possible when thep-experiment is used. On the other hand, if thep-experiment is

used, then the information obtained never falls below (100/r)% of the maximal information obtainable, approaching

this bound whenp tends to 1. Thus, adaptive allocation can be worthwhile for increasing information. Also, using

thep-experiment would be the more conservative approach since one never loses more than (100/r)% of the maximal

information obtainable. Note that the bound decreases asr increases, so that atr = 2, no more than 50% of the

optimal can be lost, but atr = 10, one might get only 10% of the optimal.

4 Estimators ofp

Since both experiments give information aboutp, and an adaptive allocation procedure would typically allocate to

both experiments, there is the question of how to combine or pool data across experiments. Several estimators are

presented here and their properties are derived.

Throughout this section,m is the number of observations from thep-experiment,n is the number of observations

from thepr-experiment, andm+ n = N is the fixed total number of experiments.

If m observations from only thep-experiment are used to estimatep, then the best estimator (uniform minimum

variance unbiased and the maximum likelihood) is the sample mean�X1 = 1
m

Pm
i=1X1i, and its mean square error

is equal to its variance,pq=m. Let p̂x1 denote this estimator.

If n observations from only thepr-experiment are used to estimatep, then there is no unbiased estimator. How-

ever, the maximum likelihood estimator is�Xr
1=r, the rth root of the sample mean,�Xr = 1

n

Pn
j=1Xrj , which is

equivalent to the usual estimator ofp in grouped data experiments using groups of sizer. Let p̂xr denote this estima-

tor. The MSE ofp̂xr can be computed for different values ofp andn using binomial probabilities, and asn tends to

infinity, nMSEp(p̂xr) tends to1=IXr(p) = (1�pr)=r2pr�2. This has been noted and studied by Sobel and Elashoff

(1975). Some comparisons of the exact mean square and this asymptotic form are made in Loyer (1983).

Next, the maximum likelihood estimator is derived for the general situation with observations of both experi-

ments.

Theorem 4.1 Givenm observations of thep-experiment andn observations of thepr-experiment, the maximum

likelihood estimator ofp, denoted̂pml, is the unique root in[0; 1] of the equation

pr(rn+m) + (m� x1)(p
r�1 + : : :+ p)� (x1 + ry) = 0;

wherex1 =
Pm

i=1X1i andxr =
Pn

j=1Xrj.

Proof. Differentiating the logarithm of the joint likelihood function with respect top gives the equation above. It is

then straightforward to show the existence and uniqueness of a root in [0,1].2

For the case ofr = 2, the maximum likelihood estimator can be given in closed form:

p̂ml =

q
a2(1� p̂x1)

2 + 4ap̂x1 + 4(1� a)p̂xr
2 � a(1� p̂x1)

2
;
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wherea = m=(2n+m).

Other natural estimators ofp are weighted averages ofp̂x1 and p̂xr , where the weights could depend onm, n,

andN . Two particular weight choices are considered below:

� Theconstant weights estimator:̂p� = (�)p̂x1 + (1� �)p̂xr .

� Theweight proportional to sample size estimator:p̂s = (m=N)p̂x1 + (n=N)p̂xr .

Finally, we mention briefly that ratio estimators such asp̂R =
�
�Xr= �X1

� 1

r�1 have been considered for estimating

p, in the context of model validation (Chen and Swallow, 1990). However, these estimators are neither efficient nor

consistent (in the allocation sense), and thus, are not included in this work. Details on the properties of such ratio

estimators in this setting can be found in Hardwick, Page, and Stout (1996).

To determine the MSE’s of the estimators, note that for the weighted average estimators, sincep̂x1 is unbiased for

p, MSEp(p̂�) = �2pq=m+ (1��)2MSEp(p̂xr). For the other estimators, their MSE’s can be computed exactly for

any values ofm, n, andp, but there is no apparent closed form for them. However, their asymptotic expressions are

very tractable. Define theasymptotic mean square error of estimatorp̂ as AMSEp(p̂) = MSEp(p̂)+o(1=n)+o(1=m)

for p in (0,1).

Theorem 4.2 The asymptotic MSE’s of the estimators are as follows:

AMSEp(p̂x1) =
pq

m
= MSEp(p̂x1)

AMSEp(p̂xr) =
1� pr

nr2pr�2

AMSEp(p̂ml) =
pq(1� pr)

m(1� pr) + nr2pr�1q

AMSEp(p̂�) =
�2pq

m
+

(1� �)2(1� pr)

nr2pr�2

AMSEp(p̂s) =
mpq + n(1� pr)=r2pr�2

N2

Proof: This is straightforward.2

To illustrate the relative performance of the estimators when either degenerate or balanced allocations are used,

the values of the limit ofN�AMSE asN tends to infinity are plotted in Figure 1 forr = 2 and 10. Note thatm = N

allocation is used for̂px1 , n = N is used for̂pxr , andm = n = 0:5N is used for̂pml andp̂� .

5 Allocation Minimizing Asymptotic Mean Square Error

While fixed allocations performance of different estimators may be important in some instances, the problem of

interest here is the pairing of an estimator and an allocation rule to lower the MSE of the “terminal” estimator of

p. In this section, the estimators proposed in Section 4 are considered. Since their exact MSE’s are analytically
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Figure 1: NormalizedN �AMSE’s of Estimators,r = 2; 10. Note change in vertical scales.

intractable while their first order asymptotic forms are simple, allocation rules that minimize the asymptotic MSE

among nonrandom allocations are considered for each estimator. As is typical with optimal nonrandom rules, the

allocation will depend on the unknownp, but will suggest an adaptive rule.

For each estimator in Section 4, the following theorem gives a nonrandom allocation, as a function ofp, that

minimizes the AMSE.

Theorem 5.1 The AMSE’s of estimators are minimized as follows:

1. AMSEp(p̂ml) andAMSEp(p̂s) are minimized by thear-cut allocation described in Section 3.

2. AMSEp(p̂�) is minimized by allocatingm=n in proportionfr�=(1 � �)gppr�1q=(1� pr).

Proof: This is straightforward algebra, from Theorem 4.2.2

For each estimator considered, the allocations reported in Theorem 5.1 will give the lowest AMSE for that

estimator. These are referred to asasymptotic omniscient fixed allocationscorresponding to the estimators. To

compare the estimators based on the omniscient fixed allocations, the minimum AMSE’s are needed. Let ‘�’ on the

AMSE denote the minimum asymptotic mean square error when the allocations of Theorem 5.1 are used.

Corollary 5.2 The normalizedAMSE�p values are as follows:

N � AMSE�p(p̂ml) = N � AMSE�p(p̂s) = minfpq; (1� pr)=r2pr�2g

N � AMSE�p(p̂�) =

�
�
p
pq + (1� �)

q
(1� pr)=(r2pr�2)

�2

6



Hence, forp in (0; 1), for any weight� in (0; 1),

AMSE�p(p̂ml) = AMSE�p(p̂s) � AMSE�p(p̂�);

with equality occurring only atp = ar.

Proof. This follows easily from Theorem 5.1.2

Corollary 5.2 shows that the AMSE� for the maximum likelihood and weighted average estimators is the lowest

among those considered. Thus, according to the asymptotic MSE criterion, thear-cut allocation, along with either

the maximum likelihood estimator or the sample size weighted average estimator, should be used.

Note that caution should be exercised when using the AMSE formulas. These are first order approximations,

ignoring termso(1=m) + o(1=n), and thus are valid when bothm andn tend to infinity. However, the point of

allocation here is to eventually end up on the better experiment. As will be seen in Section 6, the AMSE for the

maximum likelihood estimator and the sample size weighted average estimator remains valid if one sample size does

not tend to infinity. However, the constant weighted average is not even consistent if one of the sample sizes does

not tend to infinity.

6 Adaptive Allocation

As mentioned, the allocation rules considered thus far are motivated by the nonrandom “optimal” allocations of

Sections 3 and 5. In Section 3, the maximum information rule was thear-cut rule. In Section 5, this same allocation

rule came out of minimizing the asymptotic MSE. Thus, thear-cut allocation rule is a natural choice for an adaptive

rule, where an estimator ofp is inserted in thear-cut form, and that estimator is updated at each stage for sequential

allocation. Other results in Section 5 indicated that the estimator ofp and the allocation should be compatible in the

sense that thear-cut allocation should minimize the asymptotic MSE of the estimator in use.

To define an adaptivear-cut allocation, consider an estimator ofp. Here, the termestimatordenotes a sequence

of estimatorsfp̂kg1k=1, wherep̂k is measurablefZ1; : : : ; Zkg. For k = 1; : : : ; N , mk + nk = k, where, at stage

k, mk andnk are the number of observations on thep-experiment and on thepr-experiment, respectively. The

estimators suggested in Section 4 fill this requirement since they are defined for each pair(m;n). Once an estimator

is selected, the ad-hocar-cut allocation is defined in the obvious way:

Thear-cut allocation with estimatedp: At stage 1, take an observation from thep-experiment. At stage

k, 1 < k � N , observe from thep-experiment if and only if̂pk�1 � ar.

The tie atar has been decided in favor of thep-experiment because the worst of the consequences of a wrong

decision is less (see Proposition 3.2).

The ar-cut allocation aims eventually to allocate to the better experiment depending on the value ofp. This

requires that the estimator ofp used with the allocation be consistent even if the number of observations on one of

the experiments does not tend to infinity. This consistency is called “allocation” consistency:

Estimatorfp̂kg is (strongly) allocation consistentif p̂k tends top a.s. ask tends to infinity, for allp in

(0; 1).

7



Theorem 6.1 Estimatorsp̂ml and p̂s are allocation consistent, while all̂p� estimators are not.

Proof. See the Appendix.2

The estimator used with thear-cut should be allocation consistent. However, while use of a consistent estimator

is prudent, it does not guarantee low MSE of the terminal estimator. That requires efficiency of an estimator, as

described below.

Ideally, an adaptive allocation should select the better experiment quickly (high precision of the estimator),

and once the better experiment is being used, the estimator should approximate the individual maximum likelihood

estimator for that experiment. That is, the goal is to use an estimatorp̂ with the property that

MSEp(p̂) � minfMSEp(p̂x1);MSEp(p̂xr)g:

Thus,p̂ should approximatêpx1 over the range where thep-experiment is better, and should approximatep̂xr over

the range where thepr-experiment is better. Of course, adaptive allocation requires that some of theN observations

be used to identify the better experiment. Thus, the desired MSE would not be attained. However, the larger theN ,

the smaller the proportion expected on the inferior experiment, and the MSE would tend to be nearer to the desired

MSE.

Asymptotically, (asN tends to infinity), MSEp(p̂xr) can be replaced by(1 � pr)=Nr2pr�2, and the desired

limiting MSE can be given as

MSEp(p̂) � minfpq; (1 � pr)=r2pr�2g
N

: (1)

DefineHr(p) = minfpq; (1 � pr)=r2pr�2g, and note that the MSE should approximateHr(p)=N for N large. In

Section 8 the normalized MSE will be compared toHr(p). Before this comparison is made,Hr(p) is shown in

Section 7 to arise as the limit of normalized posterior expected loss in a Bayesian setting.

7 Asymptotic Bayes Properties

The focus of this work is frequentist, and both estimators and allocations are evaluated by MSE. However, the major

roles of the Fisher information and the maximum likelihood estimator lead to asymptotic Bayes properties of thear

cut rule (when used with the Bayes estimator), and to a limiting normalized Bayes risk equal toHr(p).

We set up the present estimation problem in a Bayesian framework by assuming a prior distributionf(p) on p,

squared error estimation lossL(p; p̂) = (p � p̂)2, and likelihood function to match the previous work,pm
�X1(1 �

p)m�m
�X1prn

�Xr(1� pr)n�n
�Xr .

Let ENL denote the posterior expected loss givenZ1; : : : ZN whereZi = diX1i + (1 � di)Xri as defined

in Section 2. Under sufficient regularity conditions on the prior (Kass, Tierney, and Kadane, 1990), the posterior

expected loss is approximated by the reciprocal of the Fisher information evaluated at the maximum likelihood

estimator:

ENL = IN (p̂ml)
�1f1 +O(1=N)g;

whereIN (p) denotes the Fisher information afterN observations and̂pml is the maximum likelihood estimator

defined in Section 4. Note that whenm X1’s andn Xr ’s are observed, thenIN (p) = mIX1
(p) + nIXr(p), where

IX1
andIXr are given in Section 3.
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Recall from Section 6 thatHr(p) = minfpq; (1� pr)=r2pr�2g, and note that

Hr(p) = p(1� p)Ifp�arg + (1� pr)=r2pr�2Ifp>arg

= IX1
(p)�1Ifp�arg + IXr(p)

�1Ifp>arg;

whereIf�g is the set indicator function.Hr(p) is a continuous bounded function ofp on [0,1], and thus is uniformly

continuous. Also, for anyp,

IN (p) = mIX1
(p) + nIXr(p)

� N [IX1
(p)Ifp�arg + IXr(p)Ifp>arg]:

This implies that

NIN(p)�1 � [IX1
(p)Ifp�arg + IXr(p)Ifp>arg]

�1:

But this last term is equal toIX1
(p)�1Ifp�arg + IXr(p)

�1Ifp>arg = Hr(p) since set indicators are used. This

proves the following lemma.

Lemma 7.1 NIN(p̂ml)
�1 � Hr(p̂ml). 2

Theorem 7.2 Under sufficient regularity conditions giving the approximation of the posterior variance in terms of

Fisher information,

i. lim infN!1NENL � Hr(p) a.s.

ii. lim infN!1NEL � EHr(p).

Proof. For (i), note that by the approximation and by Lemma 7.1,

NENL = NIN (p̂ml)
�1f1 +O(1=N)g � Hr(p̂ml)f1 +O(1=N)g :

But p̂ml converges top a.s. andHr is a uniformly continuous function, so thus the lower bound tends a.s. toHr(p).

For (ii), use the inequality above to getlim infNEL � lim infEHr(p̂ml). Then note thatHr is bounded and apply

the bounded convergence theorem to deduce the limit to beEHr(p). 2

This theorem along with sufficient conditions to insure uniform integrability imply that thear-cut rule used with

the Bayes estimator will have limiting Bayes risk,EHr(p), and thus, be asymptotically Bayes.

8 Fixed Sample Size Behavior

Up to this point, the development and evaluation of allocation rules and estimators has been based solely on asymp-

totic arguments. In this section, the estimators and allocation rules are examined for their behavior based on fixed

sample sizes. For moderate sample sizes, some of the estimators do not behave as expected, and there are several

adjustments that need to be made when implementing the estimators and allocation rules. Despite these problems, it

will be shown that thear-cut allocation rule using the MLE estimator does very well.

9



8.1 Adjusting Cut-points

Thear value was derived from asymptotic considerations. If the exact MSE for the estimatorp̂xr is compared with

the exact MSE for̂px1 using the same number of tests, the cut-point below which thep-experiment does better

depends onN as well asr. Determining the cut-point is a straightforward computation, but it does not have a simple

closed form. This cut-point differs fromar, andN may need to be quite large (say� 100) before it is approximately

equal to its asymptotic value ofar. For example, Loyer (1983) showed that forr = 2 the value ofa2 is 1=3, but

for N = 20, thep-experiment is better whenp < 0:445. For r = 5, the value ofa5 is 0.536, but forN = 20,

the p-experiment is better whenp < 0:729. Thus, if the total sample size is moderate, then thear-cut should be

modified to account for the lack of asymptotic fit. This adjustment is more pronounced the largerr is.

8.2 Exact Mean Squared Errors of Estimators Using Fixed Allocations

As noted earlier, the MSE’s of most of the estimators under consideration don’t have convenient analytic forms.

However, givenp andN , the MSE’s can be calculated for each estimator. In this section, performance of the

estimators based on fixed allocations are reviewed. Representative behavior is illustrated in Figure 2 forN = 40

andN = 100, for r = 2.

The labels and relative sample sizes used for the different estimators are the same as in Figure 1. The values

in Figure 2 have been scaled by a factor ofN , so they can be compared across sample sizes as well as between

estimators. It seems clear from both figures that the best estimators for small and large values ofp, respectively, are

p̂x1 and p̂xr . As noted, as the total sample size increases, the point at whichp̂xr begins to improve on̂px1 moves

towards the valuea2 = 1=3.

Note that, even with predetermined allocations ofN=2 observations from each experiment, the maximum like-

lihood estimator,̂pml, does very well across the entire range of parameter values regardless of the total sample size.

Also, while it may seem odd that the MSE ofp̂� or p̂s could be larger than the MSE’s of either of the two com-

ponents that comprise the estimators, the plots indicate that this is true. However, there is no contradiction here

because the MSE’s for̂px1 and p̂xr are each based onN observations while thêpx1 and p̂xr components of the

averaged estimators are each based on fractions ofN , and thus are not averages of theX1 andXr values shown in

the plots.

Comparing Figure 2 to Figure 1, one sees a decrease in the MSE ofp̂xr and the estimators that depend on it as

N goes to infinity. Unfortunately, the MSE’s of these estimators don’t converge very rapidly to the AMSE’s. We

examined MSE’s forN = 200 and they were not much closer to the AMSE’s than are the MSE’s forN = 100.

On the positive side, the MSE of the maximum likelihood estimator rapidly converges to its AMSE. The MSE’s and

AMSE’s for p̂x1 are, of course, the same.

8.3 MSE’s of Adaptive Procedures

The performance of the sequentialar-cut allocation rule is illustrated in Figure 3 forN = 100, r = 2, anda2 = 1=3.

In this figure,C denotes the exact MSE of the adaptivear-cut rule andE represents the normalized lower envelope

from Equation (1) of Section 6, namelyHr(p).

Note that the cut-point rule has essentially the same MSE as the lower envelope of the AMSE’s, except for the
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Figure 2: ExactN�MSE Values Using Fixed Allocations.

region of approximately0:3 < p < 0:4, as shown in the enlargement on the right. In this interval, the MSE of

p̂ml actually improves upon the best values gotten using the AMSE’s. This behavior leads to questions about the

comparison of the exact MSE of the cut-point adaptive rule with other lower envelopes derived for fixedN . For fixed

N , theMSEp(p̂ml) can be computed as a function ofm andp, then minimized as a function ofm. Call the allocation

thus obtained “omniscient fixed”. This minimizer is dependent on the unknownp, but gives a lower envelope for

this MSE. It also is interesting to note that the minimizingm is not necessarily degenerate, i.e., equal toN or 0. For

example, atN = 100, r = 2, andp = 0:35, the omniscient fixed allocation to thep-experiment ism = 57.

In Figure 3, forN = 100 andr = 2, the values of normalized MSE for the omniscient fixed allocation are

denoted byF. The plot on the left provides normalized MSE’s over the entire range ofp and the plot on the right

is a blow-up of the parameter region in which the MSE of the omniscient fixed rule is better than the asymptotic

lower envelope. The region in which the omniscient fixed rule improves on the asymptotic lower bound (E) is quite

small and shrinks to zero width asN ! 1. Also note that the cut-point adaptive rule (C) performs better than the

omniscient fixed rule in the area of the cut-point. This is a region of negative regret, as discussed for example in

Woodroofe (1977) and Martinsek (1983), where the ability to adapt is so beneficial that it overtakes allocation that

has advanced knowledge of the parameter but which must be fixed in advance of any experiments.

For fixedN , the true lower bound for the MSE of all rules using the maximum likelihood estimator as terminal

estimator can be computed as a function ofp andN . This fully sequential rule, which we call “omniscient adaptive”,

assumes knowledge of the parameterp. Its normalized MSE, denoted by�, is shown in Figure 3. Apparently the

only way to obtain the omniscient adaptive rule is through dynamic programming calculations.
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Figure 3: Adaptive Allocation using the MLE,N = 100, r = 2, cut-point = 1/3.

Finally, computations similar to Figure 3 are shown in Figure 4 forr = 10 andN = 100. The cut-point

used was 0.76, rather thana10 = 0:679, because this is the point at which thep10-experiment is superior to the

p-experiment whenN = 100. The basic behavior is similar to that seen forr = 2, but many of the differences

between asymptotic behavior and that for moderateN are more pronounced. For example, for smallp, the extent to

which thepr-experiment is worse than thep-experiment is far more extreme. For the same value ofN , the region in

which the omniscient fixed allocation rule is a mixture ofp- andpr-experiments is far larger than it was forr = 2,

and the ability of the omniscient adaptive rule to improve upon the omniscient fixed rule is greatly enhanced. The

MSE of the omniscient adaptive rule is a more irregular function ofp, and, though not evident in Figure 4, it is no

longer unimodal.

9 Example: Estimating Prevalence

To provide some insight as to how the adaptive group testing methods presented in Section 6 may be used, we apply

them to the Gastwirth and Hammick (1989) reanalysis of a blood screening study of Nusbacher et al. (1986). The

authors of the latter work examined whether one could effectively inhibit HIV carriers from donating to a transfusion

blood pool. In their study, blood donors who participated in high risk activities were asked to designate their donation

to a “research” blood pool rather than to the usual transfusion blood pool. Of the 627 donations to the research blood

pool, 11 were found to carry HIV antibodies.

The problem of estimating the prevalence of HIV antibodies motivated Gastwirth and Hammick (1989) to utilize

group testing methods on the research blood pool data. However, since screening tests tend to cost considerably

less than confirmatory tests, these authors incorporated the sensitivity and specificity of the screening test into their
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Figure 4: Adaptive Allocation using the MLE,N = 100, r = 10, cut-point = 0.76.

estimators. In this way, they were able to do realistic cost analyses of the group testing approach and the individual

testing method. Further, while one of their aims was to provide an accurate prevalence estimator, they also sought

a testing method that would preserve the anonymity of the donors. Note that this latter goal is in opposition to the

one that motivated Dorfman (1943) to propose group testing methods in the first place. Dorfman’s objective was to

reduce the cost of detecting all positive cases (see also Hwang (1972)).

Our goal here is to compare the accuracy of the adaptive cut-point estimator for prevalence with those obtained

from individual testing and fixed group size testing. To simplify comparisons, the strong assumption that the sen-

sitivity and specificity of the screening test are one is made, although adaptive cut-point methods can be optimized

for more general settings. It is also assumed that, for each method examined, the observations are sampled from a

large population in which the underlying prevalence rate is11=627 = 0:0175, the rate observed by Nusbacher et al.

(1986).

Gastwirth and Hammick (1989) used batches of size 10, but there seems to be no particular reason to believe that

10 is better than some other group size. We consider what would happen if the adaptive cut-point method is applied

for group sizes ofr = 10 ands = 20, assuming, as did Gastwirth and Hammick (1989), that there is no dilution

effect. Note that this is equivalent to ther = 1 versuss = 2 problem considered earlier, in the sense that ther = 1

observations are sampled from a Bernoulli population with success rateq10. Taking a sample size ofN = 63, as

in Gastwirth and Hammick (1989), we obtain a MSE of1:46 � 10�6. To achieve the same MSE using only batches

of size 10, one would need a sample of sizeN = 110; and, using batches of size 1 would require a sample size of

N = 1020. These results are summarized in Figure 5.

As noted in Gastwirth and Hammick (1989), there are significant advantages to using groups larger than 1,

and an adaptive grouped allocation provides yet further advantages. However, there is the consideration that the

number of individual samples required increases slightly. Gastwirth and Hammick (1989) addressed this concern
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Batch Sizes No. Samples E(No. Individuals) Cost Advantage

1 1020 1020 11:4Cs � Cd

10 110 1100 0:3Cs � Cd � 11:4Cs

Adapt. 10, 20 63 1250 Cd � 0:3Cs

Figure 5: 3 Methods for Achieving MSE=1:46 � 10�6

via cost analyses, and here cost analyses are carried out using a model consisting of two components. LetCs be the

cost of one screening test and letCd be the cost of obtaining a single blood donation. Then the cost of achieving

of an MSE of1:46 � 10�6 using only batches of size 1 is1020(Cs + Cd); the cost using only batches of size 10 is

110Cs+1100Cd; and the expected cost using the adaptive method is63Cs+1250Cd. The final column of Figure 5

shows the ranges of relativeCs andCd values for which each method is the most cost-effective.

Typically it happens thatCd � Cs, and in these situations, adaptive group testing appears to be significantly

superior. If total cost is the appropriate consideration, it can be directly incorporated into the adaptive cut-point

method. For example, one could compare the asymptotic cost per unit of information using thep-experiment, versus

the cost using thepr-experiment, to decide which to perform. That is, one would determine the cut-point by solving

IX1
(p)

Cs + Cd
=

IXr(p)

Cs + rCd

Finally, one may wonder whyr = 10 ands = 20 were selected for the adaptive version of this example. The

only reason for this is that it corresponds well to the main case,p versusp2, studied in this paper. The present

problem was also solved whenr ands were taken to be 10 and 100 respectively (which corresponds to thep versus

p10 case). In this latter case, 63 samples result in a significantly smaller MSE of3:2 � 10�7 for p̂. The fact that the

p10 versusp100 experiment provides an even greater reduction in MSE for this problem leads one to wonder what

the optimal group sizes are for specific problems. As mentioned earlier, Hughs-Oliver and Swallow (1994) consider

this question using a two-stage approach. One can extend the present work to include the fully sequential case in

which one seeks to estimate not onlyp, but also the value ofr that will optimize a group testing scenario.

10 Extensions

The problem considered in the previous sections was to choose from 2 experiments, thep-experiment and thepr-

experiment, and was motivated by reliability applications. The results can be extended toJ experiments and need not

necessarily include thep-experiment. Let the available experiments be defined by integersr(1); r(2); : : : ; r(J) such

that1 � r(1) < r(2) : : : < r(J), where theith experiment is apr(i)-experiment. As before, the Fisher information

aboutp contained in apr-experiment is

IXr = r2pr�2=(1� pr) :
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Now, defineGr;s(p) = IXr(p)�IXs(p), and note thatGr;s(p) > 0 if and only if IXr(p) > IXs(p), i.e., if and only

if the pr-experiment has more information aboutp than does theps-experiment.

Gr;s(p) = [(s2 � r2)ps � s2ps�r + r2]
p2�r

(1 � pr)(1� ps)
;

so forp in (0,1), the sign ofGr;s(p) is determined by the first factor. Using derivatives, one can show thatGr;s(p) = 0

has a unique root,ar;s, in (0,1), and, forr < s, IXr(p) > IXs(p) if and onlyp < ar;s.

Cut the unit interval intoJ parts using cuts

0 = ar(0);r(1) < ar(1);r(2) < : : : < ar(J�1);r(J) < ar(J);r(J+1) = 1 ;

where for notational convenience we introducer(0) = 0 andr(J+1) =1. Notice that these cuts are defined using

the r(i) in increasing order. Then it can be shown that thepr(i)-experiment has maximum information whenp is

in the ith interval (ar(i�1);r(i); ar(i);r(i+1)), for i = 1; 2; : : : ; J . This motivates the very simple adaptive rule which

allocates to thepr(i)-experiment at stagek + 1 if the estimator ofp based on the data up to and including stagek

is in theith interval. As before, this can also be modified by noting that thear;s values are based on an asymptotic

analysis and can be adjusted for given sample sizes.

There are other useful extensions of the problem examined in this paper. One is to allow the sample size to be a

random variable which depends on some stopping criterion. Another is to incorporate unequal costs when sampling

from the different experiments. Yet another is to take the Bayesian perspective when sample sizes are fixed. This

latter problem requires a significantly different approach than the one taken here.
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Appendix: Proof of Theorem 6.1

The lack of consistency of̂p� occurs when one of the sample sizes does not tend to infinity. That is, if, say,

1 � n < no < 1, then �Xr
1=r does not converge in probability or a.s., and the weight1 � � does not tend to zero.

On the other hand, thêps estimator has weightsm=N andn=N and if either sample size is bounded asN tends to

infinity, the weight tends to zero, implying consistency.

The consistency of̂pml requires more work. Letx1 =
Pm

i=1X1i andxr =
Pn

j=1Xrj . Then the logarithm of

the joint likelihood function is equal to

hm;n(p) = fm(p) + gn(p), where

fm(p) = x1 log(p) + (m� x1) log(1� p) and gn(p) = xr log(p
r) + (n� xr) log(1� pr).

The derivative with respect top is

h0m;n(p) = f 0m(p) + g0n(p), where

f 0m(p) =
x1
p � m�x1

1�p and g0n(p) = rxrp � (n�xr)pr�1

1�pr .

The maximum likelihood estimator is the unique root in [0,1] ofh0m;n(p) = 0, and becausef 0m andg0n are both

decreasing inp, it follows that the root ofh0m;n is between the roots off 0m andg0n. Thus,minfp̂x1 ; p̂xrg � p̂ml �
maxfp̂x1 ; p̂xrg. Therefore, if bothm andn tend to infinity, then botĥpx1 andp̂xr tend top a.s., and thuŝpml tends

to p a.s.

Now, suppose thatn � no <1. Then�rno1�p � g0n(p) � rno
1�p , which in turn boundsh0m;n by

A�(p) =
x1
p
� m� x1 + rno

q
� h0m;n(p) �

x1 + rno
p

� m� x1
q

= A+(p):

ButA�(p) = 0 atp� = x1
m+rno

andA+(p) = 0 atp+ = x1+rno
m+rno

. Then,p� � p̂ml � p+. But p� andp+ both tend

to p a.s. asm tends to infinity, and thuŝpml tends top a.s. asm tends to infinity even thoughn � no. A similar

argument holds form � mo <1. 2
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