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Abstract

Suppose we wish to decide which of two treatments is
better, where the outcomes are Bernoulli random vari-
ables, the success probabilities of which, themselves, are
modeled as independent beta random variables. Assume
that the maximal population size for the experiment is
�xed, but that the length of the study and the number
and order of patients assigned to each treatment may be
random. Our goal is to maximize the likelihood of mak-
ing the correct decision by utilizing a curtailed equal
allocation rule, but we wish to do so with a minimal
average study length.

We show that this experimental design problem re-
duces to a problem of optimal adaptive allocation which
can be solved exactly using dynamic programming.
We compare the optimal allocation procedure to the
commonly-used approach of curtailed alternating allo-
cation and show that the optimal allocation procedure
is noticeably superior. The evaluations of allocation pro-
cedures are all exact, calculated via backward induction.
Since the optimal adaptive allocation procedure can be
easily determined and evaluated on workstations, and
stored on personal computers for ready access during ex-
periments, it is a practical improvement over alternating
allocation.

1 Introduction

We are interested in the simple and common decision
problem of trying to pick the better of two Bernoulli pop-
ulations. For concreteness the problem will be described
in terms of a clinical trial, but it is equally applicable to
other areas such as product testing.

Suppose two treatments are available to treat a cer-
tain disease and we need to design an experiment to
decide which is better. A maximum of N exchangeable
patients can be used in the trial, but the trial may be
stopped earlier. (To simplify exposition we assume N
is even.) We assume that the patients enter the trial
sequentially, and that the outcomes of patients 1; : : : ; i
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are known before patient i+1 is assigned. Responses to
treatment will be either successes or failures, where, for
each patient, the probability of success on Treatment i
is pi; i = 1; 2. Our study design is set up to allow the
incorporation of prior information on the success rates
p1 and p2: This information is modeled in the form of a
joint distribution function � on (p1; p2) and is taken to be
the product of two independent beta random variables:

p1 � Be(a0; b0) and p2 � Be(c0; d0)(1)

for (p1; p2) 2 
 = (0; 1)� (0; 1):

As was mentioned, our main goal is to select the bet-
ter treatment, but we have a secondary goal as well. We
wish to make the decision based on as few patients as
possible, and we take advantage of the sequential nature
of the data to do this. A design is comprised of two parts
- an allocation procedure, 
(�); and a decision rule. An
allocation procedure is a rule for deciding what to do
at each stage of the trial. Let �(�) represent the class
of all allocation procedures with the following features:
At any stage i, the procedure may indicate one of three
options: assign patient i to Treatment 1, to Treatment
2 or stop the trial. At each stage, the decision of how to
proceed may depend only on the prior distribution and
the information available from preceding patients.

Regardless of what procedure is used, the form of the
optimal decision rule remains the same. The rule states
that we select the population with the higher observed
mean at the end of the trial.

2 Optimal Decision Making

Unfortunately, our two goals of making good terminal
decisions and keeping study size to a minimumare some-
what contradictory, so our concern is to study tradeo�s
between these criteria. First, however, it must be noted
that, even for �xed sample size experiments, there are
no allocation procedures that make optimal decisions for
all (p1; p2) 2 
: A useful method of examining optimal-
ity in a more restricted sense is to consider procedures
that o�er optimality along lines of constant di�erence:
jp2 � p1j = �.

Let P
 [(p1; p2);N ] represent the probability of mak-
ing a correct decision after N observations using pro-
cedure 
; when (p1; p2) are the true treatment success



rates. Next, de�ne

P
� = min
jp2�p1j��

P
 [(p1; p2);N ];

then we say a procedure, 
�; is �-optimal if

P 
�

� = max

2�

P
�:

3 Curtailed Allocation Procedures

Let C be the class containing all procedures that are �-
optimal for all � 2 (0; 1). A popular sub-class of C is
the set of �xed horizon equal allocation rules, where the
term `horizon' refers to the number of patients actually
observed in the study. This class of procedures, CEA;
contains all allocation rules that assign N

2 patients to
each treatment alternative. Since we are concerned both
with making good decisions and keeping study length to
a minimum, we work here with a class of procedures that
retain the optimal properties of those in CEA; but which
also may be stopped prior to N:

Before characterizing the procedures in this new
class, we must �rst de�ne what is meant by a state of the
general process that represents our clinical trial. Sup-
pose that we are at Stage M , 0 � M � N; of the study
and have observed

i = # patients succeeding on Treatment 1,

j = # patients failing on Treatment 1,

k = # patients succeeding on Treatment 2, and

l = # patients failing on Treatment 2.

Note thatM = i+j+k+l. The vector (i; j; k; l) which is
su�cient for (p1; p2); coupled with the prior density func-
tion �; is referred to as the state (i; j; k; l; �):Thus, at any
time M; the state provides all information incorporated
in the posterior density function, �(p1; p2 j i; j; k; l);
which is simply the product of the individual posterior
densities

(p1 j i; j) � Be(a; b); (p2 j k; l) � Be(c; d);

where

a = i+ a0 b = j + b0 c = k + c0 d = l + d0:

Often, the prior density function will be understood, and
only the stage of the trial and the su�cient statistics will
represent the state.

If, for some M � 1; the trial is terminated at a state
(i; j; k; l; �), then our decision rule is to declare as better
the treatment with the higher observed mean { selecting

1
2
tie

9=
; if

i

i + j

8<
:

>
<
=

9=
;

k

k + l
;

and where we randomize to select a winner if a tie is
declared. Throughout, we will assume this decision rule
is used whenever the trial is terminated. Note that the
state also contains enough information to determine the
study length (namely M ), the number of failures (j +
l), and the number of patients assigned to the inferior
treatment (either k + l or i + j, depending on whether
Treatment 1 or 2 is declared the better).

Now, suppose we are using some allocation procedure

, and that during an experiment a state � is reached.
Further, suppose that 
 will allocate future patients so
that all terminal states that can be reached from � will
have the same decision D. In such a case, one can go
ahead and make decision D at state � without a�ect-
ing the �-optimal status of 
: This simple concept is
called pruning or curtailing, and we denote the class of
all curtailed equal allocation procedures as CCEA:

Consider, for example, the equal allocation procedure
referred to as alternating allocation, which is a commonly
used oblivious allocation procedure which ignores all pre-
vious outcomes and simply alternates back and forth be-
tween treatment assignments. If alternating allocation
is being used with N = 10, and after the 7th patient
the state is (3,1,0,3), then no matter what happens on
the 8th, 9th and 10th patients (assigned Treatments 2,
1, and 2, respectively), the decision will be that Treat-
ment 1 is the better. Clearly, one may as well prune
the decision tree (or curtail the experiment) and declare
Treatment 1 the better.

4 Minimum Average Study Length

When considering our second criteria for procedure opti-
mality, study length, we must again resort to a restricted
notion of optimality. Since no procedure o�ers the mini-
mum expected study length for all (p1; p2) 2 
; we turn
to a Bayesian concept which we refer to as the average

study length of a procedure 
 : L
 : Let L
(p1; p2) denote
the expected number of patients in a trial when the pro-
cedure 
 is used for the �xed parameter con�guration
(p1; p2). Then

L
 =

Z



L
 (p1; p2) d �(p1; p2);

and it is our goal to �nd procedures that simultaneously
minimize L and are contained in CCEA: In other words,
we seek procedures 
 2 ��; where

�� = f
0 : L

0

= min

2CCEA

L
g:

Our goal is minimize the average study length among
the curtailed equal allocation rules, but one potential dif-
�culty is that there are a very large number of equal al-

location procedures, totaling 22
�(N)

. Fortunately the use



Comment: This algorithm determines the minimal average study length, ML(0; 0; 0; 0), among
all curtailed equal allocation rules, for a given prior distribution.

For all states � with N patients, ML(�) := N .

For M := N � 1 down to 0 do
For all states � with M patients

If � prunable then ML(�) := M
else

If Treatment 1 permissible

then ML1 := expected minimal study length allocating Treatment 1
else ML1 :=1.

If Treatment 2 permissible

then ML2 := expected minimal study length allocating Treatment 2
else ML2 :=1.

ML(�) :=min(ML1; ML2).

Figure 1: Algorithm for Minimal Study Length among Equal Allocation Rules

of su�cient statistics reduces the number of nonequiv-
alent procedures to 2�(N

4) since there are only �(N4)
states for which allocation decisions are need.

The algorithm for determining the minimal average
study length appears in Figure 1. For the given �xed
prior distribution (1), it determines the minimal possi-
ble average study length among the class of curtailed
equal allocation rules. It works in the following way:
For each state �, the algorithm determines ML(�), the
minimum average study length given that the study
reaches � and then proceeds optimally to the end of the
study. The value ML(�) is computed via dynamic pro-
gramming, which works from the last stage towards the
�rst. The variable M in Figure 1 denotes the number
of patients treated so far, and the �nal value calculated,
ML(0; 0; 0; 0), is the answer.

While this is similar to Bellman's classic dynamic
programming algorithm, [1], to minimize expected fail-
ures, there is a critical di�erence. With equal allocation
procedures, there are states for which allocating one or
the other of the treatments is prohibited. To decide if
Treatment 1 permissible, note that in the state (i; j; k; l),
an equal allocation rule can assign another patient to
Treatment 1 if and only if the number of patients that
have previously been assigned to Treatment 1 is less than
N=2; i.e., if and only if

i+ j < N=2 :

Similarly, the condition Treatment 2 permissible is

k + l < N=2 :

Note that, at any stage M < N , at least one treatment
must be permissible.

To decide if state (i; j; k; l) is prunable, note that one
can stop and declare Treatment 1 the better if and only
if the number of successes on Treatment 1 exceeds the
number of successes Treatment 2 would have if all future
assignments to Treatment 2 resulted in successes. That
is, Treatment 1 will be the winner in all possible �nal
states that are reachable from this state by equal alloca-
tion rules if and only if i > N=2�l. Similarly, Treatment
2 will be the winner if and only if k > N=2�j. While ties
can occur, in this problem no state withM < N is prun-
able with a tie outcome; although such states can have
tie outcomes among the reachable states, they must also
have at least one reachable state with a nontie outcome.
Thus the condition � prunable is

(i > N=2� l) or (k > N=2� j) :

Finally,ML1 and ML2 are the minimal possible av-
erage study lengths if the study reaches (i; j; k; l) and the
next patient is assigned to Treatment 1 or Treatment 2,
respectively. To determineML1, note that assigning the
next patient (patient M + 1) to Treatment 1 will either
result in the state (i+1; j; k; l) or the state (i; j+1; k; l),
depending on whether the treatment is a success or fail-
ure. Given � and M; the posterior probability of success
is

a0 + i

a0 + i+ b0 + j
;



N ! 20 50 100 200 400
Curt. Alt. 16.2 39.4 78.1 155.3 309.8
Optimal 15.2 36.1 70.8 140.2 278.8

Table 1: p1 � Be(1; 1); p2 � Be(1; 1)

N ! 20 50 100 200 400
Curt. Alt. 16.7 41.0 81.4 162.3 324.0
Optimal 15.9 38.4 75.9 150.8 300.5

Table 2: p1 � Be(1; 1); p2 � Be(25; 25)

and thus ML1 is

ML1(i; j; k; l) =
a0 + i

a0 + i + b0 + j
�ML(i+ 1; j; k; l) +

b0 + j

a0 + i + b0 + j
�ML(i; j + 1; k; l) :

Similarly,ML2 is given by

ML2(i; j; k; l) =
c0 + k

c0 + k + d0 + l
�ML(i; j; k+ 1; l) +

d0 + l

c0 + k + d0 + l
�ML(i; j; k; l+ 1) :

The assignment ML(�) := min(ML1; ML2) is the
essence of the principle of optimality which is being ex-
ploited by dynamic programming. The principle indi-
cates that the minimal average study length of any study
passing through the given state is the smallest of the
minimal average study lengths for each permissible treat-
ment.

The algorithm does not explicitly show the alloca-
tion procedure that achieves the minimal average study
length, but it can be determined by noting for each state
whether the algorithm decides to terminate or, if not,
which treatment gives the smaller expected study length.
This information can be stored and used to conduct the
study.

5 Results

In Tables 1-4 we have given results comparing curtailed
alternating allocation to the optimal curtailed equal al-
location. Each table corresponds to a di�erent con�g-
uration of the prior parameters a0; b0; c0; d0; and gives
the average study length for several di�erent values of
N . All the entries are exact to within roundo� errors.

The basic heuristics to be learned from the tables are
as follows:

1. For similar means, smaller variances correspond to
greater average study lengths;

N ! 20 50 100 200 400
Curt. Alt. 16.1 39.2 77.7 154.6 308.3
Optimal 15.1 36.1 71.0 140.7 280.0

Table 3: p1 � Be(1; 1); p2 � Be(40; 10)

N ! 20 50 100 200 400
Curt. Alt. 18.0 44.6 88.9 177.5 354.7
Optimal 16.1 38.7 76.3 151.6 302.2

Table 4: p1 � Be(4; 1); p2 � Be(40; 10)

2. As the di�erence between the means becomes
smaller, the average study length becomes greater.

The �rst point is illustrated by comparing Table 1, where
both treatments have a uniform prior, with Table 2,
where Treatment 2 has a prior whose mean is still 1/2
but whose variance is much smaller. The second point is
illustrated by comparing Tables 2 and 3, where in Table
3, Treatment 1 continues to have a uniform prior, but
now Treatment 2 has a prior with a mean of 4/5.

Finally, in Table 4, we are trying to choose the bet-
ter treatment when one has a prior of Be(4,1), and the
other has a prior of Be(40,10). Comparing to Table 3,
we see that the equal means in Table 4 increases the
expected study length for both procedures, and does so
much more dramatically for alternating allocation than
for the optimal allocation.

6 Further Remarks

In this short conference paper, we have illustrated only
the ability to minimize the average study length within
the class of curtailed equal allocation rules, which were
selected because they are �-optimal. However, the
same algorithmic approach can be applied to other sit-
uations. Within the class of curtailed equal allocation
rules, one can apply the constrained dynamic program-
ming method described in Section 4 to such problems
as

1. Minimizing the expected number of failures;

2. Minimizing the expected number of patients as-
signed to the inferior treatment; and

3. Minimizing the expected cost of the experiment
when di�erent costs may be incurred for each dif-
ferent (treatment, result) possibility,

where expectation is taken to mean average with respect
to the prior distribution on (p1; p2):

For these alternative optimizations, the only changes
needed are in the assignment of ML at states that are



terminal. For example, to minimize the number of fail-
ures, the new value of ML at terminal states is just j+ l.

Another extension that is easy to incorporate is that
in which a a third decision is allowed at the end of the
study. For example, rather than randomly picking one
of the treatments as better if the observed means are
similar, one may prefer to declare a study outcome of
\no di�erence". In this case, a new decision rule would
be speci�ed and the test for prunability of a state would
become slightly more complicated. Otherwise the algo-
rithm would be just as in Figure 1.

There are many other easy variations. For example,
the present program allows us to optimize on one criteria,
such as study length, and then to evaluate the resulting
procedure on other criteria, such as number of failures.
Another goal may be to determine how robust a design is.
Here, one can create a procedure using one set of priors
but evaluate it using a di�erent set. All such evaluations
would be exact, performed using backward induction.

Historically, the use of backward induction to help
solve sequential allocation problems has been limited
due to the method's computational intensity. Lately,
however, it has become quite practical given the current
speeds and memory capacity of computers. For exam-
ple, on a large workstation one can carry out designs and
evaluations for N > 400, and on a parallel computer one
can handle N > 1000. Further, having used a worksta-
tion or departmental computer to design and evaluate an
allocation procedure for, say N = 400, the procedure can
be compressed and stored on a personal computer, avail-
able for ready access in many testing situations. These
computational points will be explored more fully in an
expanded version of this paper and in [3].

The binomial selection problem has been examined in
settings far too numerous to note here. One paper that is
particularly worthwhile to reference here, however, is an
unpublished work of Berry and Eick [2] that was called
to our attention during the presentation of the present
paper. The special relevance of Berry and Eick [2] is that
it is one of the few papers of which we are aware that uti-
lizes backward induction to perform exact evaluations of
non-recursive procedures. In their paper, the goal was to
attain a tradeo� between failures and the probability of
selecting the better treatment, without curtailment. In-
stead of maintaining optimal probability of selecting the
better treatment by searching through equal allocation
rules, dynamic programming was used to minimize the
sum of the number of failures observed during a study
of N patients, plus the expected number of failures in a
future population of size P , assuming that the treatment
declared better from the study was used for this popula-
tion. The expected failure rate in the second population

was the posterior estimate of the failure rate for the bet-
ter treatment, based on the prior and the observations
during the study.

Intuitively, in such an approach, for �xed N , increas-
ing P increases the importance of correctly selecting the
better treatment, while decreasing P increases the im-
portance of minimizing failures during the initial study.
While this idea is certainly not unique to Berry and
Eick [2], the approach that they take with respect to
\selecting the better treatment" is a Bayesian notion.
In this paper we use a frequentist version of the proper-
ties of the decision rule and a Bayesian version of average
study length. This latter approach is part of a general
program of blending Bayesian and frequentist ideas in
both the design and analysis phases of an experiment.
Such a blending, while often controversial, is highly 
ex-
ible. Not only can it be useful in a wide range of appli-
cations, but it can also yield designs satisfying a variety
of statistical criteria.

References

[1] Bellman, R. (1957) Dynamic Programming. Prince-
ton University Press.

[2] Berry, D.A. and Eick, S.G. (1987), Decision analysis
of randomized clinical trials: comparison with adap-
tive procedures. Unpublished manuscript.

[3] Hardwick, J. and Stout, Q. F. (1992), Computational
aspects of sequential allocation for testing with mul-
tiple criteria. In preparation.


