HYPERCUBES AND PYRAMIDS

Quentin F. Stout
Electrical Engineering and Computer Science
University of Michigan
Ann Arbor, MI 48109 USA

1. INTRODUCTION

Hypercube computers have recently become popular parallel computers for a variety
of engineering and scientific computations. However, despite the fact that the character-
istics which make them useful scientific processors also makes them efficient image pro-
cessors, they have not yet been extensively used as image processing machines. This is
partially due to the hardware characteristics of current hypercube computers, partially
to the particular history of the groups which first built hypercubes, and partially to the
fact that the image processing community did not initially realize some of the advantages
of hypercubes. In this paper, their suitability for image processing will be put forth,
showing that they can be viewed as competitors to, and collaborators with, mesh and
pyramid computers, architectures which are often promoted as being ideal for image
processing.

First some of the general graph-theoretic properties of hypercubes will be given.
Second, the primary reasons for the initial interest of the engineering and scientific
community, namely hypercubes' suitability for mesh calculations and as general purpose
parallel computers, will be shown. Third, the ability of hypercubes to efficiently exe-
cute pyramid algorithms is shown, an ability which has not yet been taken advantage of.
Fourth, currently available commercial hypercubes are examined to show some of the
trends in the increasing sophistication of their implementation. Finally, a new architec-
ture is suggested which combines hypercubes and pyramids to make machines capable of
rapidly processing large images and performing image analyses from lower level image
processing to higher level image understanding.

Pyramid computer means the standard model used in most of the other papers in
this volume, namely, a generic processing element (PE) is connected to four neighbor-
ing PEs on the same level, a parent PE on the level above, and four children PEs on the
level below. Mesh computer will usually mean a square 2-dimensional mesh in which
a generic PE is connected to four neighbors, but in some clearly understood cases it will
mean a mesh of any dimension. Hypercubes will be defined below. For positive func-

NATO ASI Series, Vol. F 25

Pyramidal Systems for Computer Vision
Edited by V. Cantoni and S. Levialdi

© Springer-Verlag Berlin Heidelberg 1986

76

tions f and g defined on the positive integers, the notation f = €(g) ("fis of order at least
g") means that there are constants C, N >0 such that in) 2 C*g(n) for alln =2 N,and f=
O(g) ('f is of order exactly g") means that there are constants C, D, N >0 such that
D*g(n) = f(n) 2 C*g(n) for all n > N. For example, n*sin(n)? + log,(n) = Qlogy(n)) ,
and 3n + n2=0(n?) .

2. HYPERCUBES AS GRAPHS

Hypercubes have long been studied by graph theorists. For integer dimension d 2 0,
the (binary) hypercube of dimension d, denoted Hy, is as a graph of 24 vertices w1.th
unique d-bit binary strings used as labels, where there is an edge connecting two VCI‘I'ICCS
if and only their labels differ by a single bit. Often the labels will be interpreted as bi-
nary numbers. Figure 1 shows hypercubes of small dimensions. A hypercube computc.ar
is formed by placing a PE at each node, and a communication link along each edge. This
makes a local, or distributed, memory machine where information is passed as messages
between PEs, as opposed to a global, or shared, memory machine where information is
exchanged by placing it in the global memory.

Several properties of hypercube graphs are immediately apparent. First, they are
homogeneous, meaning that for any dimension d, given any two vertices p,q in Hy,
there is a graph isomorphism of H; onto itself which maps p onto ¢. To see this, letr =
label(p) xor label(g) (all logical operations are performed bitwise). The mapping
which maps a vertex s to the vertex labeled r xor label(s) is one such isomorphism. ‘
Homogeneity implies that all nodes can be treated equally, and in particular means that in
a computer implementation it is natural to allow input/output to all nodes. It also means
that if an algorithm treats a node specially (for example, if node 0 is used as the root of a
tree), then by using xor the algorithm can be “translated" so that any other desired node
is the special one. Pyramids and meshes are not homogenous, since the apex is unique
and corners can only be mapped to other corners, but tori are homogeneous. Binary
hypercubes are special types of tori.

Routing messages between nodes is particularly simple in a hypercube. A message
from node p to node ¢ must travel along at least as many edges as there are 1s in the xor
of p and ¢'s labels, and there are paths which attain this lower bound. Further, such
paths are quite easy to compute dynamically: if a message destined for ¢ is currently at
p, then let i be the location of any 1 the xor of p and ¢'s labels, and have p forward the
message to the neighbor with a label differing in the ih bit. Notice that there are many
such paths of minimal length, which can allow for routing variations that do not increase
the path length. The diameter of H;, i.e., the largest distance between nodes, is d, or
log,(number of nodes). Ina 2-dimensional mesh the diameter is the square root of the

77

number of nodes, while in a pyramid it is 2*log,(number of nodes in the base).

Each node in H; has degree d, meaning that it has d edges. In a physical implemen-
tation the degree of some nodes must be d+1 to allow communication to the outside
world, so if communication is homogeneously implemented then all nodes will have de-
gree d+1. To build hypercubes of increasing size, the degree must also increase, which
makes the individual nodes slightly more complex. Meshes and pyramids of fixed
dimension but increasing size do not have this problem, which at some point can become
a limiting factor on the size of hypercubes. As will be shown below, current technology
makes it possible to build hypercubes with thousands of nodes, so the node degree is not
as serious a problem as it was in the 1970's, during which time alternatives such as cube-
connectad cycles [6] were suggested to alleviate this problem.

Hypercubes are eminently partitionable into smaller hypercubes. For example, H 4,
can be partitioned into two disjoint copies of H; by taking one of the d+1 coordinates
(bit positions in the label) and using all nodes with a 0 in that coordinate as one copy of
H 4, and all nodes with a 1 in that coordinate as the other copy. More generally, itis easy
to show that if one is given a collection of hypercubes and wants to embed them in non-
overlapping fashion in a given hypercube H, then this can be done if and only if the total
number of nodes in the collection is no more than the number of nodes in /. (Embed-
ding means that no two nodes are mapped to the same node, and that neighbors are
mapped to neighbors.) In a multiuser environment, this means that it is quite easy to
allocate subcubes to different users, and there is a great deal of flexibility possible for
dynamic allocation.

3. MESH AND GENERAL PURPOSE CALCULATIONS

Many scientific and engineering applications deal with data organized as a matrix
where the operations performed on an entry involve nearby elements of the matrix. For
example, relaxation methods for solving partial differential equations update a point
based on its current value and the value of its nearest neighbors. One quite useful prop-
erty of hypercubes is that meshes (matrices) of all dimensions can be embedded in them,
as shown below, so a matrix can be distributed in a hypercube such that each PE can
update the values of the entries it contains by using only its own entries and the entries of
neighboring PEs. This miminizes communication time, and is as good as any mesh com-
puter with the same number and type of PEs. In other problems the communication be-
tween PEs is quite irregular, in which case the hypercube is useful because it is a fairly
fast general purpose message delivery system. Thus the hypercube supports problems
with both regular and irregular communication patterns.

78

3.1 MESHES

Meshes are embedded into hypercubes by using Gray codes. Given positive integers
i and k, a k-bit Gray code G for 0...i is a 1-1 mapping from 0...i into k-bit binary
strings, where G(j) and G(j+1) differ by exactly 1 bit for all 0<j<i. Since the map-
ping is 1-1, it must be that k > log,(i+1) . A particularly useful collection of Gray codes
are the reflexive ones G 4. For all positive integers d, G 4 1s an d-bit Gray code for
0...24-1, recursively given by G1(0) =0, G (1) = 1, and G 1) = 0G 4)) (thatis, the
concatenation of 0 and G ()) for j<24 and G 4,()) = lGd(2d+1—1-j) for 2d<j <24+l
Figure 2 shows these reflexive Gray codes for small sets. From now on only these Gray

79

can become the dominate factor in determining the running time, and can significantly
decrease the efficiency of the parallelism. The efficiency of an n PE parallel machine
running a program is defined to be T/(n*T',), where T, is the time of the program and
T is the time of the fastest program solving the same problem on a machine with a
single PE. The time for PE/PE communication does not appear in T , but does in T,
which is why it decreases efficiency.

For near-neighbor operations on a matrix, overlapping computation and PE/PE
communication is fairly straightforward and is commonly used whenever the hardware
can support it. For example, in a 2-dimensional matrix, suppose each entry gets a new

v s e

AT

codes will be used, and their special properties, beyond those of generic Gray codes, will
be used in the pyramid mappings.

value which is a function of its current value and the values of its four nearest neighbors.
(We will ignore what happens along edges of the matrix.) In each block of entries
assigned to a single PE, entries along the edges need to be updated using the values of

R

e EmTIE

A matrix a[0..2i1-1,0..212-1,...,0..2/d-1 | can be mapped in a 1-1 fashion onto a
hypercube of dimension il+i2+...+id by mapping aljy, j2,-.. jgl to the node labeled
Gi1G1) Gplip) --.Gifiy)- Adjacent matrix entries differ by exactly 1 in one coordinate,
so they are mapped to nodes with labels that differ by exactly 1 bit, that is, they are
mapped to adjacent nodes. (Besides being easy to compute, the reflexive Gray codes
have the additional property that they also preserve toroidal neighbors, where neighbors
are computed in a modular fashion.) Therefore matrix operations which update an
entry based on entries in a local neighborhood can be implemented so that a node need
only obtain entries for nearby nodes. This has been exploited in hypercube implemen-
tations of scientific applications, and of course it applies equally well to local operations
on images. Figure 3 shows a mapping of a 2-dimensional mesh onto a hypercube. Such
a mapping also maps nonadjacent matrix positions to adjacent nodes, much like crum-
pling a piece of paper maps points far apart on the 2-dimensional paper surface to near-
by points in 3-dimensional space.

If the matrix has more entries than there are nodes in the hypercube, then the above
mapping must be modified. The matrix should be partitioned into equal sized rectangu-
lar blocks, where the number of blocks equals the number of nodes. The blocks them-
selves form a d-dimensional mesh, so they are mapped to the nodes as before. (This
assumes that a node can hold an entire block.) If the blocks are of equal size then each
PE will have roughly the same amount of work to do, so PEs will not sit idle waiting for
others to finish. (It is only roughly the same amount of work because the calculations
may not be identical at all entries, and in particular edge entries may need to be com-
puted differently.)

Another important consideration is the ability to overlap calculations with PE/PE
communication. While this would not be very important if such communication were as
fast as individual calculations, in practice communication is significantly slower. This

entries from neighboring PEs, and conversely, neigbhboring PEs need the values of
these entries. However, entries in the center can be updated using only information
currently in the PE. To overlap operations, each PE sends the values of entries on the
right edge of its block to the neighboring PE holding the block to the right, sends the top
edge to the PE holding the block to the top, the left edge to the left PE, and the bottom
edge to the bottom PE. It is assumed that these transmissions can be performed by initi-
ating them and then proceeding to other calculations while the transmissions are com-
pleted. While they are being completed, entries in the center are updated. If the trans-
missions are completed while the center entries are updated, then the edge entries can be
updated without having to wait for neighboring values to arrive. The time to initiate the
communications will still appear in T, and not in Ty, but this should be much less than
the time to complete communication.

3.2 GENERAL MESSAGE TRANSMISSION

One common global operation, broadcasting, sends data from one PE to all other
PEs, and another common operation, reporting, sends and condenses information
from all PEs to a single one. In reporting the condensation may be to sum values, taking
an or of logical values, taking the maximum, etc. Even with matrix input, these global
operations may be needed to perform tasks such as determing average gray level and
sending it to all PEs so they can use 1t to set a threshhold.

Broadcasting can be quickly performed on a hypercube using recursive doubling.
If PE O has the data to be broadcasted, then at ime 1 it sends the data to PE 1. (Time
units are taken to be the time required to have a message sent and received, and to deter-
mine the next PE to send to.) At time 2 PE 0 sends the data to PE 2 and PE 1 sends the
data to PE 3. In general, at the end of time i PEs 0...2-1 have the data, and during time
unit i+1 each one of them sends a copy to the neighbor 2! greater. This continues until all

e e T S — R e=TEe

e
e

-

=

e B e

mp— L

P

o e —

————

80

PEs are informed, taking d time units for H;. If the condensation occuring in reporting
is a semigroup operation such as summing or finding a maximum, then recursx.ve?
doubling can be performed in reverse (recursive halving), where each PE recewmg a
value combines it with its own, taking d time units to complete a report. Here the time
unit includes the time to do the condensation. For both operations, since the diameter is
d this is the best one could hope for, and it can be achieved even if each PE can communi-
cate with only one other at a time. Further, by using the homogeneity properties noted
above, any PE can play the tole of the distinguished PE, without any loss of time' (except
for the cost of performing xor). In a pyramid, broadcasting or reportir.\g is best if th.e
apex is used as the distinguished node. If each PE can communicate w1t'h all four of 1.ts
children in one time unit, then broadcasting and reporting can be done in log,(n)/2 time
units, where n is the number of PEs at the base. With one-at-a-time communication and
the simplest approach, the time is 2*logy(n). (Less natural approaches can reduce this.)

A far more complicated activity is to rapidly transmit messages from many PITZs‘to
"random" or "bad" destinations. For example, by using a wire-cutting argument it 18
easy to show that if a pyramid has a base of n PEs, and if each PE sends a message to a
destination given by a uniformly generated random permutation, then the expected time
to deliver all messages is Q(n1/2). This occurs despite the fact that the diafngter ofa
pyramid is @(log,(n)), and in fact for this type of computation the pyramid is no better
than a 2-dimensional mesh. For H;, however, by using Bitonic sort where the message
address is used as the key, any possible permutation of messages can be delivered in
O(d?) time, i.e., in @(logz(n)) time, where n is the number of PEs. By using randomiza-
tion, Valiant showed that any message permutation could be delivered in ©(d) expected
time [12], although it is not clear whether the greater complexity of this algorithm can
ever beat bitonic sort on the sizes of hypercubes to be available in the foreseeable future.
Further, empirically it seems that the simple strategy used on all current MIMD hyper-
cubes works exceedingly well. This strategy is to have each PE keep a small queue Qf
messages to be forwarded, and at each time step take the next message and forward 1t l:_)y
using the routing algorithm mentioned in Section 2. Either a high-to-low or low-to-high
scan is used to find the next 1 in the xor'ed pattern showing which coordinates need to be
traversed.

4. EMBEDDING PYRAMIDS IN HYPERCUBES

The material in the previous sections has been widely used in solving various scienti-
fic and engineering problems on hypercubes. In this section we show the less well
known fact that hypercubes can also efficiently execute pyramid algorithms by simulat-
ing pyramids. Unlike meshes, pyramids cannot be embedded in hypercu.bés so that
neighbors in the pyramid are mapped to neighbors in the hypercube. This is because a

81

cycle proceeding from a parent to one child, then to an adjacent child, and back to the
parent, has an odd number of nodes, while all cycles in a hypercube have an even num-
ber of nodes. Instead, one can ask that the pyramid be mapped into a hypercube so that
neighbors in the pyramid are mapped to PEs close to each other in the hypercube.

As with meshes, the most important case is where the number of PEs in the hyper-
cube is less than the number of pixels, i.e., less than the number of PEs in the base of the
pyramid. For example, the hypercube with the largest number of PEs presently avail-
able, the Connection Machine [2], has 64K PEs, while a 512 x 512 image has 256K
pixels, and a 1024 x 1024 image has 1024K pixels. As before, the best way to map the
base onto the hypercube is to subdivide the base into squares, where the number of
squares equals the number of PEs. Each PE will simulate its base level pyramid nodes,
as well as all nodes in higher levels which sit only above the nodes in the square. For
example, using 1 on a 512x512 image, each PE will reccive a 16x16 square, so each
PE will simulate the work of a subpyramid with a 16x16 base, a total of 5 levels. Just as
for the base, for each of these levels, each pyramid node will either have all of its nei gh-
boring pyramid nodes at the same level in the same PE or in neighboring PEs. For pyra-
mid nodes in these levels, the only parent/child pairs perhaps not in the same PE are the
apex of the subpyramid and its parent.

For the next level up, notice that these nodes are parents of the apexes of subpyra-
mids in 4 PEs, where the 4 PEs form a square. One of these PEs will also do the work of
simulating the node at the next level. Therefore one of the PEs must send its data over
two communication links to reach the parent. To pick which PE to use, notice that the
reflexive Gray codes have the property that in each square exactly one of the rows and
one of the columns has a least significant bit of 0 in its Gray code. If the PE in this row
and column is used to simulate the parent, then it is easy to see that pyramid neighbors in
this higher level are again simulated by neighboring PEs. Figure 4 shows the chosen
nodes in each square for a small example. The PEs simulating this level form a subcube
of dimension 2 less than the original one, so to simulate pyramid nodes at still higher
levels the process is repeated within this subcube. When all nodes are simulated in this
manner, no pyramid neighbors are separated by more than two communication links.

When H {4 simulates a pyramid with a 512x512 base (a pyramid with 9 levels), PE 0
simulates nodes on all 9 levels. It simulates a total of 346 nodes, while some other PEs,
such as PE 1, simulate only 341 nodes. If the pyramid algorithm is such that the amount
of work is the same at each node, then PE 0 has to do only about 1% more work than any
other node, so the load is well balanced.

Even if the number of hypercube PEs exceeds the number of pyramid nodes, the
time used by the above scheme is approximately as good as possible if the pyramid algor-

e - ogm e

R e e ST T

oy

82

ithm proceeds level by level , for then no PE need simulate more than one.nod'e at a.ttlcrgiz.
However, a PE simulating nodes on several levels may spend some extra tlglne in sg;qs "
ing from one simulation to the next, and may need ex.tra space to store loc vl;ax;a e

the simulated nodes. If the algorithm uses all levels mmgltaneously then the above .
scheme will have one PE simulating a number of _pyramlid n‘ode.:s equal to .thel pytram(tf tsh .
height plus 1, which means that it can take many time units to. sunul.ate a fsn;lg ; s e;;CUbe
pyramid. In this situation one can do slightly better'. If the dimension of the b)épﬁas

is just large enough to exceed the number of pwarmd node?s,' then the tlllypsrcu e
exactly twice as many PEs as there are nodes in the pyramid's base. The base s .
simulated using the subcube which is the lower m.xmbered half of the hy.per.cu 1e.t - g
the same representatives of squares as shown in Figure 4, now a parenlf is S]m(ljl ate ‘—y
the PE in the upper half subcube which is connected to tl.lc represeptatwe u§e pre:/;ree
ously, i.e., the simulation has been moved along a coordinate. This pare'nf is nlow y
communication links from one of its children. If the hypercube had a‘ddmorvla lgnuse]
dimensions the process would just be repeated, moving along anew dlm.en.smnal?r e}a;c y
level. Instead, note that this first level of parents does not‘ using any PEinitsh ; w ’1c
has a 1 in its least significant bit. Therefore the least significant bit can be treated as a
“new" dimension. This process of "reusing" dimensions can be conu-nued to r'ep;csejnht
all levels of the pyramid, with each PE simulating at most.one‘ pyrgmld node, and wit
pyramid neighbors mapped to PEs at most three communication links apart.

For completeness, we note that when the number of hypercube nodes.is 'at 16;18; twice
the number of base nodes in the pyramid, it is possible to map the pyramid in a 1-
fashion into the hypercube so that no two pyramid neighbors are more than two com-
munication links apart. To do this, some neighbors on the same level, as we}l a;sgme
parent/child pairs, must be mapped to PEs two links apan‘. Suppose tbe.pyram1 A as(;:o ,
(level 0) is 2Px 25, so the hypercube is Hp,, 1 . Define EGjytobe 0 ifj=0,t0 ebe "
j>0 and i=0or3 mod4,and 11 if j>0 and i=1lor2 mod 4 . Define G4 to. e
empty string if <0 . Then one such mapping is tg map the x;z?zde at le_vel h, rowdzt,o o
column j to PE Gy (D) (OVW2 G, p 1 div 2) EG, b-h) (ODP= if 2 is even, an

Gor (i div 2) EG, b-h) QDB Gy, () (O1)BDI2 i b is odd. Because of space lim-
b-h-1) i

itations, no explanation of this formula will be given, but it is relatively straightforward
to verify that it has the desired properties.

It should be noted that not all pyramid algorithms should be simulated on a hype;'
cube. For problems in which pyramid algorithms do‘about th(.?, same amount of work at
each level, usually the pyramid is about the best possible architecture, and other paps;s
in this volume give examples of such algorithms. However, for somg problems theh st
pyramid algorithms must work longer at higher levels of.the p'yr.amxd [3]. Forsuc .
problems, sometimes there are hypercube algorithms whxch utilize all of the hypercu
connections and are faster than simulating a pyramid {4].

83

5. HYPERCUBE MACHINES

Hypercube computers were first proposed by Squire and Palais, at the University of
Michigan, in 1962 [8,9]. Their study showed that, at that time, a 12-dimensional hyper-
cube would need about 20 times as many parts as IBM's Stretch, a rather unreasonable
component count. Another large paper study was performed by Sullivan et al in 1977
[10,11]. Finally, in 1983, the "Cosmic Cube”, a hypercube computer with 64 nodes, was
built at the California Institute of Technology [7].

In 1985 Intel Corporation delivered the first production hypercubes, the iPSC, based
on the CalTech hypercubes. It has a maximum of 128 nodes, where each node uses a
80286/80287 processor and has 512 Kbytes of memory. Only a single user can use the
cube at one time (thought several can use the host at once), and there is only a single 1/O
channel between the host processor and the hypercube. The time for PE/PE communi-
cation is quite high, requiring several milliseconds. A few months later Ametek intro-
duced a very similar hypercube, with the primary changes being a maximum of 256
nodes, and an additional 80186 coprocessor on each board to handle communication.
The extra coprocessor allows additional overlapping of communication and processing,
and for messages traversing several communication links the intermediate 80286

processors need not be interupted. Because of very slow I/O between the cube and host,
neither of these machines is suitable for real-time vision.

In late 1985 NCUBE introduced a hypercube with a maximum of 1024 nodes, each
of which uses a proprietary processor [1]. A single chip handles all node I/O via DMA,
all standard processing on 32 bit words at about 1 million instructions per second, and
floating point arithmetic at about 0.5 MFLOP on single precision reals. Each PE con-
tains only 128 Kbytes of memory. Each PE has its own I/O channel to a host board, pro-
viding a maximum system I/O rate of about 720 Mbytes/sec. A multiuser operating sys-
tem is provided for the hypercube. PE/PE communication proceeds at about 1 Mbyte/
sec., with the startup time heavily dependent upon the protocol used. The University of
Michigan is one of the beta test sites for this machine, and we hope to implement several
vision applications, making use of its high I/O rates as well as high processing rates. The
proposed implementation of one application is discussed in [5].

All of the machines mentioned above are MIMD, where each PE has its own pro-
gram and executes it separately (except, of course, for communication) from other PEs.
Most applications use the SCMD, "Single Code, Multiple Data" mode where all PEs are
executing the same program, although at any point in time they may be following differ-
ent branches. A SIMD bit-serial hypercube, the Connection Machine, has been built in
1986 by Thinking Machines Corporation [2]. This is a 12-dimensional hypercube,
where each node contains 16 PEs. To process image data there is a special I/O mechan-

u

84

ism which connects all the PEs as a 256x256 mesh. Each PE 'C(?ntains onl)-l 4K bl‘tS olf1 .
memory. While this machine will be quite useful for some vision ar}d artificial intelh- ;
gence a;;plications its STMD nature forces drastic revisions in algorithms, and the sma
amount of memory per PE can prove debilitating.

Also in 1986, two commercial hypercubes of veqor prOC(?SSOTS were amclim‘mc;dc.h
The Intel iPSC-VX machine is based on the iPSC, with a maximum of ’64 no (;sb ;d
node consists of a iPSC node on one board, and a vector proce.ssoT on a secon 10{11 m;
with a total of 1.5 Mbytes of memory per node. All cor‘nnlumcat?on ﬁnd contzmum .
tions are performed by the iPSC node. The FPS "T Series machl-n‘tle 'dS "1 n(;a i
16,384 nodes. Each node uses an Inmos Transputer for communu,dt?o.n ;m hc Ch,ine
with an additional vector processor, and has 1 Mbyte of merpf)ry. Imu}al y the mez o
must be programmed in Occam, using subroutine calls to utilize the'vcctgr :)hroci {hese.
Both machines currently allow only one user on the l.lypércube ata tl@e. 0 . (})] -
machines have been designed for engineering an.d scientific computatlons, wit
vector processing being of miniscule utility for image processing.

6. HYPER-PYRAMIDS

One can borrow some of the ideas mentioned in preceeding se?tions’to demfg‘n a .
machine capable of rapidly processing large. images and perf{ or‘mmg a)mnie solfn:;%mr
processing from lower level operations to hlghér level o.nes. The hypercubes ofveetor
processors are an attempt to provide relatively inexpensive supetrcompuffzr pe mm;r—
by combining the best vector processors that can be 1.’nade from .me{(penswe,' cz e
cially available parts, with a hypercube interco.nnecuon}o pTO‘VldC mex;iensw p;] o
ism. The Connection Machine similarly combines the simplicity qf mesh ;l:)mlgt(lj : EP
with hypercube interconnections for general purp.ose message de'lwery(‘) e‘ t b’ﬂa];ce
machine and Connection Machine emphasize the 1mport.ance f)f high 1/ r}z]ite‘s ?‘m‘ e
high computation rates. Further, the hypercupe can rapldl‘y sxmu}z?te mes esdoto‘ pé &
mension, slightly less rapidly simulate pyramids (since .nelght‘)or's'dre r;mp;;;a oISt
links apart), and act as a fairly fast general message delivery ta.cﬂ]ty. / ;nfa ylé);;er e
papers in this volume show, pyramid algorithms seem to be quite us;: u dor lower ¢ g
of image processing. For higher levels they are gment]y %ess useful, a’n a e e
ible interconnection structure may be needed. Since the higher le\./els d{re po.o}r1 ¥y e

stood, it seems premature to optimize a machine t(? peﬁO@ any given ‘?lﬁon‘l mt h "
rather one should build a machine capable of running a variety of algorithms witho

imposing serious bottlenecks.

This suggests a hypercube of pyramid processors, a hyper-'pyrAamld. Eaclh ncc)lde’)
will have a master processor which is responsible for communication, control, and ge

85

eral purpose computing, and a pyramid processor. The pyramid processor need not be a
physical pyramid, but must be capable of rapidly executing pyramid algorithms. Other
papers in this volume suggest such processors. The master processor, like the NCUBE
processor, should be capable of supporting very fast PE/PE communication. Each node
should also have a high speed I/O link to the outside world. It may be that I/O is through
the master processor, or, as in the Connection Machine, through the pyramid processor.
The master processors will form an MIMD hypercube. The pyramid processor may be
an SIMD machine, as would likely occur if it was a physical pyramid or mesh, where
each master processor controls its own pyramid processor. Or, the pyramid processor
may be a raster scan processor, in which case the machine would be very similar to the
Intel iPSC-VX and FPS T Series machines.

The size of pyramid that the pyramid processor operates on is primarily dictated by
cost and technology tradeoffs. It may be, for example, that the machine is designed to
process 512x512 images, using 64 nodes each processing a 64x64 square. Torun a 9
level pyramid algorithm over the entire image, the lowest 6 levels would be performed
by the pyramid processors, and the top 3 levels would be performed by the master pro-
cessors. If the work at each node is the same, then more than 99.9% of the work will be
done by pyramid processors. On large images, often the top few levels are not used, so it
may be that the master processors would rarely be needed in this fashjon. However, for
higher levels of image processing they will be crucial. For example, they may work
together to make some initial global decisions concerning approximate locations of ob-
jects, and then each may direct its pyramid to look for specific features to confirm or
refute such decisions. Since the master processors would be general purpose processors,
they will be easier to program and they permit easier alterations. The pyramid pro-
cessors may be harder to program, and probably would be used primarily by calling
packaged routines. Since lower level image processing is somewhat better understood,
these routines need not change as frequently.

One interesting question is whether master processors specially designed for such
machines will soon be commercially available. The Transputer is an attempt at such a
processor, but it provides only 4 bidirectional communication links which must be mul-
tiplexed in order to provide sufficient near-neighbor connections for a hypercube. The
NCUBE node processor comes closer to what is desired, but it should be possible to
build even better master processors. FPS and Intel have already produced "hypercube
of X" machines for X="vector processor”, and this paper proposes such machines with
X="pyramid processor”. There are presumably other interesting choices for X, so there

may eventually be enough demand to provide high-quality commercial master proces-
sors for such machines.

T T ———

G 1D e 8

4513

R == -

L

e |

86

7. CONCLUSION

We have shown that the hypercube can perform mesh calculations as fast as a mesh
computer, in that mesh neighbors are mapped to hypercube neighbors, and it can per-
form pyramid calculations almost as fast as a pyramid computer. Besides supporting
such regular communication requirements, it provides good support for irregular com-
munications between processors, the sort of communication which seems prevalent in
artificial intelligence and higher level image processing. Thus the hypercube seems a
nearly ideal architecture for image processing and understanding, particularly when the
emphasis is on using one machine to do all levels of the image processing and under-
standing process.

However, very large hypercubes need many wires per PE, which makes them diffi-
cult and expensive to build. For performing image processing and understanding on
large images, rather than build a hypercube with a PE per pixel {which would almost
certainly necessitate a SIMD machine with bit-serial processors), it may be better to re-
tain a simpler efficient structure for lower level image processing, and reserve a MIMD
hypercube primarily for control and higher levels of image processing. The hyper-
pyramid attempts to do this, trying to balance flexibility and capacity against cost and
design complexity constraints, utilizing architectures which have been demonstrated to
be feasible with current technology.

REFERENCES

[y

S. Colley, J.P. Hayes, T.N. Mudge, J. Palmer, and Q.E. Stout, "Architecture of a
hypercube supercomputer”, Proc. 1986 Int’l. Conf. on Parallel Processing, 10
appear.

2 W.D. Hillis, The Connection Machine, MIT Press, Cambridge, Mass, 1985.
R. Miller and Q.F. Stout, "Data movement techniques for the pyramid computer”,
SIAM J. Computing, 1986, to appear.

4 R. Miller and Q.F. Stout, "Efficient graph and picture algorithms using general data
movement operations for the mesh-of-trees and hypercube networks”, submitted.

5 T.N. Mudge, "Vision algorithms for hypercube machines”, Proc. 1985 Comp. Arch.
for Pattern Anal. and Image Database Manag., pp. 225-231.

6 F.P.Preparata and J. Vuillemin, "The cube-connected cycles: a versatile network for
parallel computation”, Comm. ACM 24 (1981), pp. 300-309.

7 C.L. Seitz, "The Cosmic Cube", Comm. ACM (28), 1985, pp. 22-33.

8 1.S. Squire and S.M. Palais, "Physical and logical design of a highly parallel compu-
ter", Tech. note, Dept. of Elec. Eng., Univ. Michigan, Oct. 1962.

87

J.S ISlq;nre and SM Palais, "Programming and design considerations for a highly
parallel computer”, Proc. Spring Joint Computer Conf., 1963, pp. 395-400

1 1 "
0 fl] Sulhv'an arf'd T.R. Bashkow, "A large scale, homogeneous, fully distributed paral-
el machine, I, Proc. Computer Arch. Symp., 1977, pp- 105-117.

11 ZI tSr;ilivan, T.R. Bashkc?w and D. Klappholz, "A large scale, homogeneous, fully
istributed parallel machine, I1", Proc. Computer Arch. Symp, 1977, pp. 118-124

12 L.G. Valiant, "A scheme for icati
, parallel communication”, SIAM)
(1982), pp. 350-361. ’ - Compuing 11

This research wa i ; .
8507851 was partially supported by the National Science Foundation, grant DCR

H,
Sl

Q Node (PE)

—— Edge (Communication Link)

FIGURE 1. Small Hypercubes.

88

G. - 0 0 0 000
l- 1 1 1 001 0G
2 011 2
3 010
0 00 G3 4 110
| 01 5 111
Gy: 5 T 6 101 1G , reversed
3 10 7 10
FIGURE 2. Reflexive Gray Codes
Gs
000 001 O11 010 110 111 101 100
00 |00000]00001)00011 00010{00110/00111]00101700100
01 01000 01001101011101010{01110]01111}01101 01100
G
2

11 |11000] 11001} 11011} 11010 11110 11111}11101711100

10 }10000}10001{10011|10010} 10110} 10111 10101 10100

FIGURE 3. Embedding a 4x8 mesh onto H 5

89

000 001 011 010 110 111 101 100

000 * * * *
001
011
010] * * * .
110 * * * *
111
101
100 * ¥ | % "

FIGURE 4. Pyramid Parent PEs in Each Square

P/mA .
"PMIIINE‘IF'IIIIS!('CM‘==ln.

@2 %we 2
(G B B
/Sy, 2, Saqy @

SRS

‘V ‘V ‘V

FIGURE 5. A Hyper-Pyramid

