
In Computing Science and Statistics 32 (2000).

Significantly revised version: Unimodal Regression via Prefix Isotonic Regression,

Computation Statistics and Data Analysis 53 (2008), 289–297.

Optimal Algorithms for Unimodal Regression

Quentin F. Stout

University of Michigan

Ann Arbor, MI 48109-2122

Abstract

This paper gives optimal algorithms for determining real-

valued univariate unimodal regressions, that is, for determin-

ing the optimal regression which is increasing and then de-

creasing. Such regressions arise in a wide variety of appli-

cations. They are a form of shape-constrained nonparametric

regression, closely related to isotonic regression. For the L2

metric our algorithm requires only Θ(n) time for regression

on n points, while for the L1 metric it requires Θ(n logn)
time. Previous algorithms only considered the L2 metric and

required Ω(n2) time. All previous algorithms used multiple

calls to isotonic regression, and our major contribution is to

organize these into a prefix isotonic regression, whereby one

computes the regression on all initial segments. The prefix

approach utilizes the solution for one initial segment to aid in

the solution of the next, which considerably reduces the total

time required. Our prefix isotonic regression algorithm for

the L1 metric also supplies the first Θ(n logn) algorithm for

L1 isotonic regression.

Keywords and phrases: univariate unimodal regression,

umbrella ordering, isotonic or monotonic regression, prefix

operation, scan, pool adjacent violators (PAV), L1 regression,

median regression, mergeable heaps, persistent data structure

1 Introduction

Given n univariate real data values (xi, yi) with nonnegative

real weights wi, i = 1, . . . , n, where x1 < · · · < xn, and

given a p ∈ [1,∞], the Lp increasing isotonic regression of

the data is the set {(xi, ŷi) : i = 1, . . . , n} that minimizes

∑n

i=1
wi|yi − ŷi|

p if 1 ≤ p < ∞

maxni=1
wi|yi − ŷi| if p = ∞

(1)

subject to the increasing isotonic constraint that

ŷ1 ≤ ŷ2 · · · ≤ ŷn.

Note that the values are merely required to be nondecreasing,

rather than strictly increasing. The Lp unimodal regression

of the data is the set {(xi, ŷi) : i = 1, . . . , n} that minimizes

Equation (1) subject to the unimodal constraint that there is

an m ∈ {1, . . . , n} such that

ŷ1 ≤ ŷ2 · · · ≤ ŷm ≥ ŷm−1 · · · ≥ ŷn,

i.e., such that {ŷi} is increasing isotonic on 1 . . .m and de-

creasing isotonic on m. . . n. Note that the unimodal con-

straint is also known as umbrella ordering, and that isotonic

regression is also known as monotonic regression.

By the norm of a regression we mean the quantity in Equa-

tion (1). This is a slight misuse of the term because we are not

taking pth roots, but since the only role norms and distances

play in the algorithms is to compare to determine which is

larger, the roots are unnecessary.

Both isotonic regression and unimodal regression are ex-

amples of nonparametric shape-constrained regression. Our

interest in unimodal regression was motivated by dose-

response problems with competing failure modes [6], but

more generally such regressions are of use in a wide range of

applications when there is prior knowledge about the shape of

a response function but no assumption of a parametric form.

In Section 2 we examine previous work on the problem of

determining unimodal regression, all of which was for L2 re-

gression. The previously published algorithms required time

that ranged fromΘ(n2) to Θ(n2n). In Section 3 we introduce

the notion of prefix isotonic regression, and in Section 3.1

show how to efficiently determine it for the L2 metric in Θ(n)
time. In Section 3.2 we show that L1 prefix isotonic regres-

sion is slightly more challenging, and show how to deter-

mine it in Θ(n logn) time. Section 4 contains an immediate

corollary of the results on prefix isotonic regression, namely

that unimodal regression can be computed in the same time

bounds. Section 5 concludes with some final remarks.

Throughout, we assume that we are given the data in or-

der of increasing independent variable. If the data is not so

ordered, then an initial sorting step, taking Θ(n logn) time,

is needed.

Figure 1: L2 Increasing Isotonic Regression

2 Previous Work

Isotonic regression does not yield a smooth curve, but rather

a collection of level sets where the regression is constant. For

example, Figure 1 shows the L2 increasing isotonic regres-

sion of a set of data with equal weights, where the black dots

represent data values and the red/gray lines represent the level

sets. Dots that are red/gray represent data values that are also

regression values. (Equivalently, these are dots with no lines

directly above or below.) It can occur that none of the data

values are also regression values.

It is well-known that the L2 increasing isotonic regres-

sion can be determined in Θ(n) time. Several optimal al-

gorithms use some variation of the “pair adjacent violators”

(PAV) approach [1]. In this approach, initially each data value

is viewed as a level set. At each step, if there are two adjacent

level sets that are out of order (i.e., the left level set is above

the right one) then the sets are combined and the weighted L2

mean of the data values becomes the value of the new level

set. It can be shown that no matter what order is used to com-

bine level sets, once there are no level sets out of order the

correct answer has been produced [12].

Apparently all previous work on unimodal regression has

concentrated on L2 regression, though the basic approach can

be applied to arbitrary metrics. Previous researchers solved

the problem by trying each possible i as the location of the

maximum. For each i they fit increasing isotonic and decreas-

ing isotonic curves to the remaining points, and determine the

distance between the resulting fit and the data. The smallest

distance attained corresponds to the solution of the problem.

Testing each new value of i results in new calls to proce-

dures to determine isotonic fits. The fastest and most straight-

forward approach, used in [4, 5, 7, 11, 13] and given in Fig-

ure 2, fits an increasing curve to the values corresponding to

x1 . . . xi and a decreasing curve to the values corresponding

to xi . . . xn. Since L2 isotonic regression of m points can be

determined in Θ(m) time, this approach to determining uni-

{mode: location of mode of best unimodal fit}

do i = 1, n
distl(i) = norm increasing iso regres(x1 . . .xi)

distr(i) = norm decreasing iso regres(xi . . .xn)

enddo

mode=argmin {distl(i)+distr(i): 1 ≤ i ≤ n}

Figure 2: Best Previous Unimodal Regression Algorithm

modal regression takes

Θ

(

n
∑

i=1

C +Θ(i− 1) + Θ(n− i)

)

= Θ(n2)

time.

A somewhat different approach was used in [8]. He

noted that for any unimodal function, the values on both

sides of the maximum can be rearranged into a single de-

creasing sequence. For example, if n = 5 and if x3 is

the location of the maximum, then the remaining values

could be in the decreasing order corresponding to one of the

sequences (x2, x1, x4, x5), (x2, x4, x1, x5), (x2, x4, x5, x1),
(x4, x2, x1, x5), (x4, x2, x5, x1), or (x4, x5, x2, x1). For

each such sequence he determined the isotonic regression,

and the one with minimal norm was the one that corresponded

to the best unimodal fit with x3 as maximum. Varying i

through all possible locations of the maximum would then

give the globally best fit.

By combining them into a single order, instead of utiliz-

ing the fact that the best regression on each side is indepen-

dent of the other side, the number of isotonic regressions re-

quired by [8] was far greater than those used by others. It can

be shown that exactly 2n−1 isotonic regressions are required

(see Appendix A), and thus the total time of this approach

is Θ(n2n). This is substantially worse than the approach in

Figure 2, and is feasible for only small values of n.

In general, the mode of the best unimodal fit is not unique.

For example, if the weighted data values are {(1,1,1), (2,0,1),

(3,1,1)}, as in Figure 3, then for any norm, one best unimodal

fit is {(1,1), (2,0.5), (3,0.5)}, with mode at 1, and another best

unimodal fit is {(1,0.5), (2,0.5), (3,1)}, with mode at 3. All of

the previously published algorithms, and the ones herein, can

locate all of the modes that correspond to best fits, and some

secondary criteria could be applied to select among them. The

algorithms in this paper do not apply such criteria, but the

modifications to do so are straightforward.

Despite the nonuniqueness of the optimum, it is easy to

show that for any Lp metric with p < ∞, for any optimum

mode xm, the value at xm of its optimum fit is the original

2

Figure 3: Data Values with Nonunique Mode

Figure 4: A Unimodal Regression

data value ym. It is also easy to see that the increasing iso-

tonic regression on x1 . . . xm has value ym at xm, as does the

decreasing isotonic regression on xm . . . xn. Figure 4 shows

a unimodal regression where all the data have equal weights.

The dots represent data values, and the red/gray lines repre-

sent the level sets. Red/gray dots represent data values that

are also regression values. The mode of the regression is the

tenth dot from the left.

3 Prefix Isotonic Regression

Given real data values {(xi, yi)} with nonnegative real

weights {wi}, i = 1, . . . , n, and given a metric µ on the reals,

the µ prefix isotonic regression problem is to determine, for

all m, 1 ≤ m ≤ n, the µ increasing isotonic regression on the

subset consisting of weighted values with indices ≤ m. That

is, it is to determine the µ increasing isotonic regression for

all initial portions of the data.

Note that prefix isotonic regression determines exactly

the set of increasing isotonic regression problems examined

by [4, 5, 7, 11, 13]. However, the critical observation is that

determining all of them should be approached as a single in-

tegrated problem, rather than merely as a collection of calls to

subroutines to solve each subproblem. Prefix operations, also

called scan operations (the term that was used for them in

the computer language APL), are utilized as building blocks

for various efficient algorithms in computer science. In par-

allel computing, prefix operations are also known as paral-

lel prefix operations since often all values can be determined

concurrently.

The basic prefix isotonic regression algorithm is given in

Figure 5. The outermost loop on i goes through the points

{left(i): left endpoint of level set containing xi}
{mean(i): mean value of level set containing xi}
{dist(i): norm of increasing isotonic regression on

x1 . . .xi}

mean(0) = -∞
left(0) = 0

dist(0) = 0

do i = 1, n
ŷ = yi
ℓ = i

while (ŷ ≤ mean(ℓ-1)) do

{merge with level set to left}
ℓ = left(ℓ-1)

ŷ = weighted mean of (yℓ, wℓ) . . . (yi, wi)
endwhile

mean(i) = ŷ

left(i) = ℓ

newdist = weighted dist. ŷ to (yℓ, wℓ) . . . (yi, wi)
dist(i) = newdist+dist(ℓ-1)

enddo

Figure 5: Prefix Isotonic Regression

in increasing indexing order, adding them to the previous so-

lution. The “loop invariant” is that at the start of the loop,

the increasing isotonic regression of the points x1 . . . xi−1

has been determined. In right to left order, it consists of the

level set containing points with indices left(i − 1). . . i − 1,

with value mean(i − 1), the level set containing points with

indices left(left(i − 1) − 1) . . . left(i − 1)−1, with value

mean(left(i − 1) − 1), the level set containing points with

indices left(left(left(i−1)−1)−1) . . . left(left(i−1)−1)−1
with value mean(left(left(i−1)−1)−1), and so on. Further,

the norm of this regression is dist(i− 1).
More generally, we have the following fact:

Observation 1: After the algorithm in Figure 5 has

completed, for any index m, 1 ≤ m ≤ n, the in-

creasing isotonic regression on the leftmost m val-

ues can be recovered in Θ(m) time from the values

stored in left() and mean(), and has norm dist(m).

The recovery proceeds exactly as above, in right-to-left order.

Note that when a new point at index i is added, it updates only

the left(i), mean(i), and dist(i) entries, leaving the earlier

entries unchanged since values for other indices within the

merged level set will never be referred to again and hence are

not needed. The left() and mean() arrays form what is called

a persistent data structure, allowing one to rapidly recreate

the intermediate regressions. Most data structures typically

destroy intermediate states.

3

If the value of the new point, yi, is greater than the mean

of the level set containing xi−1, then it is easy to see that

the increasing isotonic regression of the points with indices

1 . . . i is merely that of the points 1 . . . i − 1 unioned with a

new level set consisting only of xi with value yi. However, if

yi is less than or equal to the mean of the level set containing

xi−1, then they are out of order and must be merged. This

new merged level set is then compared to the level set to its

left. If they are in order, i.e., if the mean of the left level set

is less than the mean of the right level set, then the process

is done, while if their means are out of order they are merged

and the process of comparing to the left is repeated. This is

accomplished in the while-loop.

The fact that this merging process correctly determines the

increasing isotonic regression for the new initial segment fol-

lows immediately from the PAV property.

To apply the algorithm in Figure 5 to a specific metric,

one needs to determine how to do the operations inside the

while-loop, i.e., how to determine the mean and distance of

the merged level sets. As will be shown in Sections 3.1

and 3.2, efficiently implementing these operations heavily de-

pends upon the metric.

Observation 2: If the operations of determining

the mean and distance in the while-loop can be ac-

complished in constant time, then the entire algo-

rithm requires only Θ(n) time. This is because the

total number of iterations of the while-loop can be

at most n − 1. This may not be obvious since the

while-loop may be iterated Θ(n) times for a sin-

gle value of i, and the loop is encountered n times.

However, every time the loop is iterated, two dis-

joint nonempty level sets have been merged. One

can view the data set as initially being n disjoint

sets, and these can only be merged at most n − 1
times. It is clear that all of the other operations

within the while-loop take constant time per itera-

tion, and that the operations outside the while-loop

take constant time per iteration of i.

Notice that if one determines the mean and distance func-

tions for a level set by just calling a function to compute them,

given all the elements, then it will take Ω(m) time for a set

of size m, and it is easy to see that this would require the

algorithm to take Ω(n2) total time in the worst case, i.e., it

would be as bad as the algorithm in Figure 2. To achieve bet-

ter results, one needs to utilize previous calculations for the

level sets to aid in the calculations for the newly merged sets.

Techniques to do this will depend upon the metric.

3.1 L2 Prefix Isotonic Regression

To apply the prefix isotonic regression algorithm to the L2

metric, one needs procedures for determining the mean and

{sum(i): weighted sum of values in xi’s level set}
{sumsq(i): weighted sum of squares of values in xi’s

level set}
{weight(i): sum of weights of xi’s level set}

do i = 1, n
sum(i) = wi · yi
sumsq(i) = wi · y

2
i

weight(i) = wi

while (ŷ ≤ mean(ℓ-1)) do

{merge with level set to left}
sum(i) = sum(i)+sum(ℓ-1)

sumsq(i) = sumsq(i)+sumsq(ℓ-1)

weight(i) = weight(i)+weight(ℓ-1)

ℓ = left(ℓ-1)

ŷ = sum(i)/weight(i)

endwhile

newdist = sumsq(i)−sum(i)2/weight(i)

enddo

Figure 6: Additions to Determine L2 Regression

distance of the L2 level sets. Fortunately, it is well known

that the algebraic properties of this metric make this a simple

task. We introduce additional functions sum(), sumsq() and

weight(), as shown in Figure 6.

With the simple additions of Figure 6 to Figure 5, the fol-

lowing result concerning running time follows immediately

from Observation 2 since the operations in Figure 6 take con-

stant time per iteration. The time for recovering solutions

follows from Observation 1.

Theorem 1 Given weighted data {(xi, yi, wi) : i =
1, . . . , n}, in Θ(n) total time the algorithm of Figure 5,

with the additions in Figure 6, will determine, for every

m, the norm of the L2 increasing isotonic regression of

{(xi, yi, wi) : i = 1, . . . ,m}. Further, after the algorithm

has been run, for any m, in Θ(m) time the L2 increasing

isotonic regression of {(xi, yi, wi) : i = 1, . . . ,m} can be

recovered. ✷

3.2 L1 Prefix Isotonic Regression

For L1 regression the situation is much more complex than it

was for L2 regression. Given a weighted set of values, their

L1 mean is the weighted median. Weighted medians are not

always unique, so for simplicity we utilize the largest such

value. In a specific application one might wish to add sec-

ondary criteria to determine which weighted median to use.

While it is well-known that one can determine a weighted me-

dian in time linear in the number of values, such an approach

4

would only yield an algorithm taking Θ(n2) time. Unfor-

tunately there are no algebraic identities which easily allow

one to reuse calculations when merging level sets, so a more

complicated approach is needed.

For each level set with right endpoint i we maintain two

additional data structures, top(i) and bottom(i). In top(i)
we maintain information about all of the elements of the level

set greater than the median (which is kept in mean(i)), while

bottom(i) maintains information about all of the elements

less than or equal to the median. The operations for top(i)
are:

• top(i).sum: weighted sum of elements in top(i).

• top(i).weight: sum of weights of elements in top(i).

• add(top(i), y, w): add value y with weight w to top(i).

• merge(top(i), top(j)): merge tops of two level sets.

• init(top(i)): initialize top(i).sum and top(i).weight to

0.

These operations are quite trivial, so the data structure is im-

plemented as a simple record containing merely the sum and

weight values, updated as shown in Figure 7. All of the op-

erations can be implemented in constant time.

The information in bottom(i) is more complex, providing

the operations:

• bottom(i).sum: weighted sum of elements in

bottom(i).

• bottom(i).weight: sum of weights of elements in

bottom(i).

• bottom(i).max: largest value in bottom(i).

• pop(bottom(i)): remove largest value from bottom(i).

• merge(bottom(i), bottom(j)): merge bottoms of two

level sets.

• init(bottom(i), y, w): initialize bottom(i) to contain

value y with weight w.

Note that there is an asymmetry between top() and

bottom(). When two level sets are being merged, the new

median will be less than the median of the left level set, and

hence one can think of moving items from bottom() to top().
Once an item is in a top set it stays in top sets. This would

not quite be true if one did a straightforward implementation

of the algorithm in Figure 5, in that if one builds a new level

set and then determines that it is below the level set to the

left, then from the viewpoint of the right level set the median

moves up, which might require items to move from top() to

bottom(). To prevent this, we instead do a “look ahead” to

see if the mean of the level set being worked on will be below

the level set to the left, and if so then we immediately merge

them rather than completing the determination of the mean

of the current level set. Figure 7 shows how this is accom-

plished.

Efficiently implementing the bottom() operations is a cru-

cial part of the L1 implementation. Implementing pop() and

max in logarithmic time is quite easy via a standard abstract

data structure known as a heap, appearing in any undergrad-

uate data structures text, but adding the merge() operation

while retaining logarithmic time is a bit more complicated.

Fortunately, all of these operations are supplied by the ab-

stract data structure known as mergeable heaps, which ap-

pears in many standard texts on advanced data structures or

algorithms, such as [3]. By implementing the mergeable

heaps via binomial heaps or Fibonacci heaps (see [3]), each of

these three operations can be completed in O(logm) time for

a level set of m items. (For binomial heaps this is the worst-

case time, while Fibonacci heaps have better amortized time

per operation.) Providing the additional operations in con-

stant time is straightforward.

Theorem 2 Given weighted data {(xi, yi, wi) : i =
1, . . . , n}, the algorithm in Figure 7 takes Θ(n logn) total

time and will determine, for each m, the norm of the L1 in-

creasing isotonic regression of {(xi, yi, wi) : i = 1, . . . ,m}.

Further, after the algorithm has been run, for any m, in Θ(m)
time the L1 increasing isotonic regression of {(xi, yi, wi) :
i = 1, . . . ,m} can be recovered.

Proof: For the timing analysis of the algorithm, in the in-

nermost while loop, each iteration corresponds to moving an

item from bottom() to top(). Since this can happen at most

n − 1 times, and all operations inside the loop take at most

Θ(logn) time, the time is no worse than claimed. The time to

recover regressions follows immediately from Observation 1.

✷

To help understand whyΘ(n logn) time is required, rather

than Θ(n), we note that L1 prefix isotonic regression is as

hard as sorting real values. To see this, let {yi : 1 ≤ i ≤ n}
be any set of real values, and let {ỹi : 1 ≤ i ≤ n} represent

the same set in decreasing order. Let u = −1 + mini yi
and v = 1 + maxi yi. Then for the weighted data sequence

(0, v, n+1), (1, y1, 1), (2, y2, 1), . . . (n, yn, 1), (n+ 1, u, 2),
(n + 2, u, 2), . . . , (2n + 1, u, 2), the level set value at n + i

for the regression on indices 0 . . . n + i is ỹi, for 1 ≤ i ≤ n,

and thus determining these regressions will yield the values

in sorted order.

It was an open question as to whether L1 isotonic regres-

sion could be computed in Θ(n logn) worst-case time. This

was pointed out in [10], where they give a Θ(n log2 n) al-

gorithm for this problem. They also point out that a claim

of a worst-case Θ(n logn) algorithm in [2] is incorrect. The

algorithm in Figure 7 resolves this question in the affirmative.

5

mean(0) = -∞
left(0) = 0

dist(0) = 0

do i = 1, n
ŷ = yi
ℓ = i

init(bottom(i)) = (yi,wi)

top(i).sum = 0 {init(top(i))}
top(i).weight = 0

while (ŷ ≤ mean(ℓ-1)) do {merge with level set to left}
top(i).sum = top(i).sum + top(ℓ-1).sum {merge(top(i),top(ℓ-1))}
top(i).weight = top(i).weight + top(ℓ-1).weight

merge(bottom(i),bottom(ℓ-1))

ℓ = left(ℓ-1)

(ŷ,w) = bottom(i).max

while ((ŷ > mean(ℓ-1)) ∧ (top(i).weight+w < bottom(i).weight−w)) do

{have not yet found median of level set, nor gone below left level set, move bottom(i).max

to top(i)}
top(i).sum = top(i).sum+w · ŷ {add(top(i),ŷ,w}
top(i).weight = top(i).weight+w

pop(bottom(i))

(ŷ,w) = bottom(i).max

endwhile

endwhile

mean(i) = ŷ

left(i) = ℓ

newdist = top(i).sum−ŷ·top(i).weight+ŷ·bottom(i).weight−bottom(i).sum

dist(i) = newdist+dist(ℓ-1)

enddo

Figure 7: L1 Prefix Isotonic Regression

4 Unimodal Regression

It is a very simple process to modify the algorithm in Figure 2

to utilize prefix isotonic regression. This is given in Figure 8,

producing an optimal algorithm for unimodal regression.

The time complexity of this algorithm is quite straightfor-

ward, since its total time is dominated by the time to perform

the isotonic regressions.

Theorem 3 Given weighted data {(xi, yi, wi) : i =
1, . . . , n}, the algorithm in Figure 8 will determine the uni-

modal regression in

• Θ(n) time for L2 regression, and

• Θ(n logn) time for L1 regression.

✷

As noted earlier, the optimum mode is not necessarily

unique. The algorithm in Figure 8 merely selects an arbitrary

mode among the optimal ones, but in some applications one

may want to apply secondary criteria to make this selection.

5 Final Comments

We have shown that the problem of determining the unimodal

regression of a set of data can be optimally solved by using an

approach based on prefix isotonic regression. This approach

is quite similar to that in [4, 5, 7, 11, 13], but achieves greater

efficiency by organizing the regression calculations into a sys-

tematic prefix calculation. It is also dramatically more effi-

cient than the approach used in [8]. We had developed the

prefix approach for the L2 unimodal problem a few years ago

to aid in creating new adaptive sampling designs for dose-

response problems with competing failure modes (see [6]),

and then encountered these articles which alerted us to the

fact that the optimal algorithm was not previously known.

The prefix approach not only reduces the asymptotic time

of unimodal regression, it does so in a manner which is not-

6

{distl(i): norm of increasing isotonic regression on

indices 1 . . . i}
{distr(i): norm of decreasing isotonic regression on

indices i . . .n}
{meanl(i): mean of level set containing xi in

increasing isotonic regression on 1 . . . i}
{meanr(i): mean of level set containing xi in

decreasing isotonic regression on i . . .n}
{left(i): left endpoint of level set containing xi in

increasing isotonic regression on 1 . . . i}
{right(i): right endpoint of level set containing xi in

decreasing isotonic regression on i . . .n}
{mode: mode of unimodal regression}

determine increasing prefix isotonic regression,

storing results in distl, meanl, left

determine decreasing prefix isotonic regression,

storing results in distr, meanr, right

mode = argmin {distl(i)+distr(i): 1 ≤ i ≤ n}
unimodal reg = increasing isotonic reg{1 . . . mode} ∪

decreasing isotonic reg{mode . . . n}

Figure 8: Unimodal Regression

icable even for small data sets. Prefix isotonic regression on

a set of values needs only the same amount of time as the

fastest published algorithms for a single isotonic regression

on the same values.

Most work on isotonic or unimodal regression has concen-

trated on L2 regression, which is analytically and computa-

tionally simpler than L1 regression. Even for regular L1 iso-

tonic regression, it was an open question whether it could be

accomplished inΘ(n logn) worst-case time (see the conclud-

ing remarks in [10]). This paper shows that this can indeed

be achieved, and our approach can also be adapted to solve

the L1 isotonic regression problem when there are multiple

weighted data values with the same independent coordinate,

again taking Θ(n logn) time for n data values. (This problem

was examined in [10])

In a later paper, we will also give an algorithm for L∞ pre-

fix isotonic regression and unimodal regression, which also

appears to supply the first algorithm for standard L∞ iso-

tonic regression. Isotonic or unimodal regression for other

Lp norms appears to be of miniscule interest, and is compu-

tationally more challenging since it may not even be possi-

ble to exactly determine the mean of a level set. However,

the basic approach used for L1 prefix regression in Figure 7

should be of use for general metrics, moving single points

from bottom() to top() until a mean is reached (though the

mean may now be between data values).

One might also consider extending unimodal regression to

index structures other than the linear ordering of the index

set used here. For example, L2 isotonic regression on rooted

trees has been studied, and it is known that it can be deter-

mined in Θ(n logn) time for an arbitrary tree of n nodes [9].

If the basic tree structure were known, but the root unknown,

then a unimodal regression would be needed to locate the

best root, and it is an open question as to whether this can

be accomplished in Θ(n logn) time. Further, the question of

general Lp isotonic or unimodal regression on trees has ap-

parently never been studied, perhaps because no applications

have yet required this.

Acknowledgements

This work was supported in part by National Science Foun-

dation grant DMS-9504980. I thank Janis Hardwick for her

help in preparing this paper.

References

[1] Ayer, M., Brunk, H.D., Ewing, G.M., Reid, W.T. and Sil-

verman, E. (1955), “An empirical distribution function

for sampling with incomplete information”, Ann. Math.

Statist. 26, pp. 641–647.

[2] Chakravarti, N. (1989), “Isotonic median regression: a

linear programming approach”, Math. of Oper. Research

14 (2), pp. 303–308.

[3] Corman, T.H., Leiserson, C.E., and Rivest, R.L. (1989),

Introduction to Algorithms, MIT Press.

[4] Frisén, M. (1980), “Unimodal regression”, The Statisti-

cian 35, pp. 304–307.

[5] Geng, Z. and Shi, N.-Z. (1990), “Isotonic regression for

umbrella orderings”, Appl. Statist. 39, pp. 397–424.

[6] Hardwick, J. and Stout, Q.F. (2000), “Optimizing a uni-

modal response function for binary variables”, in Opti-

mum Design 2000, A. Zhigljavsky, ed., Kluwer, in press.

[7] Mureika, R.A., Turner, T.R., and Wollan, P.C. (1992),

“An algorithm for unimodal isotonic regression, with ap-

plication to locating a maximum”, Univ. New Brunswick

Dept. Math. and Stat. Tech. Report 92–4.

[8] Pan, G. (1996), “Subset selection with additional order

information”, Biometrics 52, pp. 1363–1374.

[9] Pardalos, P.M. and Xue, G.-L. (1999), “Algorithms for a

class of isotonic regression problems”, Algorithmica 23,

pp. 211–222.

7

[10] Pardalos, P.M., Xue, G.-L. and Yong, L., “Efficient

computation of an isotonic median regression”, Appl.

Math. Lett. 8 (2), pp. 67–70.

[11] Pehrsson, N-G. and Frisén, M. (1983), “The UREGR

procedure”, Gothenburg Computer Central, Göteborg,

Sweden.

[12] Robertson, T., Wright, F.T. and Dykstra, R.L. (1988),

Order Restricted Statistical Inference, John Wiley and

Sons.

[13] Turner, T.R. (1998), “S Function ufit to calculate the

unimodal isotonic regression of a set of data”, Univ. New

Brunswick Dept. Math. and Stat.

[14] Turner, T.R. and Wollan, P.C. (1997), “Locating a max-

imum using isotonic regression”, Computational Statis-

tics and Data Analysis 25, pp. 305–320.

A Exponential Time

To see that the approach used in [8] examines exactly 2n−1

orderings of n items, a 1-1 map between binary sequences of

length n − 1 and orderings examined will be created. Given

an ordering, we create a binary sequence as follows: for each

item after the first, if its index is less than the first, then put

a 0 in the sequence, else put a 1 in the sequence. Thus, for

example, the sequence (x3, x2, x4, x5, x1) would become the

sequence 0110.

To determine the reverse map, given a sequence, we know

that the index of the first item (i.e., the index of the maximum)

is 1 more than the number of 0’s in the sequence. The first 0 in

the sequence corresponds to the index one less than the index

of the maximum, the next 0 is 2 less than the maximum, etc.

Similarly, the first 1 is one more than the maximum, the next

1 is 2 more, etc.

Thus it is easy to see that the mapping is 1-1 and onto, and

hence the number of orderings equals the number of binary

strings.

8

