FEATURE

A Microprocessor-based
Hypercube Supercomputer

John P. Hayes, Trevor Mudge, and Quentin E Stout

University of Michigan

Stephen Colley and John Palmer
NCUBE Corporation

build a supercomputer capable of hundreds of

millions of instructions per second is to intercon-
nect a large number of microprocessors. Supercomputers
built by corporations such as Cray Research and Control
Data do not use this approach, but rely on very fast com-
ponents and pipelined operations. However, such machines
are quite expensive, and each performance improvement of
them is increasingly difficult to achieve. In contrast, the
performance of machines consisting of interconnected mi-
croprocessors can be significantly improved simply by add-
ing more microprocessors, faster microprocessors, and bet-
ter interconnections among them.

An important consideration for systems made up of in-
terconnected microprocessors is the question of local versus
global memory and its effect on the interconnection
scheme. In a global memory system, memory is shared by
all the processors. Since two or more processors may try to
use the same memory location at the same time, a global
memory scheme requires the use of hardware or software
protocols for arbitrating among processors. Further, since
memory references are a very large fraction of any pro-
gram’s execution, the time required to access memory must
be kept small. These two requirements make severe

T he most straightforward and least expensive way to

0272-1732/86/1000-0006$01.00 © 1986 IEEE

demands on the interconnection system between processors
and the global memory, and thus they limit the number of
processors that can be economically used.

In a distributed memory system each processor has its own
memory, and information is exchanged as messages be-
tween processors. If each processor has most of the data it
will need, the number of messages between processors can
be kept relatively small, and the numbers of processors in
the system can be larger. This is particularly true in inter-
connection systems using processor-to-processor connec-
tions instead of bus connections. In a processor-to-
processor connection scheme, each processor is directly
connected to a subset of the other processors (its
‘‘neighbors’’). Messages between processors not directly
connected must be passed through intermediate processors.
Because a processor can pass messages more quickly to its
neighbors than to processors not directly connected to it,
tasks that need extensive intercommunication should be
placed on neighboring processors. An interconnection
scheme that makes it easier to achieve such placement is the
hypercube.

An n-dimensional hypercube computer, also known as a
binary n-cube computer, is a multiprocessor characterized
by the presence of N = 2" processors interconnected as an

IEEE MICRO

n-dimensional binary cube. Each processor P forms a node,
or vertex, of the cube and has its own CPU and local main
memory. P has direct communication paths to n other pro-
cessors (its neighbors); these paths correspond to the edges
of the cube. There are 27 distinct n-bit binary addresses or
labels that may be assigned to the processors. Thus, each
processor’s address differs from that of each of its n
neighbors in exactly one bit position. Figure 1 illustrates the
hypercube topology for n < 4; note that a zero-dimen-
sional hypercube is a conventional single processor. The
usual method for constructing a hypercube and assigning
binary addresses to its nodes employs the following recur-
sive procedure: Start with a one-dimensional cube (two
nodes) and label one of its nodes with a 0 and the other
with a 1. In general, an n-dimensional cube is constructed
from two (n — 1)-dimensional cubes. The labels in one of
the cubes are prefixed with a 0 (the zero-cube) and those in
the other with a 1 (the one-cube); then each node in the
zero-cube is connected to its counterpart in the one-cube,
i.e., to the node that has the identical address except for
the prefix. Thus, node Py, is connected to P, (subscripts
are the binary addresses). All hypercubes of higher dimen-
sion and their node addresses can be generated from this
procedure. Each dimension of a hypercube has an asso-
ciated axis that is defined as follows: Node P, is con-
nected to P, by an edge that is in the direction of the ith
axis if there are i— 1 bits in y.

It has been known for some time that the hypercube
structure has a number of features that make it useful for
parallel computation. For example, meshes of all dimen-
sions and trees can be embedded in a hypercube so that
neighboring nodes are mapped to neighbors in the hyper-
cube. Figure 2 shows how a 3 X 4 mesh can be embedded
in a 4-cube. The communication structures used in the fast
Fourier transform and bitonic sort algorithm can be
embedded similarly in the hypercube. Since a great many
scientific applications use mesh, tree, FFT, or sorting inter-
connection structures, the hypercube is a good candidate
for a general-purpose parallel architecture. Even for prob-
lems with less regular communication patterns, the hyper-
cube’s maximum internode distance (graph diameter) of n
= log, N means any two nodes can communicate fairly
rapidly. This diameter is larger than the unit diameter of a
complete graph K, but is achieved with nodes having only
a degree or fanout of log, N, as opposed to the N—1
degree of nodes in K n. Other standard architectures with
small degree, such as meshes, trees, or bus systems, have
either a large diameter (N for a two-dimensional mesh) or a
resource that becomes a bottleneck in many applications
because too much communication must pass through it (as
occurs at the apex of a tree, or at a shared bus). Thus,
from general topological arguments we can conclude that
hypercube architectures balance node connectivity, com-
munication diameter, algorithm embeddability, and pro-
gramming ease. This balance makes them suitable for an
unusually broad class of computational problems.

Proposals to build large hypercube computers have been
made for more than 20 years. In 1962, Squire and Palais at

October 1986

O

O-dimensional hypercube 1-dimensional hypercube

O, ()
O, ()
2-dimensional hypercube 3-dimensional hypercube

Figure 1. Hypercubes forn = 0, 1, 2, and 3.

s D o @
(& o W A
o oy) P
W & o &
S o oot o
A N

)

1

/

Figure 2. Embedding a 3 x 4 mesh in a 4-cube.

the University of Michigan carried out a detailed paper
design of a hypercube computer. !> They estimated that a
4096-node (12-dimensional) version of their machine would
require about 20 times as many components as the IBM
Stretch, one of the largest and most complex computers

HYPERCUBE SUPERCOMPUTER

built up to that time. Around 1975 IMS Associates, an ear-
ly manufacturer of personal computers, announced a
256-node commercial hypercube based on the Intel 8080
microprocessor, but they neither published details of its
design nor produced a machine. In 1977, Sullivan and his
colleagues at Columbia University presented a proposal for
a large hypercube called the Columbia Homogeneous
Parallel Processor, or CHOPP, which would have con-
tained up to a million processors. 34 In the same year,
Pease published a study of the “‘indirect’’ binary n-cube ar-
chitecture, for which he suggested a multistage interconnec-
tion network of the omega type for implementing the
hypercube topology. > Several other interesting architectures
closely related to the hypercube have been proposed—for
example, the cube-connected-cycles structure. 6

It is clear that the early hypercube designs were imprac-
tical because of the large number of logic and memory
elements they would have required, given the then-available
circuit technologies. The situation began to change rapidly
in the early 1980’s as advances in VLSI technology allowed
powerful 16/32-bit microprocessors to be implemented on a
single IC chip, and as RAM densities moved into the
100,000- to 1,000,000-bit-per-chip range. The first working
hypercube computer—the 64-node Cosmic Cube at
Caltech7—was demonstrated in 1983. For the hypercube
node processor, it uses a single-board microcomputer con-
taining an Intel 8086 microprocessor and an Intel 8087
floating-point coprocessor. Since then, Caltech researchers
have built several similar hypercubes and successfully applied
them to numerous scientific applications, often obtaining
impressive performance improvements over conventional
machines of comparable cost. 8

Influenced primarily by the Caltech work, several com-
panies have developed commercial hypercubes since 1983.
In July 1985, Intel delivered the first production hypercube,
the Intel Personal Supercomputer, or iPSC, which has a
16-bit 80286/287 CPU as its node processor and up to 128
nodes. If we assume a peak performance of 0.1 MFLOPS
per node, the 128-node iPSC has a potential throughput of
about 12 MFLOPS, far below that of a traditional vector
supercomputer such as the Cray-1, which has a peak
throughput of 160 MFLOPS. Other commercial hypercubes
introduced in 1985 include Ametek’s System/14 and
NCUBE Corporation’s NCUBE/ten. The System/14 hyper-
cube can have up to 256 nodes, each employing an
80286/287-based CPU similar to that of the iPSC and an
80186 processor for communication management. The
NCUBE/ten can accommodate up to 1024 nodes, each
based on a VAX-like 32-bit custom processor with a peak
performance of 0.5 MFLOPS. Thus, a fully configured
NCUBE system has a potential throughput of around 500
MFLOPS. This high performance level is supported by ex-
tremely fast communication rates (both input/output and
node-to-node), making the NCUBE/ten a true supercom-
puter. NCUBE machines have been installed at several beta-
test sites, including the University of Michigan, since early
1985, and have been in general production since December
1985. Other recently introduced hypercube-style machines

with supercomputing potential include the Caltech/JPL
Mark III, 9 the Connection Machine, !° the Intel iPSC-VX,
and the Floating Point Systems T Series. The last two
machines include a pipelined vector processor at each node.
Much faster successors to the current commercial hyper-
cubes can be expected to appear over the next few years.
Because of the effort being devoted to the development of
hardware and software for these machines, and because of
their relatively low cost, hypercube supercomputers seem
likely to provide an increasingly attractive alternative

to conventional pipelined supercomputers for many
applications.

Here, we discuss the architectural and technological
issues influencing the design of microprocessor-based super-
computing hypercubes, employing the NCUBE/ten as an
example. We pay particular attention to the influence of
component packaging, reliability, communication speed,
and the operating system environment on the system
implementation.

General design issues

To provide supercomputer-level performance, the
designer must build a machine with extremely high integer
and floating-point execution rates as well as extremely high
1/0 throughput. He must also provide very large primary
(RAM) and secondary (disk) memory spaces. For the prin-
cipal supercomputer user base of scientific programmers, he
must develop a programming environment that includes
Fortran and a powerful operating system such as Unix. To
achieve low cost and high reliability, he must minimize the
component count at all levels, particularly the number of
chips and boards. He should also provide some degree of
fault tolerance. Since a very large amount of RAM storage
is needed, he should consider employing an error-correcting
code, or ECC, to detect and correct memory faults, despite
the fact that it increases the chip count. To increase
reliability and decrease operating cost, the designer should
use an air-cooled configuration suitable for a standard of-
fice environment. (An examination of existing computer
systems shows that air cooling limits machine complexity to
50,000 chips.) The designer should use off-the-shelf parts,
since they are cheaper and usually more reliable than
custom chips. If he does need custom parts, and if his com-
pany relies on outside suppliers, he should use conservative
design rules that will be accepted by several silicon found-
ries. Because large error accumulation can occur in large-
scale numerical calculations, he should make individual
calculations as accurate as possible. He can do so by adher-
ing to the IEEE 754 floating-point standard and by pro-
viding double-precision, floating-point operations.

A key decision in the design of a parallel computer is the
choice of interconnection network. Multistage interconnec-
tion networks simplify the programming process by pro-
viding a global shared memory, but they cannot be built
with current technology without significantly delaying the
information being passed over them. Since the speed of in-
formation passing over the network strongly affects perfor-

IEEE MICRO

mance, direct connection networks, with local memory at
every node, provide the most desirable means of achieving
supercomputer performance. Many direct interconnection
schemes have been analyzed and implemented but, as noted
previously, the hypercube structure has a number of in-
herent advantages. The ease with which efficient applica-
tion programs were developed for the hypercubes at
Caltech has also shown the hypercube to be superior to
alternative architectures such as meshes or trees. The
neighbor-to-neighbor links of the hypercube provide almost
the same communication capabilities as a complete graph
while using nodes with only a logarithmic degree. The
achievable degree is constrained by a variety of packaging
considerations, but with current technology one can build
hypercubes with thousands of nodes. In contrast, a com-
plete graph connection of a few tens of nodes may not be
possible.

There are additional features of the hypercube that are
useful in designing a supercomputer, but that have not been
exploited prior to the development of the NCUBE/ten. For
example, the hypercube is homogeneous in that all nodes
look the same, so an I/0 channel can be attached to each
node. This provides the potential of extremely high system
170 rates. Also, since there are numerous ways to divide a
hypercube into subcubes, the designer, by giving each user a
dedicated subcube, should find it easy to support mul-
tiprocessing. These dedicated subcubes can be allocated so
that all processor-to-processor and I/0 communications
occur within them and do not use processors or communi-
cations lines in other subcubes. Further, the designer can
allow the user to define the size of the subcube in the pro-
grams he writes; in this way, the user can develop programs
in small subcubes and then do production runs in larger
ones. This partitionability makes it easier for the system to
tolerate faults, since the operating system can allocate
subcubes that avoid faulty processors or faulty communica-
tion lines.

As we noted previously, technological developments have
made it possible to build a reliable hypercube computer
with a large number of processors. A fine-grained hyper-
cube architecture, i.e., one with a large number (tens of
thousands) of very simple processors, has a high ratio of
communication to computation. Thus, the suitability of
such an architecture—the Connection Machine is an ex-
ample—to general scientific computation is uncertain. A
very coarse-grained architecture with, say, tens of large and
fast processors requires that the nodes achieve extremely
high performance. For example, to achieve 10° instructions
per second with 10 processors, such an architecture requires
those processors to be capable of 108 instructions per sec-
ond. The Caltech/JPL Mark III is an example of a coarse-
grained hypercube. The designers of the NCUBE machine
felt that achieving 10° instructions per second was best
done with a medium-grained approach—1000 processors
running at 109 instructions per second.

The Caltech machines and their commercial successors
are MIMD (multiple-instruction- and multiple-data-stream)
machines, meaning that each processor has its own pro-

October 1986

gram as well as its own data. These machines are
customarily used in an SCMD (single-code, multiple-data)
fashion, in which all processors have a copy of a single pro-
gram, though they may be executing different branches at a
given time.

Experience with the Caltech machines has demonstrated
that a medium-grained MIMD hypercube architecture can
attain high efficiency on a variety of scientific problems
without demanding an intolerable amount of revision of
serial code and algorithms from its users. 8 This is in con-
trast to the much greater amount of program and algorithm
redesign required of users of fine-grained SIMD (single-
instruction- and multiple-data-stream) machines such as the
MPP 1! and Connection Machine. In SIMD machines, a
controller broadcasts instructions that all processors receive
and perform on their own data. The node processors in
MIMD machines are more complex than those in SIMD
machines since they must fetch instructions rather than just
receive broadcasted ones. Further, distributed-memory
MIMD machines need additional memory to store the pro-
gram at each node. In general, one can build more SIMD
processors than MIMD processors on a given amount of
silicon and have a greater potential system throughput;
however, the gain in programming simplicity provided by
MIMD machines more than compensates for this, except
for a narrow range of applications in which almost any
penalty can be tolerated if it yields the required speed. Fur-
thermore, MIMD machines can accommodate multiple in-
dependent users, while SIMD machines cannot.

Since there may be hundreds or thousands of nodes in a
hypercube supercomputer, their chip count is the most
significant component of the total system chip count. Using
the densest memory chips available is the most effective
way the designer can decrease the total number of chips.
The NCUBE/ten, for example, uses 256K DRAM chips to
implement the local memories of the hypercube nodes. The
next most effective way the designer can reduce the chip
count is by putting all node functions onto a single chip.
This implies that the processor chip must perform all com-
munication, memory management, and floating-point
operations as well as other data processing functions. At
present there is no widespread market pressure to produce
standard processor chips of this type; consequently, they
are not available off the shelf. In 1983, when design of the
NCUBE/ten started, the only way to achieve supercom-
puter performance with a single-chip node processor was to
undertake the risky step of custom designing such a chip.
INMOS made a similar decision with the Transputer pro-
cessor chip, with the important difference that the initial
version of the Transputer did not provide floating-point
operations and has four rather than eleven 1/0 channels. 12
The performance and functionality demands on the
NCUBE processor chip were quite severe, and numerous
trade-offs were made to enable it to be built.

System architecture

The overall goal of the NCUBE’s designers was to use
massive parallelism to build a range of inexpensive and

HYPERCUBE SUPERCOMPUTER

Figure 3. Six-dimensional hypercube with 64 nodes
and 8M bytes of memory fits on one 16 x 22-inch
board.

reliable software-compatible machines achieving supercom-
puter performance at the high end of that range. The
NCUBE/ten is the largest model in the series; it is a
10-dimensional hypercube containing 1024 custom-designed
32-bit processors, each with a 128K-byte local memory. It
uses up to eight front-end host processors to manage I/0
operations, with those processors under control of a mul-
tiuser Unix-based operating system. It achieves a level of
system integration high enough to allow a six-dimensional
hypercube with 64 nodes and 8M bytes of memory to be
placed on a single 16 X 22-inch board (Figure 3). Its
backplane connections are rather formidable—640 connec-
tions just for communication channels—since each pro-
cessor node has off-board bidirectional channels to four
more processors of the hypercube plus one bidirectional
channel to an 170 board. A maximum-sized NCUBE/ten
system is composed of 16 processor boards and eight I/0
boards and is housed in a small air-cooled enclosure.

The NCUBE/ten’s I/0 boards provide the connections
between the hypercube and the external world. At least one
of the I/0 boards must be a host board, and there can be
as many as eight. The host board uses an Intel 80286 to run
the operating system and has 4M bytes of RAM that is used
as a shared memory by the various processors on it. It sup-
ports a variety of peripherals, including eight ASCII-
standard terminals, four SMD disk drives (which can be as
large as 500M bytes), and three Intel iISBX connectors that
can accept daughterboards for functions such as graphics
control or networking. The host board incorporates a real-
time clock and temperature sensors for automatic shutdown
on overheating. Besides the host board, other I/0 boards
available with the NCUBE/ten include a graphics board
with a 2K X 1K X 8-bit frame buffer, an intersystem
board that connects two NCUBE systems, and an open sys-
tem board that has about 75 percent of its space left open
for custom design.

A distinguishing feature of the I/0O boards is that each
has 128 bidirectional channels directly connected to a sub-
cube of the hypercube (Figure 4). This permits extremely
high I/0 data transfer rates into the hypercube. To ac-
complish this, each I/0 board contains 16 NCUBE pro-
cessor chips, each of which serves as an I/0 processor and
is connected to eight nodes in the main hypercube. Like the
hypercube node processors, an I/O processor has a
128K-byte RAM that occupies a fixed slot in the 80286
host’s 4M-byte memory space. An I/0 processor performs
an input operation from the outside world—a disk read,
for example—by first transferring the input data to the
host’s 4M-byte memory. It then transfers the data through
its DMA channel directly to the target hypercube nodes. It
handles output operations in a similar fashion. In a max-
imally configured NCUBE/ten system with 16 processor
and eight I/0 boards, the hypercube nodes do not have to
redistribute 1/0 data to other nodes. This is not always the
case with smaller NCUBE systems; it depends on the num-
ber and configuration of the I/0 and processor boards.

All the I/0 and processor boards of a fully configured
system, along with their fans and power supplies, fit into a
single enclosure that is less than three feet on a side. A
maximally configured system dissipates about 8 kW and
can be placed in a normal air-conditioned office or lab. An
NCUBE/ten peripheral enclosure is about 3 X 2 X 3 feet
and contains a 65M-byte cartridge tape drive and up to
four disk drives. A minimal stand-alone NCUBE system
consists of one host board and one processor board con-
taining a six-dimensional hypercube, and can handle up to
eight user terminals. By adding a second processor board,
one obtains a seven-dimensional hypercube. Since the
operating system can allocate subcubes of arbitrary size,
one can have a number of processor boards that do not
form a complete hypercube. For example, three boards
provide a seven-dimensional and a six-dimensional hyper-
cube, which could also be allocated as three six-dimensional
hypercubes or as numerous smaller hypercubes. A max-
imally configured system (Figure 4) contains a 10-dimen-
sional hypercube. The 1024 processors of such a system
have a potential instruction execution rate of about two
billion instructions per second, or about 500 MFLOPS,
with a 10-MHz clock. The total amount of memory in the
nodes is 128M bytes. If all of the I/0 boards are host
boards, it is possible to support 64 terminals and provide as
many as 16 billion bytes of storage. A host board can pro-
vide input or output at up to 12M bytes per second, giving
a system input or output rate of about 90M bytes per sec-
ond. In the case in which a single data set is to be broad-
cast to all nodes, input rates can exceed 90M bytes per sec-
ond per host board—that is, they can approach 720M bytes
per second per system.

The node processor

The NCUBE node processor provides, on a single VLSI
chip, the functions of a 32-bit supermini-class CPU, in-

IEEE MICRO

16 processor boards (1024-node hypercube)

Internal address bus

Internal data bus (32-bit)

Connections from Eight I/O boards
I/O board including host board(s)
no. 0 to a 128-node
subcube
Input/output devices Figure 4. Complete
NCUBE/ten system.
11 serial
1/0 channels

Floating- Address ki {itagor Serial
exgglljr'::on u?rl'lts?rr.‘d e decoqting execution all/r%pSI\rllti
unit cache g unit control
| i
y A
Memory interface unit
Clock Reset Error Memory Address Data and

control bus ECC bus

Figure 5. Organization
of the NCUBE

cluding a full floating-point instruction set and all the logic
needed for memory management and interprocessor com-
munication. Figure 5 shows the major functional blocks of
the chip, and Figure 6 is a photograph of the chip in its
package. NCUBE began design of the node processor chip
in 1983, constraining itself to 2-um NMOS design rules that

October 1986

processor chip.

were acceptable to several silicon foundries. The chip con-
tains about 160,000 transistors and is housed in a pin-grid-
array package having 68 pins. Including six 256K-bit
DRAM chips (each organized as 64K X 4 bits), an entire
NCUBE/ten node requires only seven chips. This unusual
compactness has prompted the introduction of a four-node

11

HYPERCUBE SUPERCOMPUTER

12

(two-cube) IBM AT board. Four such boards can be com-
bined to provide a 16-node (four-dimensional) hypercube.

The NCUBE/ten has a conventional two-address instruc-
tion set with addressing modes similar to those found in the
VAX instruction set. ! There are three main classes of in-
formation: addresses (unsigned integers), integers, and
floating-point numbers (reals). Addresses are 32 bits long,
but the current node implementation only supports a 17-bit
physical address space. Integers can be 8, 16, or 32 bits
long. Floating-point numbers can contain either 32 or 64
bits and conform to the IEEE 754 floating-point standard.
There are 16 general-purpose registers of 32 bits each. A
variety of addressing modes are available, including literal
(immediate), register direct, autodecrement/increment,
autostride, offset, direct, indirect, and push/pop. The in-
struction set contains a full complement of logical, shift,
jump, and arithmetic operations (including square root).
Several instructions have been included to facilitate inter-
node communications. For example, the ‘‘find first one”’
instruction, or FFO, which finds the bit position of the first
1 in a word by means of a right-to-left scan, can be used in
internode routing. Other examples include the ‘‘load
pointer’’ (LPTR) and ‘‘load counter’’ (LCNT) instructions,
which are used for transmitting and receiving data. In a
system with a 10-MHz clock, nonarithmetic instructions
can be executed at about 2 MIPS, single-precision floating-
point operations at 0.5 MFLOPS, and double-precision
floating-point operations at 0.3 MFLOPS. (These perfor-
mance figures assume that register-to-register operations
predominate.) A 32-byte instruction cache allows loops of
up to 16 bytes to be executed directly from the cache. The
node processor has a vectored interrupt facility, and it
generates various interrupts to indicate program exceptions
such as numerical overflow or address faults, software
debugging commands such as breakpoint and trace, I/O
signals such as input ready, and hardware errors such as
correctable or uncorrectable memory errors.

Pin and silicon space limitations forced a number of
design compromises in the selection of the width of various
system data paths. The node memory supplies data in
16-bit halfwords and adds an extra byte containing ECC
check bits. The processor performs single-error correction
and double-error detection (SECDED) on all memory
words, generating an interrupt in the case of an error. This
use of SECDED is an example of a situation in which the
pin limitations affect performance, for it requires two
memory fetches to obtain a full 32-bit word. It also in-
creases the number of memory chips required, since the
SECDED code used for 32-bit data could be supplied by
five RAM chips organized as 32K x 8 bits, if such chips
were available.

Figure 6. The NCUBE processor chip in its pin-
grid-array package.

The node processor communicates with other nodes by
means of asynchronous DMA operations over 22 bit-serial
170 lines. These I/0 lines are paired into 11 bidirectional
channels which permit the formation of a 10-dimensional
hypercube and allow one connection to an I/0O board. Each
node-to-node channel operates at 10 MHz with parity
check, yielding a data transfer rate of about 1M bytes per
second per channel in each direction. A channel has two
32-bit write-only registers associated with it: an address
register for the message buffer location in the node RAM,
which is loaded by LPTR; and a count register indicating
the number of bytes left to send or receive, which is loaded
by LCNT. There is also a ready flag and an interrupt enable
flag for each channel. Once a processor has initiated a send
or receive operation by executing an LCNT instruction, it
can continue with other operations while the DMA channel
completes the internode communication operation. Inter-
rupts can be used to signal when a channel is ready for a
new operation. Alternatively, the interrupts can be disabled
and the ready flag polled to check for channel readiness.
An interrupt is also generated if there is a channel overrun,
which can occur on an input operation only if more than
nine channels are transmitting data into the node. To
reduce DMA activity, a broadcasting feature is supported
that transmits the same data word along an arbitrary set of
output channels in a single DMA operation.

Table 1 summarizes the results of some performance ex-
periments, designed by Donald Winsor at the University of
Michigan, that compared the NCUBE node processor to
two other CPUs with floating-point hardware: the Intel
80286/80287 (the NCUBE host processor served for this)
and the Digital Equipment Corporation’s VAX-11/780 with
a floating-point accelerator. The measurements were made
with the NCUBE node and host processors running at 8
MHez. Extrapolated figures for the 10-MHz version of the
NCUBE node processor now nearing production are also
given; they assume no wait states. Two widely used syn-

IEEE MICRO

thetic benchmark programs were employed in this study:
the Dhrystone and the Whetstone codes. 1415 The
Dhrystone benchmark is intended to represent typical sys-
tem programming applications and contains no floating-
point or vectorizable code. The original Dhrystone Ada
code !5 was translated into a Fortran 77 version with 32-bit
integer arithmetic that attempted to preserve as much of the
original program structure as possible. This entailed
simulating Ada records with Fortran arrays, and simulating
access variables for those records with the array index
variables. This ‘‘Fortran Dhrystone’’ produced a substan-
tial performance degradation compared to Dhrystone
benchmarks in Ada, Pascal, and C, all of which have
pointer or access variables. For example, the C Dhrystone
ran two to three times faster on a VAX-11/780 than the
Fortran Dhrystone. However, in the study presented here
the degradation appears to apply uniformly to all pro-
cessors considered, since all were given the same Fortran
source code and used very similar Fortran compilers. The
Whetstone benchmark, which aims to represent scientific
programs with many floating-point operations, was used in
a double-precision Fortran 77 version that closely resembled
the original Algol code. 14 The Dhrystone results in Table 1
are reported in ‘‘Dhrystones per second,’’ each of which
corresponds roughly to one hundred Fortran statements exe-
cuted per second. The Whetstone figures represent the num-
ber of hypothetical Whetstone instructions executed per sec-
ond. We can conclude from the data in Table 1 that the
NCUBE node processor is quite fast and fully meets its
performance targets.

System software

The emergence of several commercial hypercube com-
puters has demonstrated the feasibility of constructing low-
cost massively parallel machines. The focus of research can
now be expected to shift to the issue of how these machines
can be programmed effectively. Indeed, the recent report
on the Supercomputing Research Center concludes that the
absence of appropriate parallel programming languages and

QOctober 1986

software tools is the single biggest impediment to the suc-
cessful use of parallel machines. !¢ The operating system is
also a major design issue, since memory management and
interprocessor communication are critical to the functioning
of the programming languages. Three software issues need
to be considered. The first is the operating system that is
used for developing application programs for the hyper-
cube. The second is the operating system that provides run-
time support for application programs running on the
hypercube nodes. The third is the set of application lan-
guages to be used.

An operating system for application program devel-
opment that provides the kind of environment associated
with a “‘programmer’s workbench’’ is Unix. Unfortunately,
there are two versions of Unix, System V and bsd 4.3, and
many lesser-known variants. This leaves the system designer
with a dilemma: he can work in a proven, widely known
development environment, but he can’t exploit the benefits
of standardization, since no Unix standard has emerged.
The solution chosen by NCUBE was to develop a Unix-like
operating system, Axis,!3 that embodies the features com-
mon to the major Unix dialects. Changes or additions can
be readily made to Axis when a true Unix standard is
agreed upon. There are two features of Axis that greatly
facilitate program development for a very large hypercube.
The first is its ability to share files, and the second is the
way it manages the main cube array.

Axis runs on the 80286 host processor that acts as the
CPU for each I/0 board. (Recall that up to eight I/O
subsystems can be accommodated in a 1024-processor
NCUBE/ten.) It provides the large number of utilities for
editing, debugging, and file management that one has come
to expect in a Unix-like operating system. Axis’ file system
is its most prominent feature, and almost all system
resources are treated as files. This is consistent with the
Unix philosophy. Massively parallel systems require high
1/0 bandwidth if they are to be useful for applications that
are not simply computation-intensive. The problem of
managing high I/0 was not foreseen in the earlier genera-
tion of massively parallel machines and has proven to be a
great limitation. !! The ability to incorporate up to eight

13

HYPERCUBE SUPERCOMPUTER

14

1/0 subsystems in the NCUBE/ten is intended to avoid this
problem. However, it introduces the potential for eight
separate file systems. To avoid this, Axis provides the capa-
bility to organize the eight file systems as one distributed
file system; Axis further allows complete systems to be net-
worked through iSBX connections so as to provide a single
multisystem file system.

Axis manages a hypercube of node processors as a
device, which is simply one type of file. A device can be
opened, closed, written to, and read from as if it were a
normal file. Axis permits users to allocate subcubes that
have the appropriate size for their application. Thus, one
or two users with large problems or several users with small
problems can share the hypercube. This flexibility greatly
increases the system’s efficiency and gives a hypercube
supercomputer a significant advantage over conventional
supercomputers. Partitioning the main hypercube into sub-
cubes is simplified by the fact that each subcube is pro-
tected from access by any other subcube.

Vertex, the operating system for the NCUBE/ten node
processors, is a small nucleus (less than 4K bytes) resident
in each of those nodes. Its primary function is to provide
communication between the nodes. It achieves this
through, among other facilities, send and receive functions
that transfer messages between any two nodes in the hyper-
cube, and through a whoami function that allows a pro-
gram to determine the logical node on which it is executing
and the 1/0 processor to which it is connected. The inter-
node send and receive functions are implemented as
subroutine calls nwrite and nread, respectively; the whoami
function is implemented as a subroutine call whoami. The
messages transferred by nwrite and nread are arrays of
bytes having four attributes: source, destination, length,
and type. The first two attributes are numbers in the range
0 to 1023 and indicate the logical nodes being used for the
source and destination. The length attribute is the number
of bytes in the message; messages as long as 64K bytes are
supported. The type attribute can be used to distinguish
messages and so permit their selective reception at a
destination node.

The subroutine nwrite passes the following parameters:
length, message, dest, type, status, and error. They are
passed in the general-purpose registers. Length is the length
of the outgoing message in bytes; message is the name of
the buffer from which the message is to be taken; dest is
the logical number of the node in the hypercube that is to
receive the message; type is the type number of the
message; status indicates when the message leaves the buf-
fer, i.e., when the buffer is reusable; and error is an error
code. Message transmission breaks the message into packets
of 512 bytes (or some other user-defined size) and sends
them to the destination node using the following routing al-
gorithm. Assume that in an n-dimensional cube, the logical
number of the source node is 5,,5,,.; . . . 525, and the

logical number of the destination is d,d,,.; . . . d,d;. The
bit-wise exclusive-OR x,x,. . . . xpx; of the two numbers
is formed as follows: x; = s5; @ d;fori = 1,..., n. The

values of the x;’s are used to control the routing process.

Those values of i for which x; = 1 indicate the dimensions
that must be traversed to transfer a message from source to
destination. The FFO instruction mentioned previously can
be used to determine the values of i. Since it works by scan-
ning right to left, it will route messages along the lower
dimensions first. The routing algorithm was chosen for its
simplicity; however, as noted by Valiant, !7 it creates the
potential for congestion in some situations. He defines an
alternative routing algorithm that avoids congestion by
routing each message to a randomly chosen node; from
there the message is forwarded to its originally intended
destination. The randomization assures that message con-
gestion at nodes will be dispersed. Unfortunately, Valiant’s
router does not perform as well as the straightforward algo-
rithm in many routine parallel processing tasks, and its
more complex implementation requirements discouraged
use of it in the initial NCUBE/ten design. Future insights
into the behavior of parallel algorithms may change this,
however.

In addition to determining the routing path, Vertex must
perform the store-and-forward function at each node along
the path. At the destination node, it places the message in a
queue that is allocated from a heap of 20K bytes. The
receive function, nread, passes the following parameters:
length, message, source, type, status, and error. It looks for
the first message from source of type type in the input
queue, and copies it to buffer message. Don’t-care condi-
tions are indicated for type or source by setting these pa-
rameters to — 1. This allows the next message from a par-
ticular source to be received regardless of type, the next
message of a particular type to be received from any
source, and the next message of any type from any source
to be received. Messages with negative types other than —1
are system messages for Vertex and are used for process
control at a node, e.g., for node program debugging. In
summary, the calls nwrite and nread provide a fast inter-
node message communication mechanism. The main con-
tributors to this speed are the machine instructions pro-
vided explicitly for internode communication and the fact
that messages enter nodes through DMA channels.

The current NCUBE/ten application languages, apart
from the node and host assembly languages, are Fortran 77
and C. Fortran 77 and C were chosen because the com-
puter is targeted for a user community interested primarily in
scientific problems; this group has traditionally programmed
in Fortran. Compilers for other languages, including Occam,
are presently being developed. The programming model
adopted for the initial set of languages, Fortran and C, is a
simple extension of the conventional uniprocessor model.
Each node is treated as a separate processor. No symbols
are shared between nodes—the naming scope is contained
within a node. Values of variables are shared by means of
calls to the Vertex subroutines nwrite and nread.

We noted earlier that the hypercube array can be shared
by several users if it is partitioned into suitably sized sub-
cubes. When a d-dimensional subcube is allocated to a user,
its nodes are given a logical number from 0 to 29 —1.
Vertex records the correspondence between the logical

IEEE MICRO

numbers of the nodes and their physical address in the
main hypercube array. Along with the whoami function,
logical numbering makes it possible to write programs that
run on subcubes of arbitrary location and size.

The whoami function returns four identification parame-
ters: node, process, host, and dim, where node is the logical
node number of the calling process, process is the process
number of the calling process, host is the id number for the
host communication, and dim is the allocated subcube
dimension.

We conclude this section with a sample Fortran program
for the NCUBE/ten that calculates the sum of squares of
the elements of a vector V. The Fortran uses the extensions
NWRITE, NREAD, and WHOAMI, which are based on
the Vertex functions discussed above. Figure 7 shows the
program. We assume that a copy of this program has been
loaded into each of the nodes in the subcube allocated for
the job. The idea behind the program is to distribute equal
numbers of the elements of V among the nodes, form local
partial sums of squares, and then accumulate these partial
sums along successive dimensions of the hypercube. The
internode accumulation collapses the active part of the
computation into smaller and smaller cubes. The example
computes

K
s= Y vinz,

i=1

where K = N - 2M,

Calling WHOAMI on line 008 of the program establishes
the caller’s logical node number (PN), the node on the host
board for I/0 communications (HOST), and the order of
the allocated subcube (M). Line 012 reads in an N-element
slice of V from the host. The parameters of interest in this
example have the following meaning: SR is a completion
code, V is the address of the message buffer for the vector,
N is the length of the vector in single-precision words of
four bytes each, and HOST is the node on the host for
cube communications. The loop on lines 017 to 018 (loop
1) forms the sum of squares of the slice, putting the result
in S. This is done in parallel in each node. For this phase of
the computation, all 2™ nodes are doing useful work and
the utilization of the allocated cube approaches 100 per-
cent. The loop from lines 020 to 042 (loop 2) accumulates
the partial sums. Starting with 2 partial sums in each of
the nodes, it forms 2¥~! partial sums by adding pairs of
partial results in nodes that are immediate neighbors on the
Mth axis. The new partial sums are now confined to an
(M — 1)-dimensional hypercube—the original cube is col-
lapsed to half its initial size. This process of collapsing the
cube by half and accumulating the partial sums is repeated
until the final sum is accumulated in logical node 0. The in-
ternode accumulation procedure is simulating an addition
tree. Figure 8 illustrates this for a 3-cube. This phase of the
computation is less efficient than the first phase. For an
M-dimensional cube, the total processor utilization is
given by

October 1986

1 _ 100
+ 274) =~ 7 %.
Loop 2 counts down through the axes. Line 024 selects the
nodes (PNs) in the part of the hypercube that remains ac-
tive after the collapsing along the (I + 1)th axis. The
neighboring nodes (NPNs) of the PNs are those that differ
in the Ith position. Their numbers are calculated in line 030
by an exclusive-OR between the PN and 20-1_ The
operator .NEQV. (not equivalent) performs this—it is an
extension to Fortran 77. Line 031 partitions the active
nodes into two sets: those that are to receive partial sums
(line 038) and those that send them (line 036). Those nodes
that send will not be active in the next iteration of loop 2.
Line 047 transmits the result from node 0 to the host.

_ 10041 1
U——M(2+4+...

001 * NODE PROGRAM TO CALCULATE: SUM (V(I) * *2)
002

003 *PN caller’s logical processor number in subcube
004 *PROC process number in node

005 *HOST node on Host for cube communication

006 *M dimension of allocated cube

007

008 CALL WHOAMI (PN,PROC,HOST,M)

009

010 *receive vector V of length N (4N bytes) from Host

011

012 SR = NREAD (V,N*4 HOST,TYPEH,FLAGI)
013

014 *compute sum of subset of V that is in this node;

015

016 S=0

017 DO1 I=1,N

018 1 S =S+ V()* %2

019

020 DO2 I=M,l,-1

021

022 *execute once for each axis of the hypercube;

023

024 IF (PN .LT. 2% *I) THEN

025

026 *if this node is in the active part of the collapsed cube,
027 *do the computation below, otherwise the node is done
028 * NPN is neighbor of PN on the I-th axis

029

030 NPN = PN .NEQV. (2% x(I—1))
031 IF(NPN .LT. PN)THEN

032

033 *if neighbor’s number is less, send the current accumulation;

034 *otherwise, receive it and update its value

035

036 SW = NWRITE (S,4,NPN,TYPEN,FLAG2)
037 ELSE

038 SR = NREAD (A,4,NPN,TYPEN,FLAG3)
039 S=S+A

040 ENDIF

041 ENDIF

042 2 CONTINUE

044 *send final result back to host

045

046 IF (PN .EQ. O) THEN

047 SW = NWRITE (S,4,HOST, TYPEH,FLAG4)
048 ENDIF

Figure 7. Fortran sum-of-squares program for the NCUBE/ten.

15

HYPERCUBE SUPERCOMPUTER

Axes

O-cube

Tuls 1

1-cube

1]1'! 2

2-cube

1uls 3

3-cube

Figure 8. Addition tree for partial sums.

16

ypercube architectures are well suited to im-
H plementing microprocessor-based massively paral-

lel supercomputers, given the constraints imposed
by current technology. They offer an unusually good com-
bination of high node connectivity, software flexibility, and
system reliability. The NCUBE/ten is an example of a new
generation of low-cost and compact hypercube machines
capable of supercomputer performance. Unlike earlier ma-
chines, it exploits the inherent homogeneity of the hyper-
cube to provide a Unix-like multiuser programming en-
vironment, along with support for extremely high 1/0 data
transmission rates. 5

Acknowledgments

The portion of the work reported here that was per-
formed at the University of Michigan was supported in part
by the Office of Naval Research under contract N00014 85
K 0531, by the National Science Foundation under contract
DCR-8507851, and by the Army Research Office under
contract DAAG29-84-K-0070.

References

1. J. S. Squire and S. M. Palais, ‘‘Physical and Logical
Design of a Highly Parallel Computer,”’ tech. note,
Dept. of Electrical Engineering, University of
Michigan, Oct. 1962.

2. J. S. Squire and S. M. Palais, ‘“‘Programming and
Design Considerations for a Highly Parallel
Computer,”” AFIPS Conf. Proc., Vol. 23, 1963 SJICC,
pp. 395-400.

3. H. Sullivan and T. R. Bashkow, ‘‘A Large Scale,
Homogeneous, Fully Distributed Parallel Machine, I,”’

Proc. 4th Ann. Symp. on Computer Architecture,
1977, pp. 105-117.

4. H. Sullivan, T. R. Bashkow, and D. Klappholz, “A
Large Scale, Homogeneous, Fully Distributed Parallel

10.

11.

12.

13.

14.

15.

16.

17.

Machine, I1,”” Proc. 4th Ann. Symp. on Computer
Architecture, 1977, pp. 118-124.

M. C. Pease, ‘‘The Indirect Binary n-cube
Microprocessor Array,”” IEEE Trans. Computers, Vol.
C-26, No. 5, May 1977, pp. 458-473.

F. P. Preparata and J. Vuillemin, ‘“The Cube-
connected Cycles: A Versatile Network for Parallel
Computation,”” Comm. ACM, Vol. 24, No. 5, May
1981, pp. 300-309.

C. L. Seitz, ‘“The Cosmic Cube,”’” Comm. ACM, Vol.
28, No. 1, Jan. 1985, pp. 22-33.

G. Fox, ‘“The Performance of the Caltech Hypercube
in Scientific Calculations,’”’ Report CALT-68-1298,
California Institute of Technology, Pasadena, Calif.,
Apr. 1985.

J. C. Peterson et al., *“The Mark III Hypercube-
Ensemble Concurrent Processor,”” Proc. Int’l Conf. on
Parallel Processing, Aug. 1985, pp. 71-73.

W. D. Hillis, The Connection Machine, MIT Press,
Cambridge, Mass., 1985.

J. P. Potter, ed., The Massively Parallel Processor,
MIT Press, Cambridge, Mass., 1985.

Transputer Reference Manual, INMOS Corp.,
Colorado Springs, Colo., 1985.

NCUBE Handbook, Version 1.0, NCUBE Corp.,
Beaverton, Ore., Apr. 1986.

H. J. Curnow and B. A. Weichman, ‘‘A Synthetic
Benchmark,’” Computer J., Vol. 19, Feb. 1976, pp.
43-49.

R. P. Weicker, ‘‘Dhrystone: A Synthetic Systems Pro-
gramming Benchmark,”” Comm. ACM, Vol. 27, No.
10, Oct. 1984, pp. 1013-1030.

Report of the Summer Workshop on Parallel
Algorithms and Architectures for the Supercomputing
Research Center, Aug. 1985.

L. G. Valiant, ‘‘A Scheme for Parallel Communica-
tion,”” SIAM J. Computing, Vol. 11, May 1982, pp.
350-361.

IEEE MICRO

John P. Hayes has been a professor in the Electrical
Engineering and Computer Science Department of the
University of Michigan since 1982. He teaches and conducts
research in computer architecture, VLSI design, digital sys-
tem testing, and switching theory, and is director of the
department’s Advanced Computer Architecture Labora-
tory. From 1972 to 1982 he served on the faculty of the
University of Southern California. Hayes received the BE
degree from the National University of Ireland in 1965, and
the MS and PhD degrees from the University of Illinois in
1967 and 1970, all in electrical engineering. He is a fellow
of the IEEE and a member of the ACM and Sigma Xi.

Trevor Mudge is an associate professor in the Department
of Electrical Engineering and Computer Science of the
University of Michigan. His research interests are computer
architecture, programming languages, and computer vision.
He received a BSc in cybernetics from the University of
Reading, England, in 1969, and an MS and PhD in com-
puter science from the University of Illinois in 1973 and
1977. Mudge is a senior member of the IEEE and a
member of the ACM, the Institution of Electrical
Engineers, and the British Computer Society.

Quentin F. Stout is an associate professor in the Depart-
ment of Electrical Engineering and Computer Science of
the University of Michigan. His research is in parallel algo-
rithms, programming environments for parallel computers,
and image processing. He learned programming in the
public schools of Euclid, Ohio, and received a BA from
Centre College, Danville, Kentucky, and a PhD from In-
diana University. Stout is a member of the IEEE, the
ACM, the American Mathematical Society, and the
Mathematical Association of America, and serves on the
editorial board of the Journal of Parallel and Distributed
Computing.

Qctober 1986

Stephen Colley has been president of NCUBE Corporation
since its founding in 1983. He spent five years with Intel
Corporation working on microprocessor architecture. He
also worked as an independent consultant for several years.
Colley received a BS in electrical engineering from the
California Institute of Technology in 1975.

John Palmer is chairman of the board of NCUBE Cor-
poration, which he helped found in 1983. Prior to that he
spent seven years with Intel Corporation, where he was the
architect of the 8087 numeric processor. While at Intel, he
contributed to the definition of the IEEE standard for
floating-point arithmetic. Palmer received a BS in mathe-
matics from Brigham Young University, an MS in mathe-
matics from the University of Michigan, and a PhD in
computer science from Stanford University.

Questions about this article can be directed to John P.
Hayes at the Advanced Computer Architecture Laboratory,
Dept. of Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor, MI 48109.

Reader Interest Survey

Indicate your interest in this article by circling the
appropriate number on the Reader Interest Card.
High 159

Medium 160 Low 161

17

