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Abstract

Isotonic regression is a shape-constrained nonparametricregression in which the ordinate is a non-
decreasing function of the abscissa. The regression outcome is an increasing step function. For an
initial set ofn points, the number of steps in the isotonic regression,m, may be as large asn. As
a result, the full isotonic regression has been criticized as overfitting the data or making the rep-
resentation too complicated. So-called “reduced” isotonic regression constrains the outcome to be
a specified number of steps,b. The fastest previous algorithm for determining an optimalreduced
isotonic regression takesΘ(n + bm2) time for theL2 metric. However, researchers have found this
to be too slow and have instead used approximations. In this paper, we reduce the time for the exact
solution toΘ(n+bm logm). Our approach is based on a new algorithm for finding an optimal b-step
approximation of isotonic data. This algorithm takesΘ(n log n) time for theL1 andL2 metrics.

Keywords: step function, histogram, piecewise constant approximation, reduced isotonic regression

1 Introduction

Isotonic regression is an important form of nonparametric regression that allows researchers to relax
parametric assumptions and replace them with a weaker shapeconstraint. A real-valued functionf
is isotoniciff it is nondecreasing; i.e., if for allx1, x2 in its domain, ifx1 < x2 thenf(x1) ≤ f(x2).
Similarly, a function isantitoniciff it is nonincreasing. Such functions are also called monotonically
ordered, where sometimes the term is used to mean isotonic and other times it means either isotonic
or antionic. Thousands of references to isotonic regression cite the fundamental books of Barlow
et al. [4] and Robertson et al. [15]. Further, there are tens of thousands of references to the search
terms “isotonic” and “monotonic” regression.

Fitting isotonic functions to data is useful in situations in which the independent variable has
an ordering but no natural metric, such as S, M, L, XL sizes. Since the only important property
of the domain is its ordering, we assume that it is the integers 1 . . . n for somen, and use[i : j],
1 ≤ i ≤ j ≤ n to denote the rangei . . . j. By weighted values(y,w) on [1 :n], we mean weighted
values(yi, wi), i ∈ [1 : n], where they values are arbitrary real numbers and thew values (the
weights) are positive real numbers. Given weighted values(y,w) and a real-valued functionf on
[1 :n], theLp approximation error off is

(
∑n

i=1
wi|yi − f(i)|p)

1/p
1 ≤ p < ∞

maxn
i=1 wi|yi − f(i)| p = ∞

An Lp isotonic regressionis an isotonic function that minimizes theLp error among all isotonic
functions and hence is optimal in that regard. Figure 1 givesan example of an isotonic regression.

Isotonic regressions are step functions where the number ofsteps,m ≤ n, is determined by the
data. In certain cases, there is criticism that such functions can overfit the data [16, 17] or produce
a result with too many steps [7]. Consequently, some researchers utilize isotonic regressions that
restrict the number of steps. Schell and Singh [17] have referred to such functions asreduced
isotonic regressions.
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Figure 1: Isotonic Regression, Where Size Indicates Weight

Restricting the number of steps is also a central issue in thegeneral area of approximation by
step functions. This concern arises in a wide variety of settings, such as segmentation of time series
and genomic data [9, 11, 21], homogenization [6], histogramming [8, 10, 12, 14],x-monotone func-
tions [22] and piecewise constant approximations [5]. A survey of a variety of types and applications
of histograms to database queries appears in Poosala et al. [14].

In general, a functionf is anoptimalLp b-step approximation, b = 1, . . . , n, iff it minimizes
the Lp error over all functions withb steps. Figure 2 is an example of an optimal approximation
by a step function. Since the specific value ofp will always be clear, we refer to such functions
merely as optimalb-step approximations. Generally, optimalb-step approximations are not unique.
For example, with unweighted values 1, 2, 3 on[1 :3] andb = 2, for anyp the function which is 1.5
on [1 :2] and 3 at 3 is optimal, as is the function which is 1 at 1 and 2.5 on[2 :3].

Here we are concerned with computing reduced isotonic regressions. An isotonic functionf is
anoptimalLp b-step reduced isotonic regression, b = 1, . . . , m ≤ n, iff it minimizes theLp error
over all isotonic functions havingb steps. Again we omit the “Lp” when citing such functions. Our
main results are faster algorithms for generating optimalb-step isotonic regressions. In doing this,
we draw upon approaches used for generating optimal step approximations. In 1958 Fisher [6] gave
a dynamic programming algorithm for determining an optimalb-step approximation inΘ(bn2) time.
His algorithm was forL2 and can easily be extended to theL1 metric, takingΘ((b+log n)n2) time.
It remains the fastest known algorithm for general data and has been widely used and repeatedly
rediscovered. However, a problem cited by many researchersis that the quadratic time (inn) of
Fisher’s algorithm makes it too slow for many applications [7, 8, 9, 11, 12, 21].

In Section 2.2, we examine the special case in which the values are themselves isotonic. In this
case, optimalb-step approximations and optimalb-step reduced isotonic regressions are the same.
The “unrestricted maximum homogeneity” approximations ofFisher and the optimal variable-width
“serial histograms” of Ioannidis [10] are instances of optimalb-step approximations of isotonic data.
Here we show that forL1 andL2, optimalb-step isotonic regressions can be found inΘ(bn logn)
time by a dynamic programming approach that exploits isotonic properties.

Most previous work for reduced isotonic regression with general data has only produced sub-
optimal approximations. It appears that the only publishedalgorithm that produces optimal reduced
isotonic regressions is due to Haiminen, Gionis and Laasonen [7]. Their algorithm is for theL2

metric, takingΘ(n + bm2) time, wherem is the number of pieces of the unrestricted isotonic
regression andb is the number of steps in the reduced isotonic regression. (To lessen confusion, we
use “pieces” to refer to the steps of the unrestricted isotonic regression.) The algorithm is based on
first finding an unrestricted isotonic regression and then applying Fisher’s algorithm to its pieces.
In Section 3, we reduce this time toΘ(n + bm log m) by applying our algorithm for isotonic data.
Section 4 we give an algorithm forL1 reduced isotonic regression based on the same approach.
However, it produces an approximation which in practice is very good but not necessarily optimal.

Section 5 contains some final comments.
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Figure 2: Optimal 4-Step Approximation of the Weighted Values in Figure 1

2 Approximation by Step Functions

As discussed, the isotonic condition implies that the regression function is a sequence of steps or
pieces. A real-valued functionf on [1 :n] is ab-step function, 1 ≤ b ≤ n, iff there is a set of indices
j0 = 0 < j1 . . . < jb = n and real valuesCk, k ∈ [1 :b], such thatf(xi) = Ck for i ∈ [jk−1 +1:jk].
If f is isotonic then the steps are nondecreasing withC1 ≤ C2 . . . ≤ Cb. An approximation with
fewer thanb steps can be converted to ab-step approximation by merely subdividing steps, and thus
we do not differentiate between “b steps” and “no more thanb steps”.

For1 ≤ p < ∞, an optimalLp step function has the additional property thatCk is anLp mean
of the weighted values on[jk−1 +1:jk]. Since we are only concerned with optimal approximations;
from now on, whenever a function has a step[i :j], then its value on that step is anLp weighted mean
of the data. For a given1 ≤ p < ∞, leterrp(i, j) denote thepth power of theLp error when using an
Lp mean as the approximation of the weighted values on[i :j]. Minimizing the sum of these values is
the same as minimizing theLp approximation error, i.e., determining stepsj0 = 0 < j1 . . . < jb =

n that minimize
∑b

k=1
errp(jk−1 +1, jk) is the same as determining stepsj0 = 0 < j1 . . . < jb = n

and valuesC1 . . . Cb that minimize
(

∑b
k=1

∑jk

i=jk−1+1
wi|yi − Ck|

p
)1/p

. Thus from now on only

theerrp(·) values will be used.
Given a set of weighted values, theirLp mean is unique for1 < p ≤ ∞, while for L1 it is

a weighted median value, where the weighted medians might form an interval. ThusL1 isotonic
regressions are not unique. ForL∞, the situation is even less constrained. For example, for un-
weighted values 5, 1, 4, anL∞ isotonic regression must have values 3, 3,x, wherex ∈ [3, 6]; i.e.,
a regression value on a piece need not be the mean of the piece,although it must be on at least one
piece with maximum error.

2.1 Arbitrary Data

Fisher’s [6] dynamic programming approach to determining an optimalb-step approximation for
1 ≤ p < ∞ is based on the observation that iff is an optimalb-step approximation of the data, with
a first step of[1 : j], thenf restricted to[j+1 : n] is an optimal(b−1)-step approximation of the
data on[j+1:n]. This is obvious since, if it were not optimal on[j+1:n], then replacing it with an
optimal(b−1)-step approximation on that interval would reduce the error.

Let e(i, c) denote the sum of theerrp(·) values of the pieces of an optimalc-piece approximation
on [i :n]. Fisher’s observation yields the equation:

e(i, c) = min{errp(i, j) + e(j+1, c−1) : i ≤ j ≤ n − c + 1}

By recording thej that minimizes this one can generate the optimal approximation. This leads to
Algorithm A. The time required isΘ(bn2) plus the time to compute theΘ(n2) errp() values.
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for i = 1 to n

e(i, 1) = errp(i, n), e end(i, 1) = n

for c = 2 to b

for i = 1 to n − c + 1

e(i, c) = min{errp(i, j) + e(j+1, c−1) : i ≤ j ≤ n − c + 1}
{record minimizing j in e end(i, c)}

end for i

end for c

Algorithm A: Optimalb-Step Approximation Of Arbitrary Data

2.2 Isotonic Data

Reducing the time of Algorithm A requires reducing the number of errp() values referenced. It is
not known how to do this for arbitrary data, but for isotonic data there is a special property that can
be exploited. This is given in Lemma 2.2 and will be used to prove:

Theorem 2.1 Givenn isotonic weighted values(y,w) and number of stepsb ≤ n, for theL1 and
L2 metrics one can find an optimalb-step approximation, and hence find an optimalb-step isotonic
regression, inΘ(bn logn) time.

For isotonic data, the fact that values are nondecreasing allows one to make inferences concern-
ing the means of intervals. For example, the weighted valueson [i : j] have anLp mean no larger
than that of the values on[i :j+1]. This forms the basis of the following lemma:

Lemma 2.2 For any1 ≤ p < ∞, given isotonic weighted values(y,w) on[1 :n] and1 ≤ b ≤ n−1,
let f be an optimalb-step approximation on[1 : n], with first step ending atjf . Then there is an
optimalb-step approximationg on [2 :n] with first step ending atjg, wherejf ≤ jg.

Proof: Let h be an optimalb-stepLp approximation on[2 :n] with first step ending atjh. If jh ≥ jf

then we are done, so assume otherwise. LetIh denote the interval[2 :jh] andIf denote the interval
[2 :jf ]. Let f− be theb-step function on[2 :n] with first step beingIf and the others, on[jf +1:n],
beingf . Sinceh is optimal, the error off− must be at least as large as that ofh. If they are equal
then choosingg = f− satisfies the lemma, so assume the error off− is strictly greater than that of
h.

The mean of the values onIf is at least as large as that onIh, and it has strictly greater weight.
Further, the value at 1 is no larger than either mean. Thereforeerrp(1 ∪ If ) − errp(If ) ≥ errp(1 ∪
Ih) − errp(Ih), with equality iff all values on[1 : jf ] are the same and the errors are all 0. This
implies that the error off− equals the error ofh. Since this case has already been eliminated
we assume the inequality is strict. Leth+ be the function with first step1 ∪ Ih, andh on the
remainder. Sincef has a first step of1∪ If , and which on the remaining values isf−, the errorf is
errp(1∪If )+error(f−)−errp(If ). Similarly the error onh+ is errp(1∪Ih)+error(h)−errp(Ih).
Thus the error onf is greater than the error onh+, contradicting the optimality off . Therefore the
error off− cannot be larger than that ofh. �

The above does not always hold if the values are not isotonic.For example, forL2 with b = 2
and unweighted values 4, 0, 4, 7 on[1 :4], the optimal first step for the values on[1 :4] is [1 :3], with
value 8/3. However, the optimal first step for the values on[2 : 4] is [2 : 2], with value 0. Further, it
need not hold forL∞ even if the values are isotonic: e.g., for values -1, 1, 10, 20and weights 10,
10, 1, 1 on[1 :4], one optimal 2-step approximation on[1 :4] has[1 :3] as its first step, with value 0,
and value 20 on[4 :4]. However, any optimal 2-step approximation on[2 :4] must have a first step of
[2 :2] with a value in[0.5, 1.5], and a second step on[3 :4] with value 15. The above can be made to
hold for L∞ and isotonic values if one uses only strictL∞ regression, i.e., regression which is the
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Figure 3: Possible Endpoints of Odd Multiples of 1/8

limit, asp → ∞, of Lp isotonic regression. In many senses, strictL∞ regression behaves likeLp

regression for1 < p < ∞ [20]. However, as is mentioned in Section 5, there are fasteralgorithms
for L∞ which are not based on dynamic programming.

Among all optimalb-step regressions on[i :n] let R(i, b) denote the function having the largest
endpoint of the first step. The lemma shows that for isotonic data,R(·, b) is an isotonic function.
This fact can be used to efficiently computee(·, b) andR(·, b) from the values ofe(·, b − 1) and
R(·, b − 1). Figure 3 shows an intermediate stage of the calculations for a single stage. The optimal
first step for each multiple of 1/4 has been computed and now the first step for each odd multiple
of 1/8 needs to be determined. For each of these, the possiblevalues of the endpoint of the optimal
first step are the range indicated by the dashed lines with thesolid line indicating the part that any
optimal first step must include.

Suppose thate(·, c) andR(·, c) have been determined fori1 < i2 . . . < ik. Let jo . . . jk be such
thatj0 < i1 < j1 < i2 . . . < ik < jk. To determinee(·, c) andR(·, c) for thej values, note that
sinceR(·, c) is isotonic thenR(j0, c) ∈ [j0 : R(i1, c)], R(j1, c) ∈ [max{j1, R(i1, c)} : R(i2, c)], . . . ,
andR(jk, c) ∈ [max{jk, R(ik, c)} :n−c+1]. Thus, to determinee(j0, c) andR(j0, c) we only need
to evaluateerrp(j0, ℓ) + e(ℓ+1, c−1) for ℓ ∈ [j0 : R(i1, c)], to determinee(j1, c) andR(j1, c), we
only need to evaluateerrp(j1, ℓ) + e(ℓ+1, c−1) for ℓ ∈ [max{j1, R(i1, c)} :R(i2, b)], and so forth;
i.e., we need at mostn + k total evaluations. In Figure 3, this corresponds to the factthat the dashed
lines can overlap only at endpoints. In⌈ log2 n⌉ iterations all values ofe(·, c) andR(·, c) can be
determined. This gives Algorithm B.

To complete the proof of Theorem 2.1, we need to show that eachiteration of the “for k” loop
can be completed inΘ(n) time. ForL2 this can be done quite easily using a standard technique.
By first computing the scan values

∑i
j=1

wjyj ,
∑i

j=1
wjy

2
j , and

∑i
j=1

wi for all i ∈ [1 :n], each
err2() value can then be computed in unit time.

ForL1 there is no such algebraic simplification and an approach is needed that exploits the fact
that the values are isotonic. The following explains the code in Algorithm C which shows how
to compute each iteration of the “for k” loop in Algorithm B. Algorithm C utilizes some simple
routines that are given in Figure 4.

For an interval[i : j], let m denote the location of a median. Letw lt =
∑m−1

k=i wk, w gt =
∑j

k=m+1
wk, yw lt =

∑m−1

k=i ykwk andyw gt =
∑j

k=m+1
ykwk. Then, theL1 error of using

ym as the regression value on[i : j], i.e., err1(i, j), is ymw lt − yw lt + yw gt − ymw gt. To
determine the correspondingm, w lt, w gt, yw lt andyw gt values (and henceerr1(·)) for interval
[i : j + 1], note that the location of the new median is≥ m. Let w gt = w gt + wj+1 and
yw gt = yw gt + yj+1wj+1. If w gt > w lt + wm then the location of the median for[i : j + 1] is
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i start . . . i end : range of possible endpoints

for i = 1 to n do

e(i, 1) = errp(i, n), R(i, 1) = n

for c = 2 to b do

for k = ⌈ log2 n⌉ − 1 downto 0

for j = 2k to n − c + 1 by 2k+1 do

if j = 2k then i start = j

else i start = max{j, R(j − 2k, c)}
if j + 2k > n − c + 1 then i end = n − c + 1

else i end = R(j + 2k, c)
e(j, c) = min{errp(j, i) + e(i+1, c−1) : i start ≤ i ≤ i end}

{store largest minimizing i in R(j, c)}
end for j

end for k

end for c

Algorithm B: Stepwise Constant Approximation of Isotonic Data

med loc : location of median

w lt, w gt :
∑med loc−1

h=j w(h),
∑i

h=med loc+1 w(h)

yw lt, yw gt :
∑med loc−1

h=j v(h) ∗ w(h),
∑i

h=med loc+1 v(h) ∗ w(h)
i start . . . i end : range of feasible ends of first step

j . . . i start − 1 : any first step must include these positions

med loc = 0

w lt = w gt = yw lt = yw gt = 0

for j = 2k to n − c + 1 by 2k+1 do

if j = 2k then i start = j

else

i start = max{j, R(j − 2k, c)}
for i = j − 2k+1 to min{R(j − 2k, c), j} − 1 do {used in previous j but not this one}

remove position(i)
end for i

if j + 2k > n − c + 1 then i end = n − c + 1

else i end = R(j + 2k, c)
e(j, c) = ∞
for i = i start to i end do

if not
(

(j > 2k) and (i start = R(j − 2k, c))
)

then {only omitted if used in previous j}
insert position(i)

err end at i = (w lt ∗ median− yw lt) + (yw gt − w gt ∗ median) + e(i+1, c−1)
If err end at i ≤ e(j, b) then

e(j, c) = err end at i, R(j, c) = i

end for i

end for j

Algorithm C: Interior of “for k” Loop of Algorithm B for L1 Isotonic Regression
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insert position(i) : {i now rightmost active position}
if med loc = 0 then

med loc = i

median = v(i)
else

w gt = w gt + w(i), yw gt = yw gt + v(i) ∗ w(i)
update median

remove position(i) : {i was leftmost position}
if (w lt = 0) and (w gt = 0) then {i was last remaining position}

med loc = 0

else

w lt = w lt − w(i), yw lt = yw lt − v(i) ∗ w(i)
update median

update median :
while w gt > w lt + w(med loc) do {median is larger}

w lt = w lt + w(med loc)
yw lt = yw lt + v(med loc) ∗ w(med loc)
med loc = med loc + 1

w gt = w gt − w(med loc)
yw gt = yw gt − v(med loc) ∗ w(med loc)

end while

median = v(med loc)

Figure 4: Routines Used in Algorithm C
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> m (if there are duplicate values then it is possible thatym is a median value andm is increased,
but only if ym+1 is the same value). Setw lt = w lt + wm, yw lt = yw lt + ymwm, w gt =
w gt− wm+1, yw gt = yw gt− ym+1wm+1, andm = m + 1. Continue this incremental process
until w gt ≤ w lt + wm, at which pointym is a median. Nowerr1(i, j + 1) and the error of using
[i :j + 1] as the first step can be determined.

The remaining concern is to calculateerr1(j, ℓ) for ℓ ∈ [R(j′, c) :R(j′′, c)], wherej′ < j < j′′

are the largest preceding and smallest succeeding values computed in the previousk iteration. To do
this using the incremental procedure above, one first needs to start with the values in[j :R(j′, c)−1].
Fortunately these were already included in the final calculation for j̃ = j − 2k+1, which was the
previousj value in the “for j” loop. The lasterr1(j̃, ·) calculated was for the interval[j̃ : R(j′, c)].
Thus, removing the values in[j̃ : j−1] will give the required start. This involves a sequence of
operations for determining the location of the median and relatedw andyw values for[r+1 : s]
given their values for[r :s]. This is done similarly to the case of incrementings where here too the
location of the median cannot decrease.

For a fixedk, since all of the calculations are linear in the number of times the start or end of an
interval is incremented or whenm is increased, the total time to compute theerr1() values isΘ(n).
This completes the proof of Theorem 2.1.�

Fisher defined another form of binning which he calledunrestricted homogenization: give n

weighted values(y,w) andb ∈ [1 :n], partition them intob subsetsPi, i ∈ [1 :b] and assign a value
Ci to eachPi so as to minimize

b
∑

i=1

∑

j∈Pi

wj |yj − Ci|
2

among all such partitions. He noted that this could be solvedby sorting the values and then finding
the optimalb-step approximation. This fact easily extends to allLp metrics,1 ≤ p ≤ ∞.

Ioannidis [10] defined a problem that is essentially the same. His, calledvariable width serial
histograms, was used to estimate the most efficient way to answer certaindatabase join queries.
The values in his case corresponded to the number of entries in the database having each key. He
mistakenly believed that finding these values requires timeexponential inb. Jagadish et al. [12]
later showed that Fisher’s dynamic programming algorithm can be used to find this inΘ(bn2) time.
Theorem 2.1 shows that this can be reduced yet further.

Corollary 2.3 Givenn weighted values and number of stepsb ≤ n, for theL1 andL2 metrics, one
can determine an optimalb-step unrestricted homogenization and an optimalb-step variable width
serial histogram inΘ(bn logn) time.�

Lemma 2.2 applies to all1 ≤ p < ∞, but Theorem 2.1 only refers top = 1, 2. For the remaining
values ofp, the bottleneck is in the computation of theLp weighted mean. The only otherp’s for
which one can get a closed-form solution for the mean arep = 3, 4 since finding the mean requires
solving a polynomial equation. Forp = 4, the approach forp = 2 can be used to give the same
time bounds. However, forp = 3, there is the problem that|yi − f(i)|3 is either(yi − f(i))3 or
its negative. One can first use binary search to determine thei for whichyi ≤ C ≤ yi+1, whereC

is the mean, and then compute the sums with the appropriate signs and determine the mean exactly.
Note that the mean is not known asi is being determined. Rather, ifyi is used as the mean, one
can determine whether the sum of the regression errors fory1 . . . yi−1 is greater than the sum for
yi+1 . . . yn. In this case,i should be increased. If it is smaller, theni should be decreased. For
arbitraryp, one can find the bracketing index and then use approximations to find the mean to a
desired accuracy.
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Figure 5: Optimal 4-step Reduced Isotonic Regression of Values in Figure 1

3 Reduced Isotonic Regression

Isotonic regressions are somewhat easier to compute than are general approximations by step func-
tions. ForL2 the isotonic regression can be determined inΘ(n) time, a fact apparently first proven
in 1955 by Ayer et al. [3] and then often rediscovered. ForL1 the isotonic regression can be deter-
mined inΘ(n logn) time [2, 19]. ForL∞ the time is alsoΘ(n logn) [13, 18] and for unweighted
data it isΘ(n) [19]. These algorithms use a simple left-right scan where each location is initially a
step and then adjacent steps are merged whenever they violate the isotonic condition. This approach
is known as “pair adjacent violators”, PAV.

Isotonic regression is a very flexible nonparametric approach to many problems. However, as
noted, it does have its detractors due to results with impractically many steps or due to potential
overfitting. Some researchers have instead used approximations with a specified number of steps [7,
21]. To reduce overfitting, Schell and Singh [17] used the approach of repeatedly merging pairs of
adjacent steps whose difference had the least statistical significance. Haiminen et al. [7] also used an
approach that repeatedly combines the adjacent steps whichcause a minimum increase in the error.
The latter two approaches are known as greedy or myopic sincethey repeatedly make the choice that
seems to be the best at the moment. In contrast, dynamic programming considers the interaction of
the current choice with all future choices.

Greedy approaches do not always produce an optimal reduced isotonic regression. For example,
given the unweighted values 1, 2, 3, 4, 5, 6, the optimal 3-step regression is 1.5 on the first two
points, 3.5 on the second two and 5.5 on the third two. Meanwhile, the optimal 2-step regression is
2 on the first three points and 5 on the last three. Thus a greedymerging approach which produced
the optimal 3-step regression could not then also produce the optimal 2-step regression.

We address the problem of finding the optimal isotonic regression with a specified number of
steps; i.e., an optimalb-step reduced regression. As a reminder, we use “pieces” to refer to the
steps of an unrestricted isotonic regression and “steps” torefer to the steps of a reduced isotonic
regression. In Haiminen et al. the authors provide an exact algorithm for an optimal solution, but
this takesΘ(n+ bm2) time for theL2 metric, wherem is the number of pieces in the unconstrained
isotonic regression. Even though typicallym ≪ n, they felt that this was too slow for their applica-
tion and as a result turned to the greedy heuristic just mentioned. Our exact algorithm, which takes
Θ(n+bm logm) time, should be sufficiently fast to be practical even for large problems. Figure 5 is
an example of a reduced isotonic regression of the weighted values in Figure 1. While the values of
the unconstrainedL2 isotonic regression are uniquely determined, the step boundaries are not since
a sequence of identical values might be represented as multiple steps. However, if we require that
adjacent steps with the same mean be merged, then forL2 the step boundaries, and hencem, are
also uniquely determined.

A critical observation in the Haiminen et al. paper is that, given the pieces of anL2 unrestricted
isotonic regression, the steps of an optimalL2 reduced isotonic regression can be formed by merging
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the pieces. Their observation immediately gives a simple algorithm: find the unrestricted isotonic
regression and represent each piece as a weighted point witha value that is the mean and a weight
that is the sum of the weights. Then ab-step isotonic regression of these points gives ab-step
isotonic regression of the original data. Haiminen et al. used Fisher’s algorithm to determine the
optimalb-step isotonic regression, but Theorem 2.1 provides a faster solution.

Theorem 3.1 Givenn weighted values(y,w) and number of stepsb, an optimalL2 b-step reduced
isotonic regression can be found inΘ(n + bm logm) time, wherem is the number of pieces in the
unconstrainedL2 isotonic regression.�

4 Quasi-Optimal L1 Reduced Regression

Unfortunately, the approach of Haiminen et al. does not extend to anyp other than 2. For example,
for L1 with values -3, 1, 0, -3, -0.1, 2, and weights 10, 1, 1, 1, 2, 10,the unrestricted isotonic
regression has pieces[1 : 1], [2 : 5], and [6 : 6], with values -3, -0.1, and 2, respectively. The
unique optimal 2-step reduced isotonic regression has steps [1 : 4] and[5 : 6], with values -3 and 2,
which requires cleaving the middle piece. In practice, however, a very goodL1 reduced isotonic
function can be generated using Algorithm B without splitting the pieces of an unrestricted isotonic
regression. This is especially true if the unrestricted isotonic regression is carefully constructed.
Given weighted values(y,w), letS = {Sk : k = 1, m} be the unique set of steps such that

• there is anL1 isotonic regressiong with stepsS whereg(S1) < g(S2) . . . < g(Sm), and

• for anyk ∈ [1 :m], if h is anL1 isotonic regression, thenh is constant onSk

It can be shown thatS is the intersection of the steps of allL1 isotonic regressions of the data, with
the requirement that if an isotonic regression has adjacentsteps with the same value then they are
merged. Further,S can be found inΘ(n log n) time through a PAV approach where adjacent steps
are not merged unless the isotonic condition forces it. We say thatS is the set of steps of afully
refinedisotonic regression. For example, for values -2, 1, -2, 2, 1,3 with weights 10, 1, 1, 1, 1, 10,
one unrestricted isotonic regression is -2, 1, 1, 1, 1, 3, while a fully refined one is -2, -0.5, -0.5, 1.5,
1.5, 3. In fact, this is the uniqueLp isotonic regression for all1 < p < ∞. Further, the optimal
2-step reduced isotonic regression has values -2, -2, -2, 3,3, 3, which requires cleaving the middle
piece of the former but which can be formed from pieces of the latter.

A b-step isotonic function is aquasi-optimalL1 reduced isotonic regression iff it minimizes the
L1 regression error among allb-step isotonic functions which have steps that are unions ofsteps in
S. Our approach for determining quasi-optimal regressions is similar to that forL2, first finding an
unrestricted isotonic regression and then using it to find a reduced isotonic regressions. In certain
cases, however, the pieces of the unrestricted regression cannot be collapsed into a single value.
For example, for unweighted values 1, 0, 0, 2, 2, 1, 3, 3, 1,S = {[1 : 3], [4 : 6], [7 : 9]}, and the
unique isotonic regression is 0, 2, and 3 on these steps. The unique 1-piece optimal reduced isotonic
regression has value 1. If instead the last value were 3, thenthe unconstrained isotonic regression
would remain the same but the 1-piece reduced isotonic regression would have value 2.

Theorem 4.1 Givenn weighted values(y,w) and number of stepsb ≤ m, a quasi-optimalL1

reduced isotonic regression can be found inΘ(n log n + bn log m) time, wherem is the number of
pieces in a fully refinedL1 isotonic regression.

Proof: The approach of Algorithm C will be used. Let the pieces of thefully refinedL1 isotonic
regression beIk, k = 1 . . .m, whereIk = [a(k) : b(k)]. For the remainder of this proof the
indexing will be on the pieces not the original data, i.e., itis subsets of[1 : m], not [1 : n]. As
before, if the median of pieces[i : j] is known, then determining the median of pieces[i : j + 1]
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piece i is [a(i) :b(i)] of original data

y sort : v in sorted order

π(h) : location of v(h) in y sort

w sort(π(h)) : w(h) if location h in an active piece, else 0. Initially 0

med loc : initially 1

insert piece(i) : {i is now rightmost piece}
for h = a(i) to b(i) do

w sort(π(h)) = w(h)
if π(h) < med loc then

w lt = w lt + w(h), yw lt = yw lt + v(h) ∗ w(h)
else if π(h) > med loc then

w gt = w gt + w(h), yw gt = yw gt + v(h) ∗ w(h)
end for h

update median

remove piece(i) : {i was leftmost piece}
for h = a(i) to b(i) do

w temp = w sort(π(h))
w sort(π(h)) = 0

if π(h) < med loc then

w lt = w lt − w temp, yw lt = yw lt − v(h) ∗ w temp

else if π(h) > med loc then

w gt = w gt − w temp, yw gt = yw gt − v(h) ∗ w temp

end for h

update median

update median :
while w gt > w lt + w sort(med loc) do {median is larger}

w lt = w lt + w sort(med loc)
yw lt = yw lt + y sort(med loc) ∗ w sort(med loc)
med loc = med loc + 1

w gt = w gt − w sort(med loc)
yw gt = yw gt − y sort(med loc) ∗ w sort(med loc)

end while

median = y sort(med loc)

Figure 6: Routines Used in Algorithm C for Quasi-OptimalL1 Reduced Isotonic Regression
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merely requires adding the weighted values inIj+1 and then locating the new median, which is not
less than the previous one. Similarly, determining the median of [i − 1 : j] requires removing the
values corresponding toIi. Balanced trees could be used to keep track of the information, where
each data value can be inserted or removed inΘ(log n) time, and the weighted median can be
determined in the same time. Since insertion and deletion happens at most once per value, the total
time for an iteration of the “for k” loop in Algorithm B would beΘ(n log n), giving a total time of
Θ(n log n + bn logn log m).

The time per iteration can be reduced toΘ(n), as for isotonic data, although the operations are
more complicated. First the values are sorted and stored in an arrayy sort, and a mappingπ is
created so thatπ(i) is the location ofyi in y sort. A left-right scan ofy sort mimics the left-right
scan ofy for isotonic data. An arrayw sort will be used, wherew sort(i) corresponds toy sort(i).
It will be used as a flag, in that if pieces[i : j] are currently represented, thenw sort(k) is 0 if
π−1(k) 6∈ Ii ∪ . . . ∪ Ij , while otherwise it is the correct weight. In this setting wesay that pieces
[i :j] are “active”. Initiallyw sort is zero.

Moving from the calculation of the median of pieces[i : j] to that of [i : j + 1] merely means
that for eachℓ in pieceIj+1, w sort(π(ℓ)) = wℓ and thew andyw sums are updated. Then, the
incremental procedure to locate the new median begins. However, an update during the insertion
may involve adding tow lt andyw lt since some values inIj+1 may be smaller than the median.
Removing a pieceIi occurs similarly, settingw sort(π(ℓ)) = 0 for eachℓ ∈ Ii and then updating
the median.

Further,med loc is modified so that it is initially 1 and is never reset to 0. It may be that
w sort(med loc) = 0 at some point in the algorithm (such as the start), but whenmedian is deter-
mined inupdate median then eitherv sort(med loc) is a median of the active pieces (though not
necessarily a value in the active pieces), or there are no active pieces but when the next piece is
inserted its median will be at least this value since it is a median of the last piece removed. The
detailed operations needed for Algorithm C are given in Figure 6. As before, the time per iteration
is Θ(n), yielding the time claimed in the theorem.�

5 Final Comments

We have shown, in Theorem 2.1, that forn isotonic values, for theL1 andL2 metrics, an optimal
b-step isotonic regression can be computed inΘ(bn logn) time. For the more general problem with
arbitrary data, we have shown in Theorem 3.1 that an optimalL2 b-step reduced isotonic regression
can be found inΘ(n + bm log m) time, wherem is the number of pieces in the unconstrained
isotonic regression. Prior to these results, forL2, the best known times to solve these problems
wereΘ(bn2) for isotonic data andΘ(n + bm2) for general data [7]. ForL1 we did not provide an
algorithm guaranteed to find the optimal reduced regression, but, in Section 4 we did provide one
that generates a good approximation inΘ(n logn + bn logm) time. It is an open question as to
whether there is anO(n log n + bn logm) time algorithm to produceL1 optimal reduced isotonic
regressions.

In an extended version of this paper, results forL∞ will be included. Using a quite different
approach, we show that the reduced isotonic regression can be found inΘ(n logn) time. Note that
b does not appear in the time. This is because in linear time onecan decide, for a givenǫ, if there
is ab-step isotonic function withL∞ error≤ ǫ. (This does not seem possible for theLp error when
p < ∞.) Combining this with a technique known as parametric search gives the time claimed. An
algorithm using the same approach and time bound is also given for finding anL∞ optimalb-step
approximation. For this problem the fastest previously known algorithm, due to Chen and Wang [5],
takesΘ(min{n log2 n, n log n + b2 log4 n}) time. For unweighted data the time can be further
reduced toΘ(n + m log m).
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Finally, an interesting problem that we have not addressed is that of selecting the most desirable
number of steps for applications calling for fewer thanm steps. Schell and Singh and Haiminen
et al. start with an unconstrained isotonic regression and then repeatedly merge pieces together
until their criteria are met. As was shown, the resulting reduced regressions may be sub-optimal
among reduced isotonic regressions with the same number of steps. Other researchers chooseb a
priori based on considerations such as storage or access time requirements. In contrast, dynamic
programming approaches offer the possibility of creating optimal b-step isotonic regressions for
each value ofb asb increases. One can then stop when a criterion is met and always have an optimal
result. We are unaware of any research, even giving sub-optimal results, that has taken this last
approach. Equally interesting questions arise regarding what a good criterion would be for any
particular application.
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