1642

TABLE X
OVERLAPPED-SCATTER STORAGE REQUIREMENTS

Matrix | # Nonzeros | Bound on Overlap Storage
DSP 35712 47543
64K 50539 57329

256K 52512 83338

and solution (SOL VE) as the computational bulk of the algorithm. In
Section IV, we described the parallelization of LOAD. We identified
parallel LOAD as a sequence of lock-synchronized parallel loops to
provide a model of their behavior. We then used this analysis to
predict the performance of our parallel implementation of LOAD and
compared it to experimental measurements on up to six processors.

In Section V, we considered parallel sparse matrix solution. We
first explored the direct parallelization of the efficient sequential
scatter-gather algorithm and concluded on the basis of experimental
results that it was not very promising. We then used a fine-grained
model of parallelism and reported an efficient implementation using
task clustering to minimize scheduling overheads. Very good
utilization of concurrent parallelism was observed, but a performance
penalty had to be paid due to increased indirect operand accesses
necessitated by the fine-grained model. Finally, we described the
implementation of a new parallel medium-grained sparse matrix
solver. The key idea here was the use of an auxiliary indirect
destination pointer to facilitate efficient source-target matching.
Although the fine-grained approach provided slightly better load
balancing and lower scheduling overheads, the medium-grained
solver achieved superior overall performance due to significantly
lower operand access costs and better vectorization. The storage
needed for the medium-grained solver, although only approximately
one-third that for the fine-grained solver, was, however, on the order
of the number of arithmetic operations. We therefore concluded the
section by describing some work currently in progress on a parallel
solver that is much more space efficient without any loss in
performance.

ACKNOWLEDGMENT

We would like to thank D. Berkley for graciously allowing us to
use his machine, P. Subramaniam for numerous technical discussions,
and H. Nham for his support and encouragement.

REFERENCES

[1] G. Alghband and H. F. Jordan, ‘‘Multiprocessor sparse L/U decompo-
sition with controlled fill-in,”” Tech. Rep. 8548, ICASE, NASA
Langley Res. Center, Hampton, VA, 1985.

[2] P. R. Benyon, ‘‘Exploiting vector computers by replication,” Com-
put. J., vol. 28, no. 2, pp. 138-141, 1985.

[3] R. Betancourt, “‘Efficient parallel processing technique for inverting
matrices with random sparsity,”” IEE Proc., vol. 133, pt. E, pp. 235-
240, July 1986.

[4] G. Bischoff and S. Greenberg, ‘“CAYENNE: A parallel implementa-
tion of the circuit simulator SPICE,”’ in Proc. Int. Conf. Comput.-
Aided Design, Santa Clara, CA, Nov. 1986, pp. 182-185.

[5) P. Cox, R. Burch, and B. Epler, ‘‘Circuit partitioning for parallel
processing,”’ in Proc. Int. Conf. Comput.-Aided Design, Santa
Clara, CA, Nov. 1986, pp. 186-189.

[6] T. A. Davis and E. S. Davidson, ‘‘PSOLVE: A concurrent algorithm
for solving sparse systems of linear equations,”’ in Proc. 1987 Int.
Conf. Parallel Processing, St. Charles, IL, Aug. 1987, pp. 483-490.

[7] 1.J. Dongarra, F. G. Gustavson, and A. Karp, ‘‘Implementing linear
algebra algorithms for dense matrices on a vector pipeline machine,”
Siam Rev., vol. 26, no. 1, pp. 91-112, 1984.

[8] I. S. Duff, ‘‘Parallel implementation of multifrontal schemes,”
Parallel Comput., vol. 3, pp. 193-204, 1986.

91 , “‘Multiprocessing a sparse matrix code on the Alliant FX/8,”’

[10]

Rep. CSS210, Comput. Sci. Syst. Division, Harwell Lab., 1987.
L. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse
Matrices. London, England: Oxford University Press, 1986.

[11] FX/Architecture Manual, Alliant Comput. Corp., 1986.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 12, DECEMBER 1988

[12] B. Greer, ‘‘Converting SPICE to vector code,’’ VLSI Syst. Design,
Jan. 1986.

J. W. Huang and O. Wing, ‘‘Optimal parallel triangulation of a sparse
matrix,”” IEEE Trans. Circuits Syst., vol. CAS-26, pp. 726-732,
Sept. 1979.

G. K. Jacob, A. R. Newton, and D. O. Pederson, ‘‘Parallel linear-
equation solution in direct-method circuit simulators,’” in Proc. Int.
Symp. Circuits Syst., Philadelphia, PA, May 1987, pp. 1056-1059.

J. W. H. Liu, ‘‘Computational models and task scheduling for parallel
sparse Cholesky factorization,”” Parallel Comput., vol. 3, pp. 327-
342, 1986.

R. Lucas, T. Blank, and J. Tiemann, ‘‘A parallel solution method for
large sparse systems of equations,”” IEEE Trans. Comput.-Aided
Design, vol. CAD-6, pp. 981-991, Nov. 1987.

L. W. Nagel, “‘SPICE2: A computer program to simulate semiconduc-
tor circuits,”” Memo. ERL-M520, Electron. Res. Lab., Univ. Califor-
nia, Berkeley, May 1975.

L. W. Nagel, AT&T Bell Labs., unpublished work.

B. R. Penumalli, AT&T Bell Labs., unpublished work.

J. Perry, Alliant Comput. Syst., unpublished work.

P. Sadayappan and V. Visvanathan, ‘‘Circuit simulation on a multipro-
cessor,”” in Proc. Custom Integrated Circuits Conf., Portland, OR,
May 1987, pp. 124-128.

, “‘Parallelization and performance evaluation of circuit simula-
tion on a shared memory multiprocessor,”” in Proc. 1988 Int. Conf.
Supercomput., St. Malo, France, July 1988, pp. 254-265.

D. Smart and J. White, ‘‘Reducing the parallel solution time of sparse
circuit matrices using reordered Gaussian elimination and relaxation,”’
in Proc. Int. Symp. Circuits Syst., Helsinki, Finland, 1988.

R. E. Tarjan and A. C. Yao, ‘‘Storing a sparse table,”” Commun.
ACM, vol. 22, pp. 606-611, Nov. 1979.

J. Viach and K. Singhal, Computer Methods for Circuit Analysis
and Design. New York: Van Nostrand Reinhold, 1983.

W. T. Weeks, A. J. Jimenez, G. W. Mahoney, D. Mehta, H.
Qassemzadeh, and T. R. Scott, ‘‘Algorithms for ASTAP—A network
analysis program,’” JEEE Trans. Circuit Theory, vol. CT-20, pp.
628-634, Nov. 1973.

F. Yamamoto and S. Takahashi, ‘‘Vectorized LU decomposition
algorithms for large-scale circuit simulation,”” IEEE Trans. Comput.-
Aided Design, vol. CAD-4, pp. 232-238, July 1985.

{13]

[14]

[15]

[16]

17

(18]
(19]
[20]
21

[22]

(23]

[24]
(251
[26]

27

Simulating Essential Pyramids
RUSS MILLER AND QUENTIN F. STOUT

Abstract—Pyramid computers, and more generally pyramid al-
gorithms, have long been proposed for image processing. They have the
advantage of being a regular structure with a base naturally identified
with an input image, and a logarithmic height which enables rapid
reduction of information. Unfortunately, when the image contains
multiple objects of interest, it is often difficult to use the pyramid
efficiently since the most straightforward algorithms try to simultane-
ously use the apex for each object, creating a severe bottleneck.
Furthermore, algorithms which are efficient in such settings tend to be

Manuscript received February 17, 1988; revised July 16, 1988. R. Miller is
supported by the National Science Foundation under Grants DCR-86-08640
and IRI-8800514. Q. F. Stout is supported by the National Science Foundation
under Grant DCR-85-07851 and by an Incentives for Excellence Award from
Digital Equipment Corporation.

R. Miller is with the Department of Computer Science, State University of
New York at Buffalo, Buffalo, NY 14260.

Q. F. Stout is with the Department of Electrical Engineering and Computer
Science, University of Michigan, Ann Arbor, MI 48109.

IEEE Log Number 8824090.

0018-9340/88/1200-1642$01.00 © 1988 IEEE

IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 12, DECEMBER 1988

significantly more complicated than is desirable, limiting the appeal of
pyramids for more complicated analyses and images. However, this paper
shows that one can systematically simulate the effect of having a separate
‘‘essential’’ pyramid over each object, greatly simplifying algorithm
development since algorithms can be written assuming that there is only a
single object. This approach can yield optimal or nearly optimal
algorithms for the pyramid computer, and can also be used on
nonpyramid architectures such as the hypercube, mesh-of-trees, mesh,
mesh with row and column buses, mesh with reconfigurable buses, and
PRAM. For several of these architectures, the simulated essential
pyramids can all simultaneously perform an algorithm nearly as fast as a
pyramid computer over a single object.

Index Terms—Hypercube computers, image processing, mesh-of-trees,
meshes with buses, parallel algorithms, pyramid computers, vision
architectures.

1. INTRODUCTION

Pyramid-like computers [38] and pyramid-like data structures [26]
have long been proposed for image processing. Many of these
proposals have been based on biological considerations, noting that
the retina has an extremely large number of simultaneous inputs, and
yet in a small number of neural steps animals can perform a variety of
recognition tasks [39]. While the steps in this process are not fully
understood, one thing that is clear is that there must be a rapid
funneling of data into a region in which the decision is made.

The (standard) pyramid computer was proposed as a model of this
behavior, having a large square base in which the image input starts
(as an array of pixels), and only a logarithmic number of stages which
reduces the data to a single apex. Throughout this paper, the base of
the pyramid is an # X » mesh, called level 0. In general, level i is a
mesh of size (n/27) X (n/2f), where each processing element (PE) is
the parent of four children on the level below. (See Fig. 1.) While
pyramids have been studied for some time, only recently have
advances in VLSI technology made it possible to build pyramids of
interesting size, and several have recently been constructed or are in
the process of being constructed [2], [3], [7], [14], [27], [36]. Along
with this ability to construct pyramids has been a rapid expansion of
interest in them (see [3], [24], [35], [40] and the extensive references
therein.)

In a pyramid with an n X n base, the hope is that a given problem
can be solved in logarithmic time, that is, in time ©(log n). (6
denotes ‘‘order exactly,”” @ denotes ‘‘order at least,”” O denotes
‘“‘order at most,”” and o denotes ‘‘order strictly less than.”’) Any
nontrivial problem must take Q(log n) time since it takes that long for
information to travel from the base to the apex. If one has an
algorithm in which data proceed strictly upward, with each level
taking a fixed amount of time before finishing by passing information
up, then indeed the problem will be completed in O(log 7) time. For
example, if the input is a graytone image stored one pixel per base
processor, and the goal is to determine the average gray level, then
the base PE’s send their values up to their parents. As the information
proceeds upwards, each PE in the receiving level receives four values
from its children. The PE then averages these values and passes up
the result. In exactly lg(n) steps the information reaches the apex,
which computes the answer. (Ig denotes log,.) This approach can also
be used to compute higher order least squares polynomial approxima-
tions of the image [1]. Other problems that can also be solved with
bottom-up techniques, using a constant amount of time per level,
include detecting features such as spots and streaks [25] and finding
the closest pair of ‘‘marked’” pixels [32]. These latter algorithms
involve communication between adjacent PE’s on each level, as well
as child-parent communication.

Unfortunately, many problems cannot be solved in a single pass,
nor even in a fixed number of up or down passes. For example, to
rotate the image through a quarter-turn will take Q(n) time, as can be
shown by a simple counting argument similar to that used in [31] to
show that sorting also requires Q(n) time. Namely, consider any
quadrant of the base, together with the subpyramid over it. This

1643

Processor

— Communication
Link

Fig. 1. A pyramid computer of size 16.

Fig. 2.

A difficult image.

subpyramid has ©(n) wires leaving it, and ©(n2) values which must
leave over these wires, so (n) time is required. (Furthermore,
rotation or sorting can be completed in ©(#) time using the base mesh
alone [37].)

Even problems which can be solved in logarithmic time for a single
object may not be solvable in logarithmic time if there are multiple
objects in the image and a separate answer is desired for each. For
example, if one has an input as in Fig. 2, and wants to compute the
average gray level for each of the dark stripes, then at least Q(n"?)
time is necessary [19]. Intuitively, the reason for this delay is that
each stripe needs to use the apex (or at least, the upper levels of the
pyramid) to rapidly combine data from opposite ends of the base.
This creates a bottleneck, and one can show that it is best to move
data only halfway up the pyramid. Simpler techniques such as solving
the problem for one object at a time can lead to far worse
performance. For example, finding the average gray level of each
stripe in Fig. 2 would take ©(n log n) time with this approach.

While the techniques in [17] and [19] show how to attain the
optimal worst case performance for many problems involving
multiple objects, the algorithms are sufficiently complex so as to
discourage their use. In this paper, we take a different approach
which we believe to be much more appealing, and which can be
applied to many other models. For both the pyramid and numerous
nonpyramid machines we show how to simulate an ‘‘essential”’
pyramid (defined in Section II) over each object in the base image,
where all of the simulated pyramids are logically disjoint. Using
them, when one has a problem involving calculating a property of
each object, one merely writes an algorithm for the problem on an
essential pyramid with a single object, executing this in all the
simulated pyramids simultaneously.

Besides providing a systematic solution to determining properties
of multiple objects, using simulated essential pyramids has two
additional advantages. The first is that the resulting algorithms are
often optimal or nearly optimal, where by nearly optimal we mean
that the time is within one or two logarithmic factors of being
optimal. Thus, it is far more efficient than merely running an
algorithm on the objects one at a time. The second is that the
approach can be used on a wide range of parallel computers, not just
pyramids. In fact, when used on more powerful models, such as the
hypercube and mesh-of-trees, the time to run an algorithm on all of
the simulated pyramids is nearly the same as the time to run the same
algorithm on a pyramid with a single object.

In the second section, the various machine models, and the notion
of essential pyramids, are defined. The third section shows how to

1644

simulate essential pyramids over each object for a variety of
machines. It also analyzes the time required to simulate one step, or
one upward or downward sweep, of an algorithm for an essential
pyramid with a single object. The fourth section uses this to give
algorithms for images with multiple objects on a variety of different
machines. The last section contains additional comments.

II. MODELS AND DEFINITIONS

In all of the models of parallel computers considered in this paper,
it is assumed that the PE’s have a uniformly bounded amount of
memory, the word size is large enough to contain n, all operations
such as add or compare take constant time, and it takes a constant
amount of time to transmit a single word to a neighboring PE. (Two
PE’s are said to be neighbors if there is a direct communication link
between them.)

Machine Models

The pyramid computer, shown in Fig. 1 and defined in the
Introduction, is said to be of size n? if the base is an n X n mesh.
Notice that a pyramid of size n? actually has (4/3)n2 — 1/3 PE’s.
The input is assumed to be an n X n image, stored in the natural
fashion, one pixel per base PE. Thus, the input to a pyramid of size
n? is an image of n? pixels. Also notice that # must be an integral
power of 2. This restriction will be used throughout this paper.

A mesh-of-trees of size n? also starts with a base which is an n X
n mesh. Above each row there is a binary tree which has the PE’s in
the row as its leaves, and above each column there is a similar tree.
These trees are disjoint except for their leaves. (See Fig. 3.) Like the
pyramid, the image is assumed to be initially stored in the base. The
mesh-of-trees was originally studied as a useful model in VLSI
layouts [11], [12], [41], but recently it has been receiving more
attention as a parallel computer [10], [18], 201, {22].

Notice that, like the pyramid, the mesh-of-trees has a communica-
tion diameter of ©(log n). Furthermore, it can provide logarithmic
time solutions to some problems that cannot be solved even in
polylogarithmic time on a pyramid. (A function is polylogarithmic if
it is O(log* n) for some k > 0.) For example, by using only the row
trees, in O(log n) time the mesh-ofstrees can find the average gray
level of each of the stripes in Fig. 2. However, the mesh-of-trees is
similar to the pyramid in that rotating an image by a quarter-turn, or
sorting items, takes Q(n) time, as can be shown by using the same
argument given for the pyramid.

A hypercube of size n* has exactly n? PE’s, indexed by the binary
numbers from 0 to n2 — 1. Two PE’s are neighbors if and only if
their indexes differ by an integral power of 2. (See Fig. 4.)
Hypercube computers have been proposed for quite some time [30],
but only in the last few years have any nontrivial ones been built [28].
Currently several corporations market hypercube computers, and
there is extensive interest in such machines [8], [9], [43].

Images are mapped onto hypercubes using Gray codes G4, where
G, maps {0, -+, 2¢ — 1} onto the d-bit binary strings, with the
property that G4(i) and G4((i + 1) mod 29) differ by exactly one bit.
For our purposes it is best to use the reflexive Gray codes defined by
Gi(0) = 0, G(1) = 1, and Gg.1(i) = 0G,(i) for i < 29, Ggy,(i)
= 1G4(29*! — 1 — i) for i = 29, Using this, the pixel at (i, j) is
mapped to the PE with coordinates the concatenation of Gig(s)(i) and
Gigm(J)-

%h)e communication diameter of a hypercube of size n? is 2lg(n),
and, unlike the pyramid or mesh-of-trees, the hypercube can route
many items nearly as rapidly as it can route a single item. For
example, an image can be rotated a quarter-turn in O(log n) time, and
n? items can be sorted in O(log? n) time using bitonic sort. (It is an
interesting open question whether the hypercube can sort in o(log? n)
time.)

Many different variations on adding buses to mesh computers have
been studied. Here only two will be considered. In a mesh of size n*
with row and column buses, there is a base mesh of size n2. There is
a bus for each row and each column, with all of the PE’s in a row or
column attached to the bus. For each bus, only one PE at a time can
transmit a value, which is simultaneously received in unit time by all

IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 12, DECEMBER 1988

Fig. 3. A mesh-of-trees of size 16. (Mesh connections omitted for clarity.)

Fig. 4. A hypercube of size 16.

the other PE’s attached to the bus. This model has been studied in
[23] and [33]. It has a communication diameter of O(1), but again a
simple wire-counting argument shows that it takes {}(n) time to rotate
an image by a quarter-turn.

In a reconfigurable mesh of size n2, or mesh of size n* with
reconfigurable buses, imagine a grid of horizontal and vertical
wires, each of length n and spaced unit distance apart. A PE is
attached to each intersection, and the PE can control a switch on each
of the four sides of the intersection. Each switch can disconnect the
wire from the intersection. If all of the switches are set to the
“‘connected’” positions, then the entire system is linked as a single
bus in which only one PE can broadcast a value which is received in
unit time by all other PE’s. If, for example, all of the column switches
are set to ‘‘disconnect,’’ and all row switches to ‘‘connect,’’ then the
system is a collection of rows, each with its own bus. These can all be
used simultaneously, just as in 2 mesh with row and column buses.
The possibility of having connection patterns which are neither rows
nor columns makes this model significantly more powerful than the
mesh with row and column buses [16], although it still takes Q(n)
time to rotate an image by a quarter-turn. Many models similar to a
reconfigurable mesh have been proposed and constructed [5], {13],
[16], 1291, [42].

A parallel random access machine (PRAM) of size n? has n?
PE’s, each with their own storage of fixed size, and a global memory
of size ©(n2). In a PRAM, PE’s do not communicate directly with
each other, but instead communicate by leaving messages in the
global memory. We assume that each memory cell can be accessed by
at most one PE at a time. This is known as the ‘‘exclusive read
exclusive write’”> (EREW) model of PRAM, and is the most
restrictive PRAM model usually studied. We also assume that the
PRAM is synchronous, although with extra. ‘‘handshaking’’ com-
munication all of the algorithms used herein could be run in the same
time (measured in O-notation) on the asynchronous model.

For the PRAM we assume that the image is initially stored in the
global memory, in a standard row-major order. The PRAM is the
most powerful model we will study since any collection of up to n2/2
pairs of PE’s can communicate (through the global memory) in 6(1)
time. For example, image rotation can be accomplished in O(1) time,
and sorting can be accomplished in O(log n) time [6].

Essential Pyramids

Throughout, we assume that the pixels corresponding to an object
of interest form a connected set, and that no two objects overlap. We
also assume that the pixels have already been labeled, where each
pixel in an object receives the label of that object, objects have
distinct labels, and each pixel not in any object receives a ‘‘null’’
label.

Many pyramid algorithms which compute a property of a single
object use only the PE’s above the object to do useful work.
Motivated by this, [20] introduced the notion of an essential

IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 12, DECEMBER 1988

Fig. 5. Gray nodes are in the essential pyramid.

pyramid, defined as follows. To help distinguish essential pyramids
from the simulating machine, PE’s in the essential pyramid will be
called nodes. Given an image stored in the base of a pyramid P of
size n2, let O be a single object in the image. Delete from P’s base all
nodes which do not contain a pixel in O, and then, in a bottom-up
fashion, delete from P all nonbase nodes which no longer have any
children. When this is completed, the remaining portion P’ of P
contains exactly those nodes which are above some part of O.
However, this is still not quite what is desired, since, for example, an
object consisting of a single pixel will have a P’ consisting of Ig n
nodes, each with a single parent and a single child. In this situation,
nodes above the base cannot combine any information not directly
available to the base, and hence the base could act as the apex.
Therefore, we add a second pruning pass to P’. This pass starts at the
apex of P’, deleting the apex if it has only one child. If the apex is
deleted, then the process is recursively applied to its child (stopping at
the base if the object is a single pixel). The result of this second pass
is the essential pyramid of O, denoted ess(O). (See Fig. 5.) Notice
that the ess(O) depends upon P and O’s position in the base of P, but
as this dependency will be true for all objects it will not be explicitly
mentioned further.

Even with all of the pruning, ess(O) can be significantly larger than
O. For example, consider an object O which is the four center
squares of the base. At each level of the pyramid, there are exactly
four nodes above O, except for the top level in which there is only the
apex. At each level, the mesh connections between these four nodes
form a square, so ess(O) is an obelisk of height 1g(n).

Within a given pyramid, two disjoint objects may have essential
pyramids which are not disjoint. For example, if each gray strip in
Fig. 2 is an object, then all the essential pyramids contain the apex.
This shows that the apex can be contained in ©(#) essential pyramids,
and that in general a node at level i can be contained in ©(2¢) essential
pyramids. Since the objects must be connected, the top-down pruning
ensures that if a node p in ess(O) is not the apex, then O passes
through the border of the base square beneath p. Since a node at level
i is above a base border of ©(2) pixels, and since the objects are
disjoint, a node at level i is in O(2°) essential pyramids. Adding up all
of the worst case possibilities shows that the total number of nodes in
the essential pyramids is O(n?), i.e., at most linear in the size of the
input. These facts will be used repeatedly when constructing the
simulated essential pyramids.

III. SIMULATING ESSENTIAL PYRAMIDS

For all of the models considered here, the essential pyramids will
be simulated so that there is a fixed constant C, independant of n and
of the image, so that each real PE simulates at most C different nodes
in the essential pyramids. Using this, the local computations by any
real PE are at most C times the local computations done by any node
in an essential pyramid. Furthermore, the real PE’s must simulate the
communication between neighbors in the essential pyramids. Since
the worst case information transmission time will be at least as large
as the local computation time, it is the only component that will be
discussed in the following.

The approach we take in the following constructions is to
concentrate on those for the pyramid and mesh-of-trees, and then
relate the other architectures to these two. This greatly shortens our
presentation, although in practice one would write a more direct

1645

construction for each architecture, rather than simulating an architec-
ture simulating essential pyramids.

Pyramids

To construct the essential pyramids for an image on a pyramid, we
follow techniques from [19]. Consider the base as being partitioned
into k X k squares, where k is a power of 4. Pick such a square, and
let Q denote the subpyramid with that square as its base. The apex of
Q, denoted g, is at level i = 1g n. By the comments at the end of
Section II, g is in at most 4k — 4 essential pyramids, and each of ¢’s
children is in at most 2k — 4 essential pyramids. There are exactly &
PE’s in Q at level i/2, each of which will be used to simulate at most
four replicas of g and at most eight replicas of children of q. Each PE
simulating a replica of g will also replicate g’s children (at least, all
the ones in the same essential pyramid). There may also be children
of g which are the apex of an essential pyramid not including g, in
which case the child is replicated all by itself. In [19], the PE’s in Q at
level i/2 were called the ‘‘data square’’ corresponding to the base
square of Q. We now describe how the replication and simulation is
accomplished.

The construction begins bottom-up. First, each PE containing a
pixel of an object determines which of its neighbors also contains a
pixel of the same object. It then creates a record with the object’s
label, the PE’s coordinates, and the information about the neighbors.
These records are used to create the simulated essential pyramids. If
none of the neighbors are in the same object, then the base PE is the
apex of the essential pyramid, and the record is finished. Otherwise,
the records are moved up one level. Each PE at level 1 receives at
most four records. Within each 2 x 2 data square at level 1
(corresponding to a4 X 4 square in the base), the records are sorted
by the object’s label, using snake-like or proximity ordering. This
groups all the information concerning the same object together within
each data square, and from this information it can be decided which
PE’s at levels 1 and 2 of the original pyramid above the 4 X 4 square
are in the essential pyramid for the object. The PE holding the first
record (in sorted order) for an object will simulate these nodes in the
essential pyramid.

Each record corresponding to a pixel in the interior of the base 4 X
4 square, or to a pixel on the border where the pixel on the opposite
side of the border is not in the object, is now finished. Otherwise,
there must be nodes above the current simulated level which are in the
essential pyramid of the object. Each such record is then passed up,
and the process is repeated. Each step corresponds to base squares 4
times larger in both dimensions, and simulated essential nodes 1 and
2 levels higher, using data squares 2 times larger in both dimensions.

When the bottom-up pass is completed, all of the nodes in the
simulated essential pyramids have been identified. A real PE at level i
which is simulating a node g can determine if g has an essential
parent by sending a record up to the data square directly above, it can
determine which of g’s children are essential by sending records to
the data squares directly below, and it can determine which of g’s
neighbors on the same level are essential by sending records to the
neighboring data squares. All of this can be accomplished in ©(2)
time for all real PE’s at level /, using techniques as in [19].
Furthermore, by exactly the same techniques, in ©(2°) time, a single
step involving essential nodes at levels 2i and 2/ — 1 can be simulated
by the real PE’s at level /. If the simulated algorithm involves nodes at
all levels in the essential pyramids, then by simulating first those at
the base, then at level 1, then level 2, etc., a single simulation step
can be completed in ©(n'/2) time. This same technique also can be
used to simulate upward or downward passes of an algorithm.
Summarizing, we have the following.

Theorem 3.1: In a pyramid of size n2, simulating a single step of
an algorithm on all essential pyramids simultaneously can be
completed in ©(n'/?) time, and can be completed in ©(2/72) time if
the step involves only simulated nodes at levels i, i — 1, and i + 1.
Simulating an entire upward or downward pass, where at each step
only nodes at one level are computing before sending results to the
next level (each level finishing in a constant amount of time), can be
completed in O(n!"?) time.

1646

Fig. 6. A pyramid mapped onto its base. (Numbers indicate levels.)

Meshes

Two-dimensional mesh-connected computers, or meshes, form the
base of pyramids and the mesh-of-trees. It is also well known that the
pyramid layers above the base can be projected onto the base mesh so
that no base PE has more than one nonbase PE projected onto it, and
so that for each PE p above the base, p is projected into the square
that is the base of the subpyramid with p as apex. (See Fig. 6.) This
can be used to easily construct the simulated essential pyramids.
Namely, project a pyramid onto the mesh, and have each mesh PE
simulate the essential nodes that it and the pyramid PE projected onto
it (if any) would simulate in the pyramid. Using this, we obtain the
following.

Theorem 3.2: In a mesh of size n2, simulating a single step of an
algorithm on all essential pyramids simultaneously can be completed
in ©(n) time, and can be completed in ©(2°) time if the step involves
only simulated nodes at levels, i, i — /, and i + 1. Simulating an
entire upward or downward pass can be completed in ©(n) time.

Mesh-of-Trees

Simulating essential pyramids on the mesh-of-trees provides times
significantly faster than those possible on the pyramid itself, and it
seems that the mesh-of-trees is nearly ideal for this task. A node p at
level i in an essential pyramid will be simulated by a PE q at level i/ in
the mesh-of-trees, and ¢ will be above the square which is the base of
the subpyramid with p as its apex. To achieve rapid simulations, first
the simulators of the nodes in the essential pyramids are identified,
then each simulator determines the locations of the simulators of each
neighbor of each node it simulates. The details of these steps appear
in [20].

Theorem 3.3: In a mesh-of-trees of size n2, simulating a single
step of an algorithm on all essential pyramids simultaneously can be
completed in ©(log) time, and can be completed in O(/) time if the
step involves only simulated nodes at levels i, i — 1, and i + 1.
Simulating an entire upward or downward pass can be completed in
O(log? n) time.

Hypercube

Borrowing from [18], Fig. 7 illustrates one way in which a row
tree in a mesh-of-trees can be mapped onto the base row so that no
base PE has more than one nonleaf PE mapped onto it. Using this, the
mesh-of-trees of size 72 can be embedded into its base so that no base
PE has more than one (nonleaf) PE from the row trees and one PE
from the column trees mapped onto it. Furthermore, when the base
mesh is mapped into a hypercube of size 72 using the reflexive Gray
code, the method illustrated in Fig. 7 has the additional property that
two neighboring nodes in a row or column tree are mapped to base
nodes which are in turn mapped to PE’s at most distance 2 apart in the
hypercube. This mapping of a mesh-of-trees of size n? into a
hypercube of size n® results in each hypercube PE simulating one
base PE, and at most one row tree PE and at most one column tree
PE, and neighbors in the mesh-of-trees are mapped to PE’s at most 2
apart in the hypercube. Using this, and the simulation results for the
mesh-of-trees, gives the following result.

Theorem 3.4: In a hypercube of size n2, simulating a single step of
an algorithm on all essential pyramids simultaneously can be
completed in ©(log n) time, and can be completed in ©(/) time if the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 12, DECEMBER 1988

10 11 12 13 ...

3 4 5 6 7 8 9
Tree nodes above the base nodes they are mapped onto.

Fig. 7.

step involves only simulated nodes at levels i, i — 1, and i + 1.
Simulating an entire upward or downward pass can be completed in
O(log? n) time.

Meshes with Buses

The mesh with row and column buses can simulate the mesh-of-
trees by first mapping the mesh-of-trees onto its base (as in Fig. 7),
and then using the row and column buses to help simulate
communication within the row and column, respectively, trees.
Within any single row or column, to simulate communication
between a PE and one of its children, where the parent is at level i <
(Ig n)/2, the communication will just use the standard mesh links.
The bus is not used because such communication can occur in time
©(2¢), while if the bus was used then the large number of such PE’s
would require at least this many messages (and hence at least this
much time). For communication involving parents at higher levels,
the buses are used, sending at most /2 messages. Using this, we
obtain the following.

Theorem 3.5: In a mesh of size n? with row and column buses,
simulating a single step of an algorithm on all essential pyramids
simultaneously can be completed in O(n'/2) time, and if the step
involves only simulated nodes at levels i, i — 1, and i + 1, then the
simulation can be completed in ©(2) time if i < (Ig n)/2, and in
©(n/2°) time otherwise. Simulating an entire upward or downward
pass can be completed in O(n!/2) time.

For a reconfigurable mesh, the mesh-of-trees is again mapped to its
base in the same manner. In any row or column, for any level i, the
bus can be partitioned into disjoint subbuses so that each simulated
tree PE at level /, along with its children, is on its own subbus. Using
this, the reconfigurable mesh can simulate all row or column tree
PE’s at level i communicating with their children in a constant
amount of time. Furthermore, in the mesh-of-trees, an essential node
at level i may have children simulated in different row or column
trees, so O(/) time is needed to simulate this communication. The
reconfigurable mesh can accomplish this in a constant amount of time
[16], giving the following results which are slightly better than those
for the mesh-of-trees.

Theorem 3.6: In a reconfigurable mesh of size n2, simulating a
single step of an algorithm on all essential pyramids simultaneously
can be completed in ©(log ») time, and can be completed in ©(1) time
if the step involves only simulated nodes at levels i, i — 1,and i + 1.
Simulating an entire upward or downward pass can be completed in
O(log n) time.

PRAM

The PRAM can simulate a single step of the mesh-of-trees in
constant time. Furthermore, communication between arbitrary PE’s
can occur in constant time. Using this, one obtains the following.

Theorem 3.7: In a PRAM of size n?, simulating a single step of an
algorithm on all essential pyramids simultaneously can be completed
in ©(1) time. Simulating an entire upward or downward pass can be
completed in ©(log n) time.

IV. SAMPLE USES OF SIMULATED ESSENTIAL PYRAMIDS

Several algorithms have been developed for pyramids with a single
object in their base. While authors did not write these in terms of

IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 12, DECEMBER 1988

essential pyramids, the vast majority of them actually run with little
or no modification on essential pyramids. Illustrative, nonexhaustive
examples of this are mentioned in the following theorem. In the
theorem, an upward or downward pass will always take O(1) time per
level.

Theorem 4.1: In an essential pyramid over a single object in an
image of size n2,

a) In a single upward pass, the average gray level, standard
deviation of the gray level, number of pixels, number of pixels on the
perimeter, and centroid of the object can be determined.

b) For any fixed X, in a single upward pass, the least squares
polynomial of degree k can be fit to the gray levels of the object,
assuming that pixels not in the object have value 0.

c) In a single upward pass, it can be determined if the object has
any horizontal or vertical concavities.

d) In a single upward pass, it can be determined if the object is a
‘‘spot,”” ‘‘streak,”’ ‘‘streak end,’’ edge of specified size, ‘‘blob,”’ or
“‘ribbon.”’

e) In a single upward pass, it can be determined if the object is the
digitization of a straight line.

f) In ©(log n) time, it can be determined if the object is convex.

g) If the object is convex, then in O(log 7) time the extreme points
of its convex hull can be determined.

h) For an arbitrary object, in ©((log? n)/log log n) time, the
extreme points of its convex hull can be determined.

Proof: Parts a) and b) are quite obvious, with [1] apparently the
first to note b). For c) and e), see [15]. For d) see [25]. For f), g), and
h) see [17].

This theorem can be combined with those of the previous section to
give a very large number of problem/machine times. This is too many
to analyze in depth for optimality, so only a few will be analyzed to
show that the resulting algorithm is optimal or nearly optimal for each
machine examined. Even for the simplest problems, one obtains
optimal or nearly optimal results.

Theorem 4.2: Once the simulated essential pyramids have been
constructed, then for each object, in

a) ©(n'/?) time on a pyramid of size n?,

b) ©(n) time on a mesh of size n2,

¢) ©(log? n) time on a mesh-of-trees of size n?,

d) ©(log? n) time on a hypercube of size n2,

e) ©(n'/4) time on a mesh of size n2 with row and column buses,

) O(log n) time on a reconfigurable mesh of size n2,

g) O(log n) time on a PRAM of size n?,
one can determine the average gray level, standard deviation of the
gray level, number of pixels, length of the perimeter, centroid, kth
degree polynomial fit, detect horizontal or vertical concavities, or
decide if the object is a “‘spot,”” “‘streak,’’ ‘‘streak end,’”’ edge of
specified size, ‘‘blob,”” ‘‘ribbon,’” or digitization of a straight line.
Furthermore, the times for the pyramid, mesh, mesh with row and
column buses, reconfigurable mesh, and PRAM are (worst case)
optimal, and the times for the mesh-of-trees and hypercube are within
a factor of log n of being optimal.

Proof: The times obtained are immediate consequences of
Theorem 4.2 and the theorems in Section III. The optimality of the
times for the reconfigurable mesh and PRAM are obvious. For the
mesh, the optimality follows from the fact that it takes ©(n) time to
transmit information across the mesh, and the near optimality of the
times for the hypercube and mesh-of-trees follows similarly. To see
optimality for the other models, consider the stripes in Fig. 2. For
these objects, a lower bound proof in [19] shows that the time in a) is
optimal for the pyramid, and the analysis in [33] shows that the time
in e) is optimal for the mesh with row and column buses.

Slightly faster algorithms are known for determining average gray
level (and all of the other properties as well) on the mesh-of-trees and
hypercube. An algorithm for the mesh-of-trees which takes ©((log?
n)/log log n) time, and an algorithm for the hypercube which takes
O(log n) time, are given in [20]. The latter is clearly optimal, while
the optimal time for the mesh-of-trees is still an open problem.

Theorem 4.3: Once the simulated essential pyramids have been

constructed, then for all objects simultaneously, in

a) ©(n'"2 log? n/log log n) time on a pyramid of size n?,

b) O(n log? n/log log n) time on a mesh of size n?,

¢) O(log? n/log log n) time on a mesh-of-trees of size n?,

d) ©(log? n/log log n) time on a hypercube of size n?,

€) O(n'/*1og? n/log log n) time on a mesh of size n2 with row and
column buses,

f) ©(log? n/log log n) time on a reconfigurable mesh of size n?,

g) ©(log? n/log log n) time on a PRAM of size n?,
one can find the extreme points of the convex hull of each object.

Again it is true that some of these architectures can find extreme
points faster than the times given in Theorem 4.3. For example, on
the PRAM and hypercube, all extreme points can be determined in
B(log n) time by incorporating techniques in [21]. However, the
existence of slightly faster algorithms for a few of these models does
not diminish the significance of the use of simulated essential
pyramids. Simulated essential pyramids provide a systematic tech-
nique for exploiting pyramid algorithms to determine properties of
multiple objects, and the programmer/algorithm designer time saved
by using a systematic approach may be far more valuable than the
extra machine time incurred.

V. FINAL REMARKS

Simulating essential pyramids provides a systematic way of
extending pyramid algorithms for single objects to images with
multiple objects, on a variety of paraliel computers. The software
necessary to create simulated essential pyramids, and to carry out
stepwise simulations, needs to be written only once for each machine.
Once this is in place, a programmer needs only to label the objects,
and to write an algorithm for an essential pyramid with a single object
in its base. This is then simulated over all objects. While simulations
of one architecture by another are common in parallel computing, it is
rare that one simulates multiple copies of one architecture on another.
Simulating multiple copies of the ‘‘essence’’ of another architecture,
where the essence is defined by the data, is even rarer, as this is the
first example that we know of.

This approach has obvious advantages in reducing programmer
time, and in enabling algorithms to be ported between different
architectures. Less obvious is the fact that it often produces
algorithms that are worst case optimal, or within a logarithmic factor
of being optimal. This was shown in Theorems 4.2 and 4.3.
Furthermore, for all of the architectures studied, the number of
processors needed to obtain these times grows only linearly with the
size of the input image.

The machine architectures discussed herein are not an exhaustive
list of architectures for which this approach can be profitably used.
For example, one could also use this approach on a mesh in which
each row and each column is a complete graph, or has a multistage
interconnection network. It can also be used on a two-level mesh
where the base level is an #n X 7 mesh and the level above isa k X &
mesh, where ¥ < n. Here each PE in the second level may be
connected to all the base PE’s in a (n/k) X (n/k) square, or to only
one of the PE’s in such a square. It can also be used on the enhanced
pyramids discussed in [34], on cube-connected cycles, and on
shuffle-exchange machines.

Besides varying the target architectures, one can also vary many
aspects of the basic technique. For example, on the mesh-of-trees one
may prefer to group levels of essential pyramids into layers of 1g 1g n
levels thick, simulating a node at the top of a layer, and all of its
essential descendants in the same layer, together in one PE. The
internal time for a PE to simulate a single step increases, but in some
cases this can be more than made up for by the decrease in the
communication required [20]. Another possibility is to consider
algorithms which alter the shape of an essential pyramid. For
example, suppose the convex hulls of the objects are all disjoint, and
the task is to ‘‘fill in"’ the convex hull of each object. The extreme
points of the objects can be determined using the essential pyramids,
and the most natural way to fill in the convex hulls is to use a top-
down approach, filling in the essential pyramid of the convex hull of
each object.

1648

{1

[2]

3]

]
i3]

(6]

71

8]
9]
[10]

(1]
2]
[13}
[14]

[15]

[16]

17

(18]

(19]
[20]
[21]
[22]

[23}

[24]

[25]

[26)

[27]

REFERENCES

P. J. Burt, ‘‘Hierarchically derived piecewise polynomial approxima-
tions to waveforms and images,”” TR-838, Comput. Vision Lab., Univ.
Maryland, 1979.

P.J. Burt, C. H. Anderson, J. O. Sinniger, and G. van der Wal, ‘‘A
pipelined pyramid machine,’” in Pyramidal Systems for Computer
Vision, NATO ASI Series F: Computer and System Sciences, Vol.
25. New York: Springer-Verlag, 1986, pp. 133-152.

V. Cantoni and S. Levialdi, Eds., Pyramidal Systems for Computer
Vision, NATO ASI Series F: Computer and Systems Sciences, vol.
25. New York: Springer-Verlag, 1986.

V. Cantoni and S. Levialdi, “‘PAPIA: A case history,”” in Parallel
Computer Vision. New York: Academic, 1987, pp. 3-13.

D. M. Champion and J. Rothstein, ‘‘Immediate parallel solution of the
longest common subsequence problem,” in Proc. 1987 Int. Conf.
Parallel Processing, pp. 70-77.

R. Cole, ‘‘Parallel merge sort,”’ in Proc. 27th Symp. Foundations
Comput. Sci., 1986, pp. 511-516.

G. Fritsch, ‘‘General purpose pyramidal architectures,’’ in Pyramidal
Systems for Computer Vision, NATO ASI Series F: Computer and
System Sciences, vol. 25. New York: Springer-Verlag, 1986, pp.
41-58.

M. T. Heath, Ed., Hypercube Multiprocessors 1986. Philadelphia,
PA, SIAM, 1986.

——, Hypercube Multiprocessors 1987. Philadelphia, PA, SIAM,
1987.

M.-D. A. Huang, ‘‘Solving some graph problems with optimal or near-
optimal speedup on mesh-of-trees networks,”’ in Proc. 26th Symp.
Foundations Comput. Sci., 1985, pp. 232-240.

F. T. Leighton, ‘‘New lower bound techniques for VLSL "’ in Proc.
22nd Symp. on Foundations Comput. Sci., 1981, pp. 85-98.
‘‘Parallel computation using meshes of trees,’’ in Proc. 1983
Int. Conf. Graph Theoret. Concepts Comput. Sci.

H. Li and M. Maresca, ‘‘Polymorphic-torus network,’’ in Proc. 1987
Int. Conf. Parallel Processing, pp. 411-414.

A. Merigot, P. Clermont, J. Mehat, F. Devos, and B. Zav1dov1que, “A
pyramidal system for image processing,”’ in Pyramidal S Sfor
Computer Vision, NATO ASI Senes F: Computer and System
Sciences, vol. 25. New York: Springer-Verlag, 1986, pp. 109-124.
R. Miller, ‘‘Pyramid computer algorithms,>’ Ph.D. dissertation, State
Univ. New York, Binghamton, 1985.

R. Miller, V. K. Prassana Kumar, D. Reisis, and Q. F. Stout, ‘‘Meshes
with reconfigurable buses,”” in Proc. 5th MIT Conf. Advanced Res.
VLSI. Cambridge, MA: MIT Press, 1988, pp. 163-178.

R. Miller and Q. F. Stout, ‘‘Convexity algorithms for pyramid
computers,”” in Proc. 1984 Int. Conf. Parallel Processing, pp. 177-
184.

, “‘Some graph- and image-processing algorithms for the hyper-
cul ,” in Hypercube Multiprocessors 1987. Philadelphia, PA:
SIAM, 1987, pp. 418-425.

——, ‘‘Data movement techniques for the pyramid computer,’’ SIAM
J. Comput., vol. 16, pp. 38-60, 1987.

——, Parallel Algorithms for Regular Architectures. Cambridge,
MA: MIT Press, 1988.

, ‘‘Efficient convex hull algorithms,”” IEEE Trans. Comput.,
this issue, pp. 1605-1618.

V. K. Prassana Kumar and M. Eschoghian, ‘‘Parallel geometric
algorithms for digitized pictures on mesh of trees,’’ in Proc. 1986 Int.
Conf. Parallel Processing, pp. 270-273.

V. K. Prassana Kumar and C. S. Raghavendra, ‘‘Image processing on
enhanced mesh connected computers,’’ in Proc. Comput. Architec-
ture Pattern Anal. Image Database Man., 1985, pp. 243-247.

A. Rosenfeld, Ed., Multiresolution Image Processing and Analy-
sis. New York: Springer-Verlag, 1984.

——, ‘‘Some pyramid techniques for image segmentation,” in
Pyramidal Systems for Computer Vision, NATO Series F: Com-
puter and System Sciences, vol. 25. New York: Springer-Verlag,
pp- 261-271.

H. Samet, “‘A tutorial on quadtree research,”’ in Multiresolution
Image Processing and Analysis. New York: Springer-Verlag, 1984,
pp. 212-223.

D. H. Schaefer, P. Ho, J. Boyd, and C. Vallejos, *“The GAM
Pyramid,”’ in Parallel Computer Vision. New York: Academic,
1987, pp. 15-42.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 12, DECEMBER 1988

[28] C. L. Seitz, ‘“The Cosmic cube,”’ Commun. ACM, vol. 28, pp. 22-
23, 1985.

L. Snyder, ‘‘Introduction to the configurable, highly parallel com-
puter,”” Computer, vol. 1, pp. 47-56, 1982.

J. S. Squire and S. M. Palais, ‘‘Programming and design consider-
ations for a highly parallel computer,’” in Proc. AFIPS Conf., vol.
23, 1963 SICC, pp. 395-400.

Q. F. Stout, “‘Sorting, merging, selecting, and filtering on tree and
pyramid machines,”’ in Proc. 1983 Int. Conf. Parallel Processing,
pp- 214-221.

——, “Pyramid computer solutions of the closest pair problem,”” J.
Algorithms, vol. 6, pp. 200-212, 1985.

——, ““Meshes with multiple buses,’’ in Proc. 27th Symp. Founda-
tions Comput. Sci., 1986, pp. 264-273.

——, ‘‘Pyramid algorithms optimal for the worst case,”’ in Parallel
Computer Vision. New York: Academic, 1987, pp. 147-168.

S. L. Tanimoto and A. Klinger, Eds., Structured Computer Vision:
Machine Perception Through Hierarchical Computation Struc-
tures. New York: Academic, 1980.

S. L. Tanimoto, T. J. Ligocki, and R. Ling, ‘‘A prototype pyramid
machine for hierarchical cellular logic,”” in Parallel Computer
Vision. New York: Academic, 1987, pp. 43-83.,

C. D. Thompson and H. T. Kung, ‘‘Sorting on a mesh-connected
parallel computer,”” Commun. ACM, vol. 20, pp. 263-271, 1977.
L. Uhr, ‘“‘Layered ‘recognition cone’ networks that preprocess,
classify, and describe,”” IEEE Trans. Comput., vol. C-21, pp. 758-
768, 1972.

——, “‘Parallel, hierarchical software/hardware pyramid architec-
tures,”” in Pyramidal Systems for Computer Vision, NATO ASI
series F: Computer and System Sciences, vol. 25. New York:
Springer-Verlag, 1986, pp. 1-20.

———, Parallel Computer Vision. New York: Academic, 1987.

J. D. Ullman, Computational Aspects of VLSI. Rockville, MD:
Computer Science Press, 1984.

C. C. Weems, S. P. Levitan, A. R. Hanson, E. M. Riseman, J. G.
Nash, and D. B. Shu, ‘“The image understanding architecture,”
COINS Tech. Rep. 87-76, Univ. Massachusetts, 1987.

Proc. Third Conf. Hypercube Concurrent Comput. Appl., SIAM,
1988.

[29]
[30]

[31]

(32]
33]
[34]
135]

[36]

371
138]

[39]

[40]
[41]

[42]

[43]

Pairwise Reduction for the Direct, Parallel Solution of Sparse,
Unsymmetric Sets of Linear Equations

TIMOTHY A. DAVIS AND EDWARD S. DAVIDSON

Abstract—PSolve is a concurrent algorithm for solving sparse systems
of linear equations on a shared-memory parallel processor. Each
autonomous process uses pairwise pivoting and synchronizes with only a
few others at a time. On the Alliant FX/8, PSolve is faster than Gaussian
elimination and two common sparse matrix algorithms.

Index Terms—Asynchronous algorithms, concurrent data structures,
gather/scatter vector hardware, pairwise pivoting, parallel algorithms,
parallel architectures, sparse matrices, sparse vector hardware, synchroni-
zation.

Manuscript received February 17, 1988; revised July 16, 1988. This work
is supported in part by a fellowship awarded by the American Electronics
Association (with funds from Digital Equipment Corporation) which supports
graduate students who intend to pursue careers in academia, and by DOE
Grant DE-FG02-85ER25001, NSF Grants MIP-84-10110 and DCR-85-
09970, and a donation from IBM. This work has been presented in part at the
1987 International Conference on Parallel Processing [11].

T. A. Davis is with the Center for Supercomputing Research and
Development, University of Illinois, Urbana, IL 61801.

E. S. Davidson is with the Department of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, MI 48109.

IEEE Log Number 8824091.

0018-9340/88/1200-16483501.00 © 1988 IEEE

