. . e

Proceedings of the 1982 Conference on Information Sciences and Systems

Department of Electrical Engineering and Computer Science, Princeton University

BROADCASTING IN MESH-CONNECTED COMPUTERS

Quentin F. Stout
Mathematical Sciences
State University of New York
Binghamton, NY 13901

Abstract

This paper considers the effect of augmenting
the local communication capabilities of a mesh-
connected computer with a global communication
feature called broadcasting. For a variety of
semigroup and picture processing problems this
provides significant improvement, although it can-
not significantly aid sorting algorithms.

Introduction

Mesh—connected computers, defined below, are
an important class of physically realizable par—
allel computers. Their regular pattern makes them
relatively simple to design and build, and also
provides a natural basis for stating and solving
problems in picture processing and matrix calcula-
tion. Several variations, under & variey of
names, have been studied for some time (e.g., Cole
[2], Kautz, Levitt, and Waksman [9], Levialdi [10],
von Neumann [18]), and recently several such com-
puters have been built (e.gz., Duff [3], Gilmore
et al [7], Reeves [12]). However, the extremely
local nature of their interconnections often
restricts their speed in solving certain problems,
and in this paper we consider one mechanism for
overcoming this obstacle.

Let n and k be positive integers. A k-dimen—

sional mesh-connected computer (k-MCC) of size nk

is a parallel computer consisting of idemtical
processors located at positions (Jl’ S k} in

k-dimensional space, where for all i in 1<i<k,

Ji is an integer and lEJiiF- The processor at

position LJl, ey Jk) is conmnected to the pro-
cessir at position (Il. .- Ik) if and omnly if
l=§:i:LlJi'Ii] . That is, each processor is con—

nected to its 2% nearest neighbors (or fewer,

for processors om the sides). Other schemes are
possible, such as having connections whenever
l=max{|J,-I,]|: l<i<k}, but no significant change
occurs il the speed of computations. (See
Hamacher [8].) Whem %=1, 2, or 3, a k~MCU is a
physically realizable model of parallel computa-
tion. We assume that each processor has a fixed
number of words of storage, where each word has
length log{(n), and that fundamental operationms,
such as addition or sending a word of information
to a neighbor, occur imn 0O(1l) time. Some authors
assume the word size is fixed and independent of

n, but since many problems involve answers or inter-
mediate results of lemgth log(n) we feel that our
word size assumption is more aligned with practice.
This point is discussed in Dyer and Rosenfeld [5].

It is well-known that for many problems (sort—
ing [16], function minimization [1], matrix calcu—
lations [6], etc.) their solution time on a k-MCC
equals the maximum time needed to move information
from one processor to another. For example, sup-
pose each processor contains z number and we wish
to sum these numbers, placing the result in proces—

sor (1,1, ..., 1} . This can easily be dome in
O(n) time, and further requires O0(n) time since
it takes that long for information from

(n,n, ..., n) to reach (1,1, ..., 1). (Through-
out our analyses assume that k is fixed, and the
time is considered soley as a funection of n . If
both n and k are considered variables then the
solution time is O(k*n).) In 0(n) time a k-MCC

1) calculations, while

only uk are neaeded to form the sum. Some of the
potential speed-up of the parallelism has been
lost, and a natural question is whether one can
somehow modify a k-MCC to better exploit all the
processors, while still keeping the simplicity and
naturalness of the k-MCC. Pyramids and cones do
this by adding processors at different levels, but
are significantly more complex. (See, for example
Tanimoto and Klinger [15] or Uhr [17].) We com—
sider a solution which is intermediate batween
mesh-connected computers and pyramids.

of size nk can do 0(nk+

Gentleman [6] briefly considered the effect of
supplementing a k-MCC with broadcasting, whereby
4ny Processor can transmit a value which is simul-
taneously received by all other processors, with
the broadcast taking only unit time. Only one
broadcast can occur in any time period. We will
not discuss here the question of how best to imple—
ment broadecasting. While it is unrealistic in that
it transmits information at unmbounded speed, for a
wide range of values of n it can be closely approxz—
imated by various busing schemes. Gentleman's
Theorem 3 seems to indicate that broadcasting is of
little use, but in this paper we will show that it
provides a significant improvement for certain
problems. Since it is a relatively simple feature
which provides faster algorithms, we feel that it
deserves consideration.

In this expository paper we simplify our dis-
cussions by considering only 2-MCC's, which are the
ones of greatest interest. We orient these so that
(1,1) 4is at the upper left and (n,n) is at the
lower right. Each processor stores its row and
column coordinates, as well as n. Further, each
processor uses one of its words of memory as a
counter, adding 1 after each operation to act as
a clock. This is possible since the werd size is
log(n), and enables processors to follow instruc-
tions such as "At time i processer j broadcasts its
value". This feature is used extensively, without
further mention. It canm also be achieved by a SIMD
discipline, but this extra requirement is unneces-
sary. Finally, for reasons that will be clear
shortly, we assume that n is a perfect cube. This
will simplify wvarious algorithms, and the extension
to the general case is quite straightforward.

Semigroup Calculations

From now 0? we will think of our 2-MCC as being
composed of u2 3 disjoint blocks, each a square of

n"”r3 processors. These are numbered in row-major
order, as illustrated in Figure 1. A block is just

85



ﬂlfS DIOCESSOTS
2 * )
block | block block
a1/3 1/3
1 2 n
block | block block
nlf3+l n1!3+2 2n1/3
n

block

n2/3 J

—
o processors

2
Figure 1. Block numbers for a 2-MCC of size n . |

-

a smaller 2-MCC, and since each processor knows its
position in the entire computer, it also knows
which block it is in and its position within the
block. For each block we will designate one of the
processors as the block leader, with the choice of
block leader depending on the problem. Block
leaders use broadcasting for inter-block communica-
tion, with intra-block communication performed by
the standard 2-MCC links. The following result is
a simple example of this principle.

2

Theorem 1. Using broadcasting, the sum of n

numbers, stored one per processor in a 2-MCC of

2/3)

size nz, can be found in 0O(n time. Further,

this time is optimal.

Proof. We give the desired algorithm as a sequence

of steps: For this problem the block leader will
be the ome in the upper left corner.

Step 1. Simultaneously in each row of each block
form the sum of the numbers in that row of that
block, placing this value into the leftmost proces-
sor.

Step 2. In each block, in the block leader form
the sum of the numbers calculated in Step 1. This
value is the sum of all numbers in this block.

Step 3. Each block leader, in turn, broadcasts the
number calculated in Step 2.

Step 4. As Step 3 proceeds, processor (1,1) cal-
culates the sum of the broadcasted numbers, and
when Step 3 is finished processor (1,1) contains
the result.

Steps 1, 2, and 3 take 0(52/3) time each.
Since Step 4 requires only one addition per broad-
casted number, it can be performed on-line without
slowing down Step 3. Therefore the total time is

0(n2f3). The proof of optimality appears in [13],
and consists of showing that an algorithm taking
less than this time must ignore some numbers. [J

This result has a natural extension to all
dimensions, with the speed-up achieved by broad-—
casting decreasing as the dimension increases.
Theorem 2 shows that, in O-notation, a k-MCC with
broadcasting can sum N numbers in the same time as
a (k+1)-MCC without broadcasting.

Theorem 2. Using broadcasting, the sum of nk num-
bers, initially stored one per processor in a

k=MCC, can be found in o(nk/(k+l))

this time is optimal. [J

time. Further

Theorems 1 and 2 can be extended to any com—
mutative semigroup operation, such as minimums,
maximums, and products. Other calculatioms, such
as averages and standard deviations, can essential-
ly be reduced to a sequence of semigroup opera-
tions. Most problems do mot have such a simple
division into local computing followed by global
computing, but instead tend to involwve local com—
puting, then global computing, and then a2 mixture
of local and global. Several examples of this
phenomenon appear in the next section.

Picture Processing

In this section we assume there is a {0,1}-
valued matrix P(i,j), 1<i,i<a , which represents
a digitized picture. The value of P(i,j) is
initially storad in processor (i,j). Picture
processing is a task ideally suited for a 2-MCC,
S0 the speed-up available with broadcasting is of
practical, as well as theoretical, significance.
Our examples illustrate fundamental, nontrivial
operations suitable for a wide range of applica-
tions.,

We will use a basic fact about sorting in a

2-MCC of size kz . We assume each processor con—
tains a block of memory called its sort area. We
will have each processor put a value into its sort
area, and then these values will be sorted into
snake-like order with the smallest value in proces-—
sor (1,1), the next value in (1,2) , and so on
until (1,k), which is followed by (2,k), (2,k-1),
va iy 2l (353) 5 (3.2, .- See Eigure 2.

This sort can be done in O0(k) time. (Thompson
and Kung [16].)

L, & 3 -4 5 %
12 11 10 9 8 7
13 14 15 16 17 18
26 23 22 21 20 19
25 26 27 28 29 30
36 35 34 33 32 31

Figure 2. Snake-like ordering for
36 processors.

First, suppose we want to find the median row
of the 1's, that is, we want to find the row where
about half the 1's are above it and about half are
below it. Precisely, we want to find

x n n n
min{x:y_ LZ_  BG,D) =¥ y 123 P(1,3) }
e J= =X+ =
The average row location of the 1's can be esasily

calculated using Theorem 1, but the median is
slightly harder.

86



Using broadcasting, a 2-MCC of

size nz can find the median row in 0(u213) time.
Proof. For this problem the block leader will be
at the lower left. For each row of blocks, the
block leader of the leftmost block will also be
called the block-row leader.

Step 1. In each row of each block, in the left-
most processor of that block's row form the number
of 1's in that block's row.

Step 2. In =ach processor in the leftmost column
of each block form the sum of all numbers calcula—
ted in Step 1 by that processor and all processors
above which lie in that block. When done, the
block lsader contains the number of 1's within the
block.

Step 3. Each block leader, in turn, broadcasts
the number it formed in Step 2.

Step 4. While Step 3 proceeds, each block-row
leadercomputes the total number of 1'2, the number
of 1's in its block-row, and the mumber of 1's in
blocks above its block-row.

Step 5. When Step 4 finishes, there is exactly
one block-row leader for which the number of 1's
in blocks above its block-row is less than half
the total, but when the 1's in its:block-row are
added to this the number equals or exceeds half of

Proposition 3.

the total. This block-row leader executes Steps
6 and 8.
Step 6. The block-row leader now starts a binary

search among the rows of processors covered by its
row of blocks. It initially broadcasts the row
number of the middle row coverad by this row of
blocks.

Step 7. Im each block in this block-row, each
processor ac tha left adge of the block which is in
the broadcasted row number now broadecasts, in turm,
the number it calculated in Step 2.

Step 8. The block-row leader sums these broadcasted
numbers, and then adds this to the number of 1's in
blocks above this block-row. Using this, it knows
whether the broadcasted row was too high or not,
and it then broadcasts the appropriate new row num
ber. Steps 7 and 8 are repeated until the median
row has been found.

Steps 1, 2, and 3 each take 0(n2£3) time. In
Step 4 each block-row leader has to do only a fixed
number of calculations for each broadcasted number,
sc Step 4 slows Step 3 down by at most a comnstant
multiple. Steps 5 and 6 take O(1) time, and Steps

7 and 8 are repeated log(n2}3) times, where in
0{n1/3

Therefore the total is O(n

each iteratiom Step 7 takes
8 takes 0(1).

) time and Step
2/3y g

This algorithm is typical in that the first
round of broadcasting is used to determine which
blocks need to comtinue.

Our next problem is to enumerate the extreme
points of the convex hull of the 1l's. That is, we
consider each procsssor to be a single point and we
want to identify those processors which are at the
vertices of the smallest convex polygon containing
all processors with a 1. Further, we want the pro-
cessors at the extreme points to contain a number
which indicates their relative position. The
rightmost extreme point (or, if there are two
rightmost extreme points then the lower of the two)
is number 1, the next one in counter-clockwise
order is nmumber 2, and so on. We will use the fol-
lowing facts:

Theorem 4.

Sketch of Proof.

i) ([11]) In a 2-MCC of size k2 the extreme
points can be enumerated in _0O(k) time.

([14]) 1In a 2-MCC of size k“ suppose two dis-—
joint convex sets have their extreme points
enumerated. Then, by using broadcasting, the
extreme points of their union can be emumerated
in 0(log(n)) time.

Fact ii) comes from notiecing that the extreme
points of the union are the extreme points of the
two regions minus an interval of extreme points

ii)

from each. See Figure 3.
/
/
7
/ 74
/ /
/7
/!
/ y .
: /
/
P
£
i
Figure 3. The convex hull of two disjoint

convex regions.

Using broadcasting, in a 2-MCC of size
nz the extreme points of the set of 1's can be

enumerated in 0(n2/3) time.

Now the block leacer is in the
upper left.

Step 1. In each block, enumeratzs the extreme
points of the 1l's, if any.

Step 2. Each block leader, in turn, broadecasts
"yes" if it is in a block containing 1's, and "no"
otherwise.

Step 3. As Step 2 proceeds esach block leader of a
block containing 1's determines whether any proces—
sor in its block (not necessarily one containing a
1) could, if it contained a 1, be an extreme point.
For example, if only blocks 1, 2, and 3 said "yes"
then block 2 might have some extreme points, but if
a block in the middle has its 8 nearest neighbors
say "yes" then it cannot contain extreme points.
Step 4. Each block leader, in turn, now does the
following: if the block has no 1l's or cannot con-
tain any extreme points, then it broadeasts "mo",
and otherwise broadcasts "yes". 1If this is the
first "yes" of this step then this block is finished,
while otherwise this block, and zll preceeding omnes,
enumerates the extreme points of the 1l's in this
and all preceeding blocks.

87



Steps 1 and 2 take 0(n2/3) time. Inm [14] it
is shown how to do Step 3 without slowing down
Step 2 by more than a constant amount. Also in

[14] it is shown that at most 4n1,3 block lead-
ers can say "yes" in Step 4. This, plus faet ii)

above, shows that Step 4 takes at most
O(nl/Jlog(n)) time, so the entire algorithm takes
0(32!3} time. [J

When combined with broadcasting, the enumera-
ted extreme points can be very useful. For exam-
ple, once this numbering is known, the maximum
distance between 1's can be determined in only
O(# of extreme points) time by having the extreme
points, in order, broadcast their location and
noticing that the maximum distance between a pair
of 1's equals the maximum distance between a pair
of extreme points. (Distance may be measured in
any metric computable in 0(1) time.) Similarly
the area of a convex region can be determined in
O(# of extreme points) time. Further, if there
are two disjoint convex regions, each of whose
extreme points have been ecnumerated, then in omly
0(log(n)) time one can determine the distance
between the regions.

We now analyze more distance problems. Sup-
pose the 1's are scatterad and we wish to deter-—
mine the minimum distance between any pair of 1's.
Any KP metric could be used, but we will use only

thd simple El (taxi-cab) metric. That is, we will

calculate min{|i-£|+|j-n|: P(i,5)=P(L,m)=1 and i#l
5t j#¥m }. We call this the minimum distance prob-
lem, though in Dyer [4] it is called the closest
pair problea.

First we show a simple solution for a 2-MCC
without broadcasting, which will be used in our
broadcasting-based algorithm. Our 2-MCC solution
uses the simple spreading wave techmique, for
which we assume that each processor contains a mem
ory cell called the d cell. At time 0 each proces-
sor containing a 1 sets d=0, while all other pro-
cessors set d==. At time i, each processor where
d is infinicy which is adjacent to a processor
where d equals i-1 now sets its d=i. This contin-
ues until time n, which is the time needed for a
wave starting in one cormer to reach a wave started
in the opposite cormer. Notice that no processor
ever changes d once it is finite, and the value in
d equals the minimum distance from that processor
to a processor containing a 1.

A processor is at a collision point of two or
more waves (four is the maximum possible) if an
opposite pair of its neighbors have a d value less
than or equal to its own. (See Figure 4.) If a
processor at a collision point has d=i and two op-
posite neighbors have d=i-1, then it knows there
are twe 1's which are 2%i units apart, while other—
wise it must be that one neighbor has d=i and the
opposite one has d=i-1, in which case the two 1l's
are 2%i+1 units apart. Each processor at a col-
lision point calculates the distance between the 1l's
and puts this value in its sort area, and all other
processors put <= in their sort area. In O(n)
time onz can have the 2-MCC find the minimm of the
values in the sort areas. This minimum is the
answer.

2

i
N
4

Figure 4. Spreading waves, emanating from
‘the *'s. Circled numbers are
collision points.

Now we show how to solve the minimum distance
problem on a 2-MCC with broadcasting.

2
Theorem 5. Using broadcasting, a 2-MCC of size n

> 2/3
can solve the minimum distance preoblem in O(n / )

time.

Proof. Again the block leader will he in the upper
left, Our initial local computing will go across
block houndaries.

2/3

Step 1. Do the spreading waves far n time units
This is the time needed for a2 spreading wave orig=
inating in one cormer of 2 block to collide with a
wave originating in ths opposite corner of the
block.

Step 2. Any processor at a collision point puts
the distanca hetween the 1's into its sort area,
and all other proecesscrs put in = . (Notice

that a processor may be at a collision point of two
waves which originated in different blocks.) With-
in each block the minimm of the numbars in the
sort areas is determined and put into the sort area
of the block leader.

Step 3. Thea block leaders, in turm, broadcast the
value in their sort area. If any finite number is
broadcast then the answer is the minimum of all
such numbers and the algorithm terminates.

Step 4, If the algorithm has not terminated then
no block contains more than ome 1. Each processor
containing a 1 puts its coordinates into its sort
area, while all others put in = , and the minimum
of all values in sort areas within a block is put
inte the sort area of the block leader.

Step 5. The hlock leaders, in turn, broadcast the
value in their sort area.

Step 6. During Step 5, each block leader having a
fipite position in its sort area determines the
minimum distance betwesn that positiom and a2ll
other broadcasted positions.

Step 7. The block leaders, in turn, broadecast
either =, if their Block contains no 1, or else
the number determined during Step 6. The answer is
the minimm of all numbers broadcasted.

Steps 1, 2, 3, 4, 5, and 7 take D(n2f3) time
each. Step & requires only a fized number of cal-
culations per broadcasted wvalue, and hence cannot
slow Step 5 by more than a constant aultiple._zfa
Therefore the entire algorithm takss only 0(@™' 7)
time. [

88



S

R

R

_— W .~

Finally, we consider a distance problem re-
quiring more global ‘communication than the previous
problem required. We call it the all points mini-
mum distance problem, and it involves having each
processor containing a 1 determine the minimum
distance to any other processor coantaining a 1.

In a2 2-MCC without broadcasting one can also solve
this by using spreading waves, where now a colli-
sion point sends a message back towards the l's
telling them of the distance. This message always
goes from one processor to one of its neighbors
with a lower d value, with each processor con—
taining a 1 having as its answer the smallest mes-
sage received. This takes at most 0(n) time.

As before, we modify the 2-MCC algorithm to
utilize broadcasting whenever the answer is large.

Theorem &. Using broadcasting, a 2-MCC of size nz
can solve the all points minimum distance problem

in 0(n2/3) time.

Sketch of Proof. Again the block leaders will be
the upper left corner.

Step 1. Do the spreading wave techmique, with col-
lision points reporting back to the 1l's, for

2
2%2/3 steps. This is long enough’ to allow any

two 1's in the same block to have their waves col-
lide and report back. Any processor containing a 1
which receives a message back during this stage has
as its answer the minimum of all such messages.
Step 2. Any processor containing a 1 which did not
receive a message back during Step 1 places its co-
ordinates into its sort area. This can happen only
if this block contains no other 1's. A processor
containing a 1 which did determine its answer in
Step 1 puts 0 din its sort area, and all other
processors put in « ., The minimum of all values
in sort areas is placed into the sort area of the
block leader. :
Step 3. The block leaders, in turm, broadcast the
value in their sort area.

Step 4. As Step 3 proceeds, those block leaders
which have a coordinmate in their sort area calcu-
lzte an upper bound on the minimum distance from
that 1 to any other 1. They do this by calculating
the minimum distance from the coordinates they have
to any other broadcasted coordinatses, and whenever
a block broadcasts a 0
possible distance from their 1 to any processor in
the block broadcasting the 0

Step 5. If no coordinates were broadcast during
Step 3 then the algorithm is finished. Otherwise,
each block leader, in turn, either broadcasts a
null message, if its sort area has anything other
than coordinates, or else rebroadcasts the coordin-
ates in its sort area, followed by the value calcu-
lated in Step 4.

Step 6. As Step 5 proceeds, each processor con-
taining a 1 calculates the distance from it to each
broadcasted coordinate, and if this is less than
the broadcasted distance bound then the coordinates
and distance ars stored as a pair in its sort area.
It can be shown ([14]) that at most 7 pairs are
stored.

Step 7. Each processor treats its sort area as 7
separate areas, and fills any area not used in Step
6 with infinity. The sort areas are sorted into
snake-like order, where the major key is the coord-
inates and the minor key is the distance, and where
the first 7 pairs are stored in the block leader,
the next 7 in the next processor, and so on.

Step 8.
ing this bleck to a given broadcasted location is

they calculate the furthest

Notice that zll distance information relat-

now grouped together, and the first pair in each
group contains the minimum distance from a 1 in
this block to that broadecasted 1. Each pair
which is nmot the first in its group is replaced by
infinity, and the sort areas are resorted. It can
be shown that at most 7 pairs remain, so, assuming

n4f33], now the sort only places one pair per pro—
cessor.
Step 9. Each block leader, in turn, broadcasts the

pair in its sort area. If this is not infinity
then it passes a message to the next processor in
the snake-like ordering, which then broadcasts the
pair in its sort area. This continues until an
infinity is broadcast, which signals the next block
to start.

Step 10. While Step 9 proceeds, each processor
containing a 1 which did not determine its answer
during Step 1 keeps track of the minimum distance
which is paired with its coordinates in a broad-
cast. The minimum such value is its answer, or
else, if no such pair is broadcasted for it, then
its answer is the distance its block leader calcu-
lated in Step 4.

Steps 1, 2, 3, 5, 7, 8, and 9 each take 0(a’/)
time. ©Steps 4, 6, and 10 can be performed on-line
while the preceeding step is being performed with-
out slowing it down more than a constant multiple,

2/3y

resulting in O(n total time. [J

Conclusions

89

We have shown that, for certain representative
problems, a mesh-connected computer with broad-
casting can perform significantly faster than one
without it. Several problems which take O0(n) time

on a k-MCC of size nk can be done in O(nkx(k+l>}

time if broadcasting is used, an effect equiwvalent
to using a (k+1)-MCC without broadcasting. Broad-
casting is most useful when a short period of
local computing followed by broadcasting signifi-
cantly reduces the information remzining to be
determined. As we have shown, several geometric
problems have this property. Since these problems
are among the ones to which mesh-comnected compu-
ters are being applied, we feel that broadcasting
may be of practical use. Broadcasting also raises
a great many theoretical questions in trying to
determine how to apply it to warious problems.

We should mention that broadcasting does not
cure all data movement ills. TFor example, in [13]
it is shown that sorting algorithms cammot be im-
proved. The difficulty here is that many values
may have to travel far, and for broadcasting to
assist in this the number of broadcasts becomes
excessive. A related, open problem is the detar-
mine the time needed to find the median of
n2 numbers, stored one per processor im a 2-MCC
of size n2.

0(n2!3) time is necessary, and by modifying a
1-MCC algorithm of [13] one can obtain an algorithm

which uses 0Of( (nz*log(n))l/J) time. It is an
open question as to whether this time is optimal.

It is easy to show that at least

Acknowledgment

This research was partially supported by a
grant from the S. U. N. Y. University Awards
Committee.



References

1. H. Abelson, Lower bcﬁmds in information trans-
fer in distributed computation, J. ACM 27 (1980),
384-392.

2. S. N. Cole, Real-time computation by n-dimen-
sional iterative arrays of finite-state machines,
IEEE Trans. Computers 18 (1969), 349-365.

3. M. J. B. Duff, CLIP4: A large scale integrated

circuit array parallel processor, 3rd Int'l. Joint
Conf. on Pattern Recognitiom, 1976, 728-732.

4. C. R. Dyer, A fast parallel algorithm for the
closest pair problem, Info. Proc. Let. 11 (1980),
49-52.

5. C. R. Dyer and A. Rosenfeld, Parallel image
processing by memory-augmented automata, IEEE
Trans. Pat. Anal. and Mach. Intel. 3 (1981), 29-41.

6. W. M. Gentleman, Some complexity results for
matrix computations on parallel processors, J. ACM
25 (1978), 112-115.

7. Gilmore et al, Massively parazllel processor,
Goodyear Aerospace Company, 1979.

8. V. C. Hamacher, Machine complexity versus
interconnection complexity in iterative arrays,
IEEE Trans. Computers 21 (1971), 321-323.

9. W. H. Kautz, K. N. Levitt, and A. Waksman,
Cellular interconnection arrays, LEEE Trams.
Computers 17 (1968), 443-431.

10. 5. Levialdi, On shrinking binary picture pat-
terns, Comm. ACM 15 (1972), 7-10.

11. R. Mililer and Q. F. Stout, Mesh-connected
computer algorithms for some topological problems,
to appear.

12. A. P. Reeves, Asystematically designed binary
array processor, LEEE Trans. Computers 29 (1980),
278-287.

13. Q. F. Stout, Mesh-connected computers with
broadcasting, submitted.

14. Q. F. Stout, Geometric algorithms for a mesh-
connectad computer with broadcasting, to appear.

15. S. L. Tanimoto and A. Klinger (eds.), Struc-
tured Computer Vision: Machine Perception Through

Hiearchical Computational Structures. Academic

Press, New York, 1980.

16. C. D. Thompson and H. T. Kung, Sorting on a
mesh-connected parallel computer, Comm. ACM 20
(1977), 263-271.

17. L. Uhr, Layered recognition cone networks
that preprocess, classify, and describe, IEEE
Trans. Computers 21 (1972), 758-768.

18. J. von Neumann, The Theory of Automata:
Construction, Reproduction, and Homogeneity, A.
Banks, ed. Univ. Illinois Press, Urbana, 1966.

90



