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ABSTRACT
This paper considers mesh computers with buses, where each
bus provides a broadcasting capability to the processors con-
nected to it. We first disprove a published claim by showing
that on a 2-dimensional mesh with a bus for each row, where
each row must solve its own problem with data'that is independ-
ent of all other rows, there are problems where the rows can
cooperatively solve all subproblems faster than any single Tow
can solve its own problem. As a corollary we obtain efficient
solutions to some graph problems. We also consider the opti-
mal layout of buses for a given dimension and number of buses
per processor, where optimality is defined in terms of the time
needed to simulate any other machine with the same constraints.
Using new families of layouts, optimal or nearly optimal
families of layouts are determined for each possible choice of
dimension and number of buses per processor.

i. INTRODUCTION

Mesh-connected computers have long been of interest
because many problems have data which maps naturally onto
them, and because the simple interconnections of such compu-
ters enables them to be scaled to a large number of processors.
A d-dimensional mesh computer of size n , where n, d, and
n'/@ are integers, contains n processing elements (PEs)
arranged in a d-dimensional grid with /4 PEs on each edge,
with each PE connected to its 2d nearest neighbors. (PEs
along the edges have fewer connections.) See Figure 1. The
PEs are all identical and have a wordsize which is at least log-
arithmic in n (so that a PE can store its own coordinates), they
have a standard instruction set with unit time operations, they
can exchange a word of information with all of their neighbors
in unit time, and they have unlimited memory. (The last point is
used only to simplify the discussion. It would suffice if they
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had a constant amount of memory, where the constant depended
upon the problem.) Mesh will mean mesh computer .

The primary deficiency of meshes is that they have large
diameters, in that information must traverse (4-1)2/¢ Tinks to
travel from one comner to the opposite corner of a 4-dimensional
mesh of size n. Several additions have been proposed which
can reduce this worst-case PE-to-PE communication time.
These include attaching trees, pyramids, orthogonal trees, or
buses to the processors. This paper analyzes the last sugges-
tion, with an emphasis on multiple buses. For our purposes, a
bus is a device whereby any PE attached to it can send a word
of information to all other attached PEs in unit time. There is no
collision resolution, so all algorithms must be written so that no
two PEs try to use the same bus at the same time. (This is simi-
lar to the EREW PRAM model.) Buses have multiple PEs
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attached to them, and a PE can be attached to more than one bus.

A bus, together with all its attached PEs, will be called a bus
system . This paper considers the use and layout of bus
systems.

Three types of layouts of bus systems for meshes have
been considered previously: a single global bus [Bek, Jor, Stol,
Sto2], buses on each row and column [PK-R1, PK-R2], and
multiple global buses [Agg]l. NASA's Finite Element Machine
(FEM) is a mesh with a global bus [Jor], and the global or
feature of the Massively Parallel Processor (MPP) can also be
used as a global bus [Bat].

Algorithms for meshes with buses have concentrated on
determining geometric properties of black/white images
[PK-R2, Stol], finding minimums and maximums [Bok,
PR-K1, Sto2, Agg], selecting the k¥ largest value [Sto2,
PR-K2], and numerical matrix calculations. Optimal algorithms
have been found for a few such problems, but in general proofs
of optimality are complicated, especially when there are multiple
buses. In particular, in section 2 it is shown that multiple non-
overlapping bus systems, each trying to solve a simple problem
involving only its data (where the data in each system is inde-
pendent of all other systems), can solve all their problems more
quickly by cooperation than by having each bus system solve its
own problem independently. Atfirst glance this result seems
impossible, and it contradicts an intuitively appealing argument
appearing in [PK-R2]. Here our primary contribution is not the
rather straightforward algorithm which proves the theorem, but
the recognition that such a cooperative algorithm is possible. To
demonstrate that this result can be applied to more general prob-
lems, it is also shown that this approach can be used to give
efficient solutions for some graph problems which explicitly
involve combining information from different rows.

In section 3 we address the problem of finding "optimal"
layouts of bus systems. We consider the dimension, size, and
maximum number of buses per PE as given constraints, and try
to find a layout which is "best” in its ability to rapidly simulate
any other layout with the same constraints. This is similar to the
approach taken by Leiserson with his Fat-Trees [Leis]. By
varying the size one can obtain families of layouts, and we
exhibit optimal or nearly optimal families for each choice of
dimension and number of buses per PE. These results are simi-
lar to, and have important differences from, various results for
VLSI layout.

‘We use the symbols O, 2, and © to mean "order no more
than”, "order no less than", and "order exactly", respectively.
All imes are worst case unless stated otherwise. The term
"poly-log" means O((logn )*) for some k. Because of space

265

limitations, many of the "proofs” are merely sketches of the
important ideas.

2. COOPERATIVE SPEEDUP

In [Bok, Stol, Sto2] it was shown that a 1-dimensional
mesh of m PEs with a single global bus, where each PE starts
with a value in some set § , if * is a semigroup operation on §
which can be computed in unit time, then the result of applying
* to all the PEs' values can be determined in ©(n'/2) time,
and further, this time is the best possible. In addition, the proof
of optimality showed that almost any nontrivial problem must
take Q(m/2) time. (Anexample of a trivial problem is "Send
the value in the leftmost PE 1o all other PEs".)

Suppose we try to apply this result to a 2-dimensional
mesh of size n , where each row is a bus system and there are
no other buses. Suppose, for example, that each PE has either a
0 or 1, and in each row we wish to compute the location of the
leftmost 1. (If there is no 1 in the row, then the answer is
n/24+1.) Since the location of 1s in different rows is completely
independent, and a separate answer is needed for each row, it
seems that the best that can be done is to have each bus system
compute its own answer. Eachrow has n!/2 PEs, so this will
take Q(n'/#) time. This argument was put forth in [PK-R2],
but it is incorrect.

Theorem 2.1: Given a 2-dimensional mesh of size n, where
each row is a bus system and each PE has eitheraQ ora 1, the
problem of determining the location of the leftmost 1 in each
row (and having each PE know the answer for its row) can be
solvedin ©(»/0) time. Further, this time is optimal if there
are no additional bus systems.

Proof: Our algorithm follows a commen pattern of algorithms
for meshes with buses, in that it includes a portion which is
purely a mesh algorithm and a portion which is purely broad-
casting, with the times of these portions balanced. Partition the
mesh into [11/6]x[#1/6] subsquares, called blocks . The set
of blocks are partitioned into rectangles 1 block high and [71/6]
blocks wide, called groups. A group contains [n/6] rows of
PEs, and approximately n!3 columns. Notice that no more
than n'/6 groups share the same band of [#1/6] rows.
Within each band the leftmost group will use the topmost row
bus system for its internal use, the second from the left group
will use the second row bus system, and so on. See Figure 2.
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The algorithm starts by using a mesh algorithm within each
block to locate the leftmost 1 in each row, if any, and move this
information to the leftmost PE along the block's group's bus.
Then, within each group, the leftmost block starts to use the
bus, followed by the block to its right, and so on until finished.
When a block’s turn comes, it broadcasts the location of the
leftmost 1 in each row for which it has a 1 but no previous block
does. When it is finished it broadcasts a signal that it is done
and the next block can proceed. Notice that the lefi-to-right
ordering of the blocks' use of the bus gaurantees that when the
location of a 1 is broadcast, it is indeed the leftmost 1 for its
row, at least among the columns in the group.

When all groups are done, they have determined the left-
most position of a 1 in each of their rows, if there is any such 1.
The last block in each group has been recording this information
and storing each row's answer in the last PE in that row. Now
the blocks, in left-to-right turns, broadcast their answer, or a
signal that they have no 1, in all rows simultaneously. The PEs
in each row just record the first broadcasted location of a 1 in
their row, or, if no location is broadcasted, they use the value
nl241 .

The time for the mesh algorithm is ©(n1/6), and since
there are no more than [#!/8] groups on each row, the time for
the final round of broadcasting is also @(n/6). To see that the
broadcasting within each group takes ©(n1/6) time, notice that
there are exactly two types of messages being broadcast. One is
the signal for the next block to proceed, and the other is the loca-
tion of a leftmost 1 in some row (leftmost among those in the
group). There are enly [n1/6] blocks ina group, so there are
only [n1/6] signals for the next block to proceed. Further, for
each row in a group there is at most 1 broadcast giving the left-
most location of a 1 in that ow, so no more than [ #/6]loca-
tions are broadcasted.

As [PK-R1] noted, optimality can be shown by mimicing
the proof of optimality for 1-dimensional meshes. Consider the
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simpler problem of deciding if all of the values in the first Tow
are 0 or not. Using only mesh connections, at time ¢ any PE
can know the initial values in at most 2¢+1 of the PEs on the
first row. Therefore at ime ¢ any PE can broadcast information
involving the initial values of at most 2¢+1 PEs on the first tow
which have not been involved in any previous broadcast. Fur-
ther, if the answer is always known by time T and broadcasts
involving row r are used, then they must be completed by time
T-r+1, and involve information leaving row 1 by time T-2r+2.
Since there are #1/2 PEs in the first row, to finish by time T
one must have

T/2 T-2r+2

Y ¥ 241 = pl2

r=1 t=1

Therefore T =Q(n/6). 1

Corollary 2.2: Given a 2-dimensional mesh of size n , where
each row is a bus system:

a) Ifeach PE haseither a true ora false, then the problem
of determining the or (or and ) of all values in each row
(and having each PE know the answer for its Tow) can be
solved in ©(n!/%) time. Further, this time is optimal if
there are no additional bus systems.

b) If each PE has an integer in the range {0..r} for some
integer r , then the problem of determining the largest (or
smallest) value in each row can be solved in
O(n/010g%3r) time.

¢) Ifeach PE has some value, then the problem of determine
the largest (or smallest) value in each row can be solved in
©(n'/510g13n) expected time, if all orderings of the
values in each row are equally likely.

Sketch of proof: a) The or is true if and only if there isa
leftmost true, and the and is false if and only if there is a
leftmost false.

b) Ineach row use a binary search. Using block, group,
and band sizes as in the previous theorem would give a time of
©(n'log r). To reduce this slightly, use square blocks of
edgelength ©(n'/Clog?3r) and put ©(n"/6/10g!3r) blocks per
group. This gives &(n!/6flog!?r) groups per band, where a
band has ©(n'/€log?3r) rows, so each group can use &(log n)
buses for its internal use. After the initial mesh algorithm to
determine the largest entry in each row of each block, each itera-
tion of the binary search will take (n/6/log!3r) time.

c) Use blocks of edgelength @(n/®log!3n) and
@(n'Slog'Bn) blocks per group, giving O(n'/6/10g?3n)
groups per band and ©(log n) buses per group. Have each
block broadcast its largest value in each row where its value is
larger than any value previously broadcasted for thatrow. §



Corollary 2.3: Given the adjacency matrix of an undirected
graph G, stored one entry per PE in a 2-dimensional mesh of
size n where each row and each column is a bus system, the
components of G can be labeled and a spanning forest marked
in ©(xY610g2Rn ) time.

Sketch of proof: Use blocks of edgelength @(n1/610g%3n)
and @(n"5/log'Pn) blocks per group, giving ©(n'/6/1og!/3n)
groups per band and ©(log #) buses per group. Use the paral-
lel component Iabeling algorithm in [HCS], which has a
logarithmic number of stages in which each row (representing a
vertex) must locate an edge (if any) to a vertex of a different
label. (Finding just a different label, instead of the more usual
minimal label, slightly reduces the time of this algorithm. How-
ever, for spanning trees it will result in just finding an arbitrary
spanning tree, instead of one of minimal weight.) An initial
mesh algorithm reduces all the connectivity information in each
block down to ©(n/6log¥3n) edges, and each subsequent
stage needs only ©(n'%/log!3n) tme. I

Once a spanning forest has been found, there are several
graph properties which can be quickly determined. Other prob-
lems which can be solved in a similar amount of time include
marking all the articulation vertices of G, marking all bridge
edges of G, computing the cyclic index of G, finding the bicon-
nected components of G, and deciding if G is bipartite. See
[A-H, A-K, Sto3, T-V] for relevant algorithms which can be
adapted for used here. It should be noted that there is a slight
gap between the times of the above results, and the general
lower bound of Q(n'/) applicable to such meshes. It appears
to be extremely difficult to prove a larger lower bound.

2-dimensional meshes with tow and column bus systems
were apparently first studied in [PK-R1], where ©(n1/6)
algorithms were given for a few problems which explicitly
involved combining information from all rows. Theorem 2.1
shows that, even though the bus systems have independent data,
and hence one row learning of another row's values is of no use
in solving its problems, nonetheless the structure of the com-
munication requirements of certain types of problems allow
rows to help each other. However, the above technique cannot
be used on closely related problems such as determining the
number of 1s in each row, or the parity of the number of 1s in
each row.

Open Question: For what problems P is it true that if each
row of a 2-dimensional mesh with a bus per row must solve its
own instance of ‘P, then the rows can cooperatively solve all
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problems significantly faster than single rows can solve their
own problems independently? (Significantly faster means faster
by more than a constant multiple.)

Even if one knew the answer to the above question, it is
not clear that one would know how to use such row operations
to help solve problems that explicitly involve combining infor-
mation from all rows. The corollaries above, and the algorithms
in [PK-R1, PK-R2], give some examples where row and col-
umn bus systems can improve a 2-dimensional mesh for specific
problems. On the other hand, simple counting arguments show
that such bus systems cannot help problems such as sorting.

Open Question: For what problems P is it true that a
2-dimensional mesh with row and column bus Systems can use
the buses to solve P significantly faster than when not using
them?

3. LAYOUT OF BUS SYSTEMS

A global bus is promoted as being useful because it enables
any PE to communicate with all others in unit Gme, but it seems
that this capability is of less importance than several other fac-
tors. As was noted above, in [Sto2, Bok] it was shown that a
1-dimensional mesh of size n with a global bus System must
take Q(n!/2) time to solve a simple problem such as having
each PE start with a value and then applying a semigroup opera-
tion to these values. However, if smaller, "local” bus systems
are allowed, where each PE is still in at most one bus system,
then this problem can be solved much faster.

For example, partition the PEs into consacutive triples,
where each triple will represent a node of a balanced binary tree.
One PE in each triple is used for communicating with the parent,
one with the right child, and the remaining one with the left
child. Ifanode p hasaright child g, thena bus system con-
sisting of the parent PE of ¢ and the right child PE of p is
formed, and connsctions to left children are formed similarly.
To apply a semigroup operation to the values, the 3 PEs in a leaf
combine their values and use the bus to the parent 1o send it.
Any intermediate node combines values received with its initial
values and then sends the total up on its parent bus. The entire
algorithm takes ©(log #) time, and uses only one bus per PE,

Itis clear from this example that a mesh of size n can use
nonoverlapping bus systems to simulate any parallel computer
with an interconnection scheme which is a connected graph with
no more than /2 edges, where the simulation time depends



upoen the maximum degree of the graph. While this gives the
potential of very fast algorithms, arbitrary buses also destroy the
primary virtue of meshes, namely the fact that they can be laid
out without long wires (at least for lower dimensional meshes).
To preserve this important feature, from now on all bus
systems will be contiguous groups of PEs. All previously
studied bus systems satisfied this constraint.

Our goal is to find layouts of bus systems which are
"good". The first consideration is what design parameters one
can work with. In our case, if we take the basic instruction set
and speed of the processors as given, then there are four main
parameters: the dimension d, the number of PEs #, the maxi-
mum number of buses per PE b, and the actual layout of the
buses (that is, the specifcation of which PEs belong to which
bus systems). Givend, b, and n, L(d,b,n) denotes all possible
bus layouts.

Given d, b, and n, one could employ a problem-oriented
approach which tries to find optimal layouts in L(d,b,n) to solve
a given problem. In general this is quite difficult for nontrivial
problems, and while this is sometimes of use for important
problems such as the FFT, it runs into the additional difficulty
that an optimal layout for one problem may not be optimal even
for closely related problems. Further, any nontrivial layout will
be optimal for some problem. For example, in L(1,1,n), sup-
pose M is a layout where the buses partition the mesh into inter-
vals of length greater than 2. Then the problem of sending a
word of information from each PE which is leftmost in a bus
system in M to the rightmost PE in the same bus system can be
solved in unit time by M, but by no other member of L(1,1,n).
Hence M is a unique optimum layout for this problem.

This leads one to believe that perhaps a better approach is
to find a layout of buses which is somehow "good" for all
problems, or, more correctly, which isn't very "bad" for any
problem. We will define this by the time it takes to simulate all
other members of L{d,b,n), somewhat in the manner of
Leiserson [Leis] finding Fat-wrees of "equivalent” hardware
resources to simulate a given parallel computer. To have M1
simulate M2, we will assign a unique label to each bus of M2,
and each PE of M1 will start with the list of buses it would be
attacted to in M2.

Let T(M1,M2) denote the worst-case time for M1 to
simulate a step of M2, where M1 and M2 are in L(d,b,n), and
let T(MI1) = max{T(M1,M2): M2 € L(d,b,n)}. (Technically
T should have a subscript to indicate 4, b, and n, but as their
values will always be clear from the context, they will be
omitted.) Then M is an optimal layout in L{d,b,n) if T(M)=
min{ T(M1) : M1 € L(d,b.n) }.

In general it is extremely difficult to find an optimal layout
in any given L(d,b,n). Of the three parameters, d and b are the
most critical, in that a processor designed for given values of d,
b, and n may be suitable for a wide range of n values, but will
not be suitable for a wide range of d and b values since they are
directely tied to the number and type of I/O ports. Therefore we
will consider the values of d and b as being fixed, consider n as
varying, and try to find an optimal family of layouts with a
member for each n. Let F be a family of machines having a
member #(n) in L(d,b,n) for each n. We weaken the definition
slightly and say that F is an optimal family for dimension d and
b buses per PE if there is a constant C, independent of n, such
that T(FAn)) < C*T(M(n)) for all n, where M(n) is an optimal
layout in L(d,n,b). Thus, in this well-defined sense, an optimal
family is never very bad for any problem or any number of
processors. Optimal families provide a systematic way of
choosing a fairly good general purpose layout as soon as the
desired number of PEs is determined. The remainder of this
paper will concentrate on finding optimal or nearly optimal
families.

3.1 1-DIMENSIONAL MESHES
Our first result is an optimal family for d=b=1.

Theorem 3.1: Let # be the family of 1-dimensional meshes
with 1 bus per PE, where the member #{n) of size n has bus
systems which partition the PEs into intervals of length [n23]
(except for the rightmost interval, which has length
n-[n23T#(Ln'R1-1) ). Then ¥ is an optimal family for
d=b=1,and T(Fm) = 6(nl3).

Proof: To prove that the family is optimal, suppose Misa
member of L(1,1,n). If M has & bus systems, then it must
take atleast & time units to ransmit any information from one
end of M to the other, which can be done in a single time unit
with a global bus. Therefore, if k >n!3 then T(M) 2 !5, I
%< n3, then at least one of the bus systems has more than 72>
PEs. In this bus system, if we consider the system as parti-
tioned into intervals of length n'/3 | then the problem of sending
a word of information from the leftmost PE in each interval to
the rightmost one takes Q(n1/3) time for M, but can be accom-
plished in a single time unit by an appropriate member of
L(1,1,n). Therefore T(M)is Q(n13).

To see that T(#(n)) = @(n'7), fixnandletMbea
member of L(1,1,7). Assign unique labels to the buses of M
and let each member of #n) start with the label of the bus it




would belong to in M. To simulate a single time unit of M, each
PE first performs the internal calculations it would do in M, and
exchanges data with its neighbors as it would do in M. This
takes only constant time. To simulate the broadcasting, if a PE
was going to broadcast on a bus, it generates a record containing
the bus' label and the data it would have broadcasted. This is
circulated with its bus system in #(n), where sach PE on the
simulated bus performs its appropriate action upon receipt. If a
PE on either end of the bus system is on the simulated bus, then
it copies the circulating record. This has taken @( n13) time.

Now the following steps are repeated 2'/3-1 times. Bach
PE at the right end of a bus of #(n) which is holding a copy of a
circulating record sends the record to its left neighbor. If the
neighbor is in the same simulated bus it keeps the record, other-
wise it just ignores it. The PE at the left end of each bus of #(n)
similarly sends any held record to its right neighbor. Now any
PE at the right end of a bus of #») which has just received a
record broadcasts it, and if the PE at the left end of the bus is on
the same simulated bus it records it, and all PEs on the same
simulated bus perform their eppropriate action. Then any PE at
the left end of a bus of #(n) performs a similar broadcast.

Each step takes unit time, so this part has taked ©( 21/3)
time. Atits end, the simulation is completed. B

To find optimal families for 4=1 and 5>1 there are many
more possibilities, but they can be reduced to a managable form.
The following lemma shows that members of L(1,b,n) canbe
transformed into other members where the bus systems are more
structured, without significantly altering the time to perform any
algorithm. The proof is quite straightforward and its proof will
be ommited. Figure 3 illustrates its use.

Lemma 3.2: Fix b . There is aconstant C (depending only
on b) such that, for any » and any machine M in L(1,b.n), there
are machines M1 and M2 in L({1,b,n) such that

2) the bus systems of M, M1, and M2 can be assigned to
layers 1.5 ;

b) foreach of M, M1 and M2, within each layer the bus
systems are nonoverlapping;

¢) Each bus system of M1 is a subsystem of a bus system of
M at the same layer;

d) The bus systems of M1 and M2 are the same, but may be
in different layers;

e) bus systems of M2 at layers with smaller numbers either
don't overlap with, or completely contain, bus systems at
layers with larger numbers; and

f) M2 can simulate a single time step of M in C time steps.
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Using this lemma simplifies the analysis of optimal layout
of bus systems where each PE can belong to at most b >1 bus
systems. Let Ly(1,5,7) denote those elements of L(1,5,1)
where at least one of the buses is a global bus. One first finds
an optimal family within Ly(1,b,n) by using an optimal family
in L(1,b-1,n), and then uses this to find an optimal family in
L(1,b,n).

For example, to find an optimal family in Lg(l,z,n), one
will partition the # PEs into submeshes of length x, which in
turn will be arranged as an optimal member of 2(1,1,x). To
choose x, the global bus can wansfer values (as pant of the simu-
lation of broadcasts) from each submesh to the next in 8(n/x)
time, while Theorem 3.2 shows that within each submesh the
simulation will take ©(x?) time. Balancing these wo gives
x=8(n*/%) , and a simulation time of ®(n*4). Straightior-
ward arguments then show that this is indeed optimal. Figure 4
shows optimal families for small values of b.

We note that the proof of Theorem 3.1 used information
about optimal families of Ly(1,1,n) to find an optimal family of
L(1,1,n), although it was not stated in Such terms. Once the
proof was reduced to the consideration of the existence of a bus
system of size at least n%2, the analysis of this bus system is
really just a consideration of an optimal layout in Z,(1,1,#%3).
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Theorem 3.3: Fix b. There is an optimal family in Lg(l,b,n)
with a simulation time of @(n/(2%)), and an optimal family in
L(1.b,n) with a simulation time of ©(n}/(22+1)), 1

3.2 2-Dimensional Meshes

For applications such as image processing or matrix man-
ipulation, 2-dimensional meshes are of more interest than
1-dimensional ones, and large meshes such as the MPP [Bat]
are 2-dimensional. Keeping the requirement that bus systems
are connected, there are suddenly many more possibilities. For
example, in L(1,1,n), if each PE starts with a value and some
unit-time semigroup operation is to be applied to all the values,
then it is easy to show that Q(n!/?) time is required. (This can
be attained using the family in Theorem 2.1 .) Moving upa
dimension, in [(2,1,n) this can be computed in tree-like fash-
ionin ©(log n) time if the bus systems are arranged in an "H-
tree” configuration shown in Figure 5, where only the PEs at the
ends of buses acrually broadcast on, or listen to, their bus.

To find an optimal family in L(2,1,n), we first note that
the problem of moving a value from the leftmost PE in each row
to the rightmost one can be accomplished in unit time if there is a
global bus per row, and a similar fact is true for columns. A
counting argument can be used to show that any layout in
L(2,1.n) must take Q(n'/*) worst-case time to simulate these
two, so any optimal family must have a simulation time of
Q(nl/*).

One family which achieves this simulation time is based on
the pyramid computer. The pyramid has a series of layers, each
of which is a 2-dimensional mesh. Each layer has 1/4 as many
PEs as the layer above, and each PE is connected to 4 PEs
below (its children) and one PE above (its parent), in addition to
the mesh connections on the same level. The pyramid is not
naturally a member of L(2.1,n) since normally one obtains an

embedding of a pyramid computer into the plane by adding
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"H-tree" layout of buses in 2-dimensional mesh

Figure 5

mesh connections between the nodes at each level of the H-tree.
This introduces crossings of the edges of the embedded pyra-
mid, so the resulting layout would either not have contiguous
bus systems, or would have more than 1 bus per PE. To avoid
this, wherever there is a crossing, the simulated wire corre-
sponding to a parent/child connection stays as it was, while the
wire corresponding to a mesh connection is broken into two
pieces.

It is easy to show that no simulated wire is broken more
than once. To simulate a step on the pyramid computer,
information traveling along a broken wire uses the real mesh
connections to pass from one piece (bus) to another, so a ime
step in the pyramid computer takes a constant amount of time to
simulate.

Theorem 3.4 Bus versions of pyramid computers are an
optimal family in L(2,1,%), with a simulation time of ©(n1/4).

Sketch of proof: The fact that this time is best possible was
mentioned above. The final part needed is a pyramid algorithm
to accomplish arbitrary simulation of broadcasting. Since each
bus in a member of L(2,1,7) is connected, the simulation can be
performed by a straightforward use of the image-based pyramid
computer algorithm for component labeling [M-S1]. This
pyramid algorithm needs ©(n!*#) worst-case time. I




For b>2 far faster simulation times are possible. The only L T T e e e e e -
lower bound we can prove on is €(log n), which is slightly less
than the best time we can achieve. Therefore we cannot claim to _t
have found an optimal family, but it is nearly optimal. Further, .
we suddenly have the ability to use a family with only 2 buses e il S e
per PE to provide nearly optimal simulations of b buses per PE
for any b22. One can immitate the "mesh-of-trees" or "orthog-
onal trees” organization [Leil, Lei2], using b=2, by taking a —;
strip of 1g(n) rows (or columns) and partitioning them into
buses, where the first row in each strip has buses of length 2,
and each row has buses twice as long as the preceeding one.
This is illustrated in Figure 6. Showing a lack of originality, log, n
this configuration will be called orthogonal trees of buses. ::

Theorem 3.5: There is a constant € , independent of any
parameters, such that if M is a 2-dimensional mesh of size n
with contiguous bus systems, where each PE belongs 1o at most
b bus systems, then the orthogonal trees of buses of size n can
simulate a step of M in no more than  Ch(lg n)*/1g(lg n) steps.
Sketch of proof: The algorithm uses divide-and- conquer to
simulate the passing of messages along buses, and is in fact
essentially an algorithm for labeling connected components in
digitized images on an orthogonal trees computer [M-S2]. Mes-
sages which must pass through the boundaries of squares of
size s are passed, and then squares of size s*lg(n) are used,
and so on, in an "upward" movement of messages. Then a

Row bus systems for orthogonal trees of buses.
The column bus systems are the same, but rotated.

Figure 6

vertices of the graph, and decide if all components are
biconnected.

d) Given a black/white image, label its connected compo-
nents, find the nearest neighbor of each component, and
decide if each component is convex.

Proof: See [Hua, Leil, Lei2, M-S2] for the orthogonal tree

" " . e s i I )
downward" movement is used to distribute messages in a algorithms. 1

square of size s¥1g(n) 1o each subsquare of size s which
should receive the message. Fach stage takes logarithmic time.

g 3.3 Higher Dimensional Meshes

Besides providing a nearly optimal family with the ability  The orthogonal trees of buses design can be extended to
to also efficiently simulate 2-dimensional meshes with more higher dimensions even for b=1 since there is enough"room" to
resources (buses per PE), the orthogonal trees of buses can ha\'fe buses going in orthogonal directions without intersecting.
directly provide fast solutions to a range of problems. As an Using the same ideas as before, we obtain:

example, we note the following.
Theorem 3.7: Fix the dimension d. There is a constant C |

Theorem 3.6: The orthogonal trees of buses can solve the depending only on d, such that if M is a d-dimensional mesh of
following problems in poly-log time: size n with contiguous bus systems, where each PE belongs to
a) Given the weight matrix of an undirected graph, label its atmost b bus systems, then, after initialization, the d-dimen-
components and mark a minimal weight spanning forest. sional orthogonal trees of buses of size n can simulate a step of
b) Given the adjacency matrix of a directed graph, mark a M in no more than Ch(lgn)¥/lg(Ign) steps. i
directed spanning forest.

¢) Given the adjacency matrix of an undirected graph, decide
if the graph is bipartite, find the cyclic index of the graph,
mark all bridge edges of the graph, mark all articulation
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4. FINAL REMARKS

Theorem 2.1 points out a nasty complication when anal-
yzing parallel algorithms, in that some "independent” problers
can be profitably combined. While technigues such as pipe-
lining are often used to combine problems so as 10 reduce the
total fime for solving a collection of problems, they do not
decrease the time to solve a single problem. Actually, the algori-
thm in Theorem 2.1 is a variation of pipelining, and does not
decrease the time to solve a single problem, but this is because
each problem is properly thought of as trying to determine
something about all the values in a given row with the entire
mesh plus buses available to solve the problem. While thig
shows that Theorem 2.1 did not really solve a collection of
problems faster than any single one could be solved, it does not
fully explain the more subtle difference that enables us to find
the first 1 in each row faster than the sum of the Is in each row.

In section 3 we defined a notion of optimal family of
machines subject to resource limitations (the dimension 4 and
number of buses attached to any PE b). This definition is in
terms of the maximum time it takes to simulate any single step of
any other machine with the same resource limitations, a defini-
tion which seems very robust in that an optimal machine will
never be very "bad" on any problem. For dimension 1 we gave
optimal families with layered buses organized in a tree-like man-
ner, and optimal simulation times decrease like ©(n(1+29)) a5 p
increases. For dimension 2, b=1 has an optimal family based
on pyramid computers, with a simulation time of @(n'/4), while
for 522 nearly optimal families based on orthogonal trees can
achieve simulation times of @(1g(n)*/1g(g(n))). Further,
orthogonal trees, which have b=2, are nearly optimal at simu-
lating any machine with 522, showing an instance where
increasing a resource (the maximum number of buses per PE)
does not provide much benefit. A similar situation holds in all
higher dimensions for 521.

We note that all of these simulations need only a constant
amount of space per PE (depending on b and d), and no extra
initiafion time. The similations are really all modifications of
connected component labeling algorithms, where the difference
is that each PE knows the name of the "components” it is in (the
bus systems), but needs to find the new "label” of the compo-
nent (the broadcasted message). Viewed this way, it is easy to
see that with slight changes we could relax the assumption that
the machine being simulated had no collision resofution on its
buses, while still using a simulator with no collision resolution.
If the collision resolution was of any simple form such as trans-
mitting the smallest message or a random one (the sort of resolu-
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tions used in PRAMSs with concurrent write capabilities), then
the collision resolution can be incorporated in the simuiation
algorithm since the collision resolution is essentially just the
same as the resolution of deciding what label to assign to 2
component.

For all of our 1-dimensional results, and for the 2-dimen-
sional results with b=1, this will not alter the optimal simulation
times. For the other results, which used orthogonal trees, the
times will increase slightly to ®(log?n) since this is best
known time for component labeling on orthogonal trees [M-S2].
Itis an open question whether one must really pay this slight
penalty (a factor of log(log n) ) to simulate collision resolution
on a machine without it.
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