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Abstract

A new MHD code has been developed for massively par-
allel computers using adaptive mesh refinement (AMR)
and a new 8-wave Riemann solver. The code was im-
plemented on a Cray T3D massively parallel computer
with 512 PEs. In the first application, which modeled
the expansion of the solar wind from the solar surface,
the code achieved 13 GFLOPS.

INTRODUCTION

Heliospheric phenomena have been a subject of inter-
est virtually since the inception of the space program.
Indeed, with Pioneer and Voyager in the outer helio-
sphere, Ulysses executing its polar passes, WIND in or-
bit upstream from Earth, SOHO observing the Sun and
the inner heliosphere, the ISTP spacecraft studying the
Earth’s magnetosphere, and Galileo at Jupiter, this is an
era of remarkable richness in revealing the full range of
heliospheric phenomena. This wealth of data, however,
will be of value only if we derive from these observations,
and the subsequent interpretations, a clear understand-
ing of the underlying and governing physical processes.

Even the best sets of observations are limited in space
and time and they must be extended by sophisticated
theoretical models into full 3D descriptions of heliosphe-
ric plasmas. It is here that a unifying multiscale, 3D
model plays an essential role. The model must be suffi-
ciently versatile to capture the complexity of the actual
physical system from high gradient shocks and discon-
tinuities, to spatially limited transition layers, to large
volumes of slowly changing plasma flows.

Our long-term goal is to develop the first 3D, multi-
scale model of the heliosphere extending from the base of
the solar corona to the free-streaming interstellar medium.

In its fully developed form the model will self-consistently
describe the complicated interplay between various phys-
ical processes controlling the structure and dynamics of
the heliosphere, including the solar wind outflow, the
generation, temporal and spatial evolution of transient
interplanetary structures (such as coronal mass ejections
or corotating interaction regions), as well as the helio-
sphere’s interactions with the interstellar medium (in-
cluding plasma and neutral gas), and with magnetized
and non-magnetized solar system bodies.

Several years ago the federal goverment instituted the
national High Performance Computing and Communica-
tions (HPCC) program to initiate advances in the state
of the art of modern computer simulations and in new
uses of high-speed computer networks. NASA actively
participates in this federal program through several tech-
nical projects. One of these projects is the Earth and
Space Sciences (ESS) project, which last year selected
nine Grand Challenge Investigator Teams to develop ap-
plications at least 10 times faster than today. Our inves-
tigation, entitled “Multiscale Modeling of Heliospheric
Plasmas” is one of the nine selected ESS Grand Chal-
lenge projects. This paper briefly outlines the method
we use and it summarizes our first numerical results.

GOVERNING EQUATIONS

The governing equations of ideal magnetohydrodynamics
describe the physics of a conducting fluid in which vis-
cous and resistive effects are negligible. Under these as-
sumptions, the governing equations for three-dimensional
flow are conservation laws for mass, three momentum
components, three magnetic field components, and en-
ergy. Conservation of mass is the same for the plasma as
it is for a fluid, conservation of momentum and energy
have eloctromagnetic terms that do not appear in the
governing equation of classical fluid dynamics.

The dimensionless conservative form of the ideal MHD
equations can be written in the following form:

∂ W̃
∂t̃

+
(
∇̃ · F̃

)T
= S̃ (1)
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where W̃ and S̃ are eight-dimensional state and source
vectors, while F̃ is an 8 × 3 dimensional flux diad. All
quantities denoted by the symbol tilde are normalized
with the help of physical quantities in the undisturbed
upstream region

t̃ = a0t/Rs (2)
r̃ = r/Rs (3)
ρ̃ = ρ/ρ0 (4)
ũ = u/a0 (5)
p̃ = p/ρ0a

2
0 (6)

B̃ = B/
√
µ0ρ0a2

0 (7)

where t=time, r=radius vector, ρ=mass density, u=bulk
flow velocity, p=pressure, and B=magnetic field vector.
The subscript 0 refers to values at the solar surface, Rs
is the radius of the Sun and a0 is the hydrodynamic
sound speed at the solar surface. It follows from this
normalization procedure that the normalized state and
flux vectors are:

W̃ =


ρ̃
ρ̃ ũ
B̃
ε̃

 (8)

F̃ =
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p̃+ 1

2 B̃
2
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T

(9)

where ε̃ is the normalized internal energy density:

ε̃ =
1
2

[
ρ̃ ũ2 +

2p̃
γ − 1

+ B̃2

]
(10)

Equation (1) is a coupled system of eight partial dif-
ferential equations — conservation laws for the mass,
momentum, magnetic flux, and internal energy.

SOLUTION ALGORITHM

Equation (1) was solved on a solution-adaptive Carte-
sian mesh using an upwind-differencing approach. The
method is called Multiscale Adaptive Upwind Scheme for
Magnetohydrodynamics (MAUS-MHD).

MAUS-MHD is based on two key ingradients that are
extremely well suited to heliosphere modeling. The first
is a data structure that allows for adaptive refinement

of the mesh in regions of interest (De Zeeuw and Powell,
1992), and the second is an upwind scheme (van Leer,
1979) based on a new approximate Riemann solver for
ideal MHD. The details of the new numerical method
have already been published in several papers (Gom-
bosi et al., 1994; Powell, 1994; Powell, 1996; Gombosi
et al., 1996) and a comprehensive description of the en-
tire method is presently in preparation (Powell et al.,
1997). The approach has been applied to the interac-
tion of the solar wind with comets and non-magnetized
planets, as well as strongly magnetized planets.

Adaptive refinement and coarsening of a mesh is a
very attractive way to make optimal use of computa-
tional resources. It becomes particularly attractive for
problems in which there are disparate spatial scales. For
problems like the heliosphere, in which typical spatial
scales can differ by orders of magnitude, an adaptive
mesh is a virtual necessity. The primary difficulty in im-
plementing an adaptive scheme is related to the way in
which the solution data are stored; the data structure
must be much more flexible than the simple array-type
storage used in the majority of scientific computations.

We have decided to take the most flexible possible
AMR approach, in order to give us parameters which
can be chosen to optimize parallel performance of the
code. To this end, we have chosen a block-based tree
structure, which is a generalization of the cell-based tree
used in our earlier work (De Zeeuw and Powell, 1992).
The root of the block-based tree is a structured coarse
grid that covers the entire flow domain. The root block
can have an arbitrary number of children blocks, where
each child block is one level more refined than the parent
block (i.e. ∆xchild = ∆xparent/2, ∆ychild = ∆yparent/2,
∆zchild = ∆zparent/2). This data structure devolves to
the cell-based tree in the limit of child blocks that are
1 × 1 × 1. This data structure is more general, how-
ever, allowing arbitrary block sizes. The advantages of
allowing arbitrary block sizes for the refinement are:

• Larger blocks have better surface-area to volume
ratios, yielding lower communication overheads than
smaller blocks.

• Block sizes can be chosen to make load-balancing
easier, allowing the decomposition of the domain
to be done at a higher level (i.e. portions of the
grid are farmed out to the processors on a block-
by-block basis, rather than on a micro-managed
cell-by-cell basis).

• Because the data for the cells inside each block
can be stored in an array data structure, indi-
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rect addressing is avoided for flow-solver loops, and
greater locality of data is obtained, leading to more
possibilities for efficient use of the cache on each
processor.

The mesh is generated in such a way that impor-
tant geometric and flow features are resolved. The ge-
ometry is resolved by recursively dividing blocks in the
vicinity of the sun until a specified cell-size is obtained.
A larger block-size is specified for the remainder of the
mesh. Flow features are resolved by obtaining a solution
on this original mesh, and then automatically refining
cells in which the flow gradients are appreciable, and
coarsening cells in which the flow gradients are negligi-
ble.

The MAUS-MHD upwind scheme is a finite-volume
method, in which the governing equations are integrated
over each cell of the mesh. This way the governing
equations given by equation (1) become a set of cou-
pled ordinary differential equations in time, which can be
solved by a suitable numerical integration procedure. In
MAUS-MHD, an optimally smoothing multistage scheme
(van Leer et al., 1989) is used. To carry out the multi-
stage time-stepping procedure for (1), an evaluation of
the flux tensor at the interfaces between cells of the mesh
(a so called “Riemann solver”) is required.

Previous upwind-type schemes for MHD (Brio and
Wu, 1988; Zachary and Colella, 1992) have been based
on the one-dimensional Riemann problem obtained by
noting that, for one-dimensional problems, the ∇·B = 0
condition reduces to the constraint that Bx = const.
Methods based on this approach require a separate pro-
cedure for updating the component of the the magnetic
field normal to a cell face in multi-dimensional prob-
lems. Typically, this requires the use of a projection
scheme which solves a global elliptic equation every few
time-steps to project out the numerical divergence that
accumulates (Zachary and Colella, 1992; Tanaka 1993]).

In MAUS-MHD a new approach is taken (Powell
1994; Powell, 1996). The governing equations for 3D
MHD are derived without explicitly enforcing ∇ ·B = 0
a priori, and a numerical procedure that is stable for
this system is derived. Since the finite-volume scheme
is a collocated one, truncation-error levels of ∇ · B can
be generated by the scheme, and the algorithm must
“clean” itself from these errors in a stable manner. The
resulting equations are those given in 1, with the source
term S (not truly a source term, since it is proportional

to derivatives of the magnetic field) defined by

S̃ = −∇̃ · B̃


0
B̃
ũ

B̃ · ũ

 (11)

This form of the equations resolves the degeneracy of the
characteristic equation system and one can derive eight
non-degenerate eigenvectors and eigenvalues. A more
complete derivation of the equations and the Riemann
solver are given in (Powell, 1996).

The Riemann solver based on the eight equations
given by (1) and (11), as shown in (Gombosi et al., 1994;
1996; Powell 1994; Powell, 1996), has substantially bet-
ter numerical properties than one based on the form in
which the source term is not accounted for. Such a Rie-
mann solver gives a consistent update for the compo-
nent of the magnetic field normal to a cell face, such
that the resulting numerical scheme treats (∇ ·B)/ρ as
a passive scalar. Any (∇ · B)/ρ that is created numer-
ically is passively convected, and, in the steady state,
(∇ ·B)/ρ is constant along streamlines. with this treat-
ment ∇ · B = 0 is satisfied to within truncation error,
once it is imposed as an initial condition to the problem.
The resulting scheme is stable to these truncation-level
errors in the divergence of B, and does not require a
projection scheme.

Given the eigenvalues and right eigenvectors of equa-
tions (1) and (11) (Powell 1994; Powell, 1996), the flux
through an interface is given by

Φ
(
W̃L,W̃R

)
=

1
2

(ΦL + ΦR)− 1
2

8∑
k=1

|λk|αkRk (12)

where the subscripts L and R refer to quantities at the
left and right sides of the interface, while λk and Rk are
the kth eigenvalue and right eigenvector (these can be
found in (Gombosi et al., 1994; Powell, 1996)), αk is the
inner product of the kth left eigenvector with the state
difference, W̃R−W̃L, while the quantities, ΦL and ΦR,
are simply F̃(W̃L)·n and F̃(W̃R)·n, respectively (where
n is the normal vector of the interface).

The advantages of the flux-based approach described
above are:

1. The flux function is based on the eigenvalues and
eigenvectors of the Jacobians of F̃ with respect
to W̃, leading to an upwind-differencing scheme
which respects the physics of the problem being
solved,
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Diagonal (X=Y) slice through simulation.  Each box represents a processor 

with 163 cells.  Normalized velocity with streamlines plotted.
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Figure 1: Velocity magnitude (grayscale) and streamlines.

2. The scheme provides capturing of shocks and other
high-gradient regions without oscillations in the
flow variables,

3. The scheme has just enough dissipation to provide
a nonoscillatory solution, and no more,

4. The scheme provides a physically consistent way
to implement boundary conditions that are stable
and accurate: a physically consistent flux can be
calculated at all boundaries by use of the approxi-
mate Riemann solver.

PARALLEL IMPLEMENTATION

The MAUS-MHD code was implemented in FORTRAN90,
using a domain-decomposition approach. Blocks of cells,
stored as 3D arrays, were locally stored on each pro-
cessor in such a way as to achieve a balanced load —
each processor held blocks containing the same number
of cells (163 in this run). At each iteration, messages
containing cell-center states (density, momentum, mag-
netic field and energy) were passed between neighboring

processors. The message-passing was implemented us-
ing the Edinburgh 32-bit MPI package. Special care had
to be taken at refinement interfaces, where a block of
cells at one level of refinement abuts a block that is one
level finer or coarser than itself. The approach taken to
assure stability and conservation at these interfaces is
described in (DeZeeuw and Powell, 1992; Powell, 1996).
The difference in refinement level also requires that in-
terpolation and restriction operators be applied before
passing data between processors.

The first case run with the code was a simulation of
the emanation of the solar wind from the sun. It mod-
els the 3D expansion of the solar wind from 1 Rs to 16
Rs. The inner boundary condition describes a station-
ary sphere of hot plasma with an embedded dipole field.
Due to the low interplanetary pressure, plasma expands
into the interplanetary medium. The converged solution
shows that the solar wind originating from the polar re-
gions is much faster than the solar wind originating from
the equatorial region, due to the presence of the solar
magnetic field. This fact was observed with the Ulysses
spacecraft, but until now no numerical model was able
to reproduce this observation. Figure 1 shows the x = y
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meridional plane of the solution. The block structure of
the parallel implementation is shown together with the
magnitude of the plasma velocity (gray scale) and the
solar wind flow lines (solid lines).

PARALLEL PERFORMANCE

The code used a total of 5 levels of refinement and 512
blocks of 16x16x16=4096 cells for over 2 million total
cells. A Cray T-90 Hardware Performance Monitor
(HPM) count gave 1.94 × 107 floats per processor per
timestep. A total of 4.02× 1013 floats were computed in
the simulation, which ran for 3088 seconds. The result-
ing performance of the code was 13.0 GFLOPS.
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