Proc. 23 Symposium on Foundations of Computer Science, |\EEE, 1982, pp. 272-279

USING CLERKS IN PARALLEL PROCESSING

Quentin F. Stout

Mathematical Sciences
State University of New York
Binghamton, New York 13901 USA

Some models of parallel computation con-
sist of copies of a single finite automa-
ton, connected together in a regular
fashion. 1In such computers clarks can oe
a useful data structure, enabling one to
simulate a mors powerful compuzer for
which optimal algorithms are easier to
design. Clerks are us=d here to give
optimal algorithms for the 3-dimensional
connected 1s problam on a parallel proc-
essing array, and a circle construction
problem on a pyramid c=llular automaton.

s

In this paper w2 sclve two open prob-
lems in the area of parallel processing.
dowever, we consider the method of solu-
tion to be of more interest tham ths prob-
lzms tnemselwves, 2ven though one has b=san
called a "classic open problea" of compu-
ter scisnce, (Kosaraju[8]). Basically,
w2 solve problsms by de2signing algorithms
for more powerful models of parallel com~-
putation, and than use a data structure we
call a clerk to simulate the more powerrtul
computser on the target medel. This is a
systematic method for atracking a wide
variety of problems, and to illustrate
this we have chosan two considerably
different open problems on two different

models. The first app=2arance of clerks is
in Stout{ 12], which solves yet another
problem. This paper should be consider=d

as an account of work still in progress.

The models we us=2 are usually dascribed
in terms of finite state automata, but for
our purposes it 1s easisst to taks the
aquivalent view that =sach procassor is a
RAM with a fixed number of memory cells,
each of which has a fixed length. These
processors are called finite RAMs. Our
first problem is for a pyramid cellular

______ which has appeared in
[4,11,12,14] and elsewheras. Given a fixed

0272-5428/82/0000/0272$00.75 © 1982 [EEE

272

finite RAM we place a copy of it at each
node of a complete 4-ary tree of haight h,
where n is a norn=gative ianteg=r. A proc-
essor at height k can send, in unit time,
a fixed amount of information to any of
its nine neighbors: four sons at height
k-1, a father at height k+1, or the four
adjacent processors at height k. {The
base is at height 0, and processors on the
edges think thay ar2 connected to outside
procassors in a spscial "edge" state.

From this a procsssor can detarmine, for
example, if it is part of the base. See
[4].) All nine communication links can b=
used simultaneously independant of each
other, An input to a PCA consists of
loading desired valuss into the memory of
the bas= processors, setting all process-
ors except the apesx into a guisscent
state, and putting the apex into a start
stat=2. We pick ccorainates for the proc-
@ssors in the base so that, when viewed
from the apex, ths processor in the lowsar
left is at positicn (0,0) and the proc-
essor iIn the upper right is (n-1,n-1).
Notice n=2#%%h.

Circle Problem: Suppose initially one
processor in the base of a PCA is
lapeled "AY", another is lapeled "B®,
and all others are labsled "unmarked".
The problem is to lapel with an "av
all base processors whose dilstance to
thz "B" processor is no great=r than
the distance between the original "aw®
ana "B" processors. The distance
petwean the processars at (?'b} and
(c,d) is sqrtf (a-c) * + (b-d) T

The circle problem is due to Sakoda[11],
though we have altered it slightly to
improvs expositicn.

Our seccnd problem is for a mesh-con-
nected computer.
processing array (3-PPA) [8] of size n
consists of n copies of a finite RAM,
located at points with coordinates (a,b,c)
wher=s a, b, and ¢ are integers and
0<a,b,c<r-1 . Procsassors at (a,b,c) and
(d,e,f) can exchangs information in unit

time if and only if 1 = la-d|+ |b-e| + [c-f.
Processors along the sides and =dges can
be thought of as being connected to out-
side processors which are in a spacial
"edge™ state. An input to a 3-PPA con-
sists of setting the msmory of all proc-
2ssors and simultaneousiy starting all of
them in a special "start" state. In our
application each processor is initially
given either a 0 or a 1, which collec-
tively represent a digitized 3-dimensional
image. Two 1s are adjacenpt if they are in
processors which share a side, and two 1s
are connected if there is a path of adja-
ceat 1s which goss from one to the other.

Connected 1s Problem: Givan an pxnxn
input of 0s and 1s, can a 3-PPiA of
size 0 decide in O(n) time whether
or not all the 1s are connscted?

This "classic" opsn probleas is due to
Beyer[3], and has also appearsd in
[1,8,10]. The 2-dimensional problem was
solved in [3,9], and here we show that the
answWer to the 3-dimensional problem, and
in fact all higher dimensions, is "yes".

2.

Initially supposs that we are given a
pyramid computer where each processor is a
BRAM of urlimited memory, able to do addi-
tion, multiplication, 2tc. in unit tims,
and where each base processor has bsen
initialized to ccntain its coordinates.
For this model we give an e2asy 0 (log(n))
time solution, and then we simnlate the
solution using clerks. The apex sends
down a message to start, aad the processor
containing the "A" sends its coordinates
up to the apex. The apex sends this back
down to all processors, and then repeats
the process for thes "B" processor. Each
processor calculates the square of the
distance between the A and 3, and then
calculates the sguare of the distance from
it to the B. If the second number is no
greater than the first then it becomes an

MA" processor, and otherwise is
"unmarked™. The total time is O(log(n)).
Notice that each processor uses only a
fixed number of rsgistsrs, and the largest
number ever created is (2z-2)2 , which
neads 2*lg(n)+3 bits to be stored as a
signed binary nusber. (lg is log base 2.)

¥e now show hcow to use clerks to simu-
late the above algorithm on a PCA. Since
each processor is a finits RAM whose
memory size is fixed and independant of n
it is no longer possible for each base
processor to stors its pesition, nor to do
calculations which depend on n. This is
accompiished by the clerks, which in

273

effect do all the work. Each clerk lies
in a single column of the base and con-

sists of L consecutive processors, where

L = 2% 1g[k* (2%1qg (n) +3) +1]]
and k is a constant to be determined
later. Each column contains n/L clerks in
its base processors, and ¥ve consider only
the case n>L. In each clerk, the proc-
essor of lowest row index 1s called the
controller. Immediately following the

pum=-
bered 1 through k, =2ach consisting of

2*1qg (n) +3 consecutive processors. Each
processor in a pseudo-register uses one of
its memory cells to store one bit of
information for the pseudo-register. 1In
this manner, a ps=s=udo-register can store
the binary representation of integers from
-{4n2-1) to 4n? -1. e use PR1,...,PRK
to denote the pseudo-rsgisters. The
remaining processors imn a clerk, if any,
are unused during normal clerk functions.
See Pigure 1.

Each processor uses one asmory cell to
remember its typs. There are a fixed num-
ber of types, representing the fact that
the processor is a controller, the apex,
part of PR1, etc. Oncs the type of a
processor has been sst its' behavior is
determined throughout the algorithm.
Processors at heights 1 through lg (L) are
of type superviscr, and processors above
these are of type boss. (The apex is a
special type.) In each column each super-
visor is above cnly ons clerk or part of
one clerk, but each boss is above two or
more. When inforzation is being sent from

the apex to the clerks, each boss passes
it to all of its sons, while each supervi-
sor passes it only to its lowar two Sons.
By doing this, all information arrives at
a clerk only through the controller.

2.1 EXECUTING INSTRUCTIONS

Bach clerk has a fixed set of instruc-
tions. For the circlzs problem these
include copying, ccmgarisons, addition,
subtraction, multiplication, division, and
square root extraction., To s==2 hov these
are executed, sSuppos= the next instruction
is to copy PR2 to PR4. The controller
passes this instruction vo its neighbor,
vhich passes it to its neighpor, znd so
on. When the first processor in PERE2
receives it, it passes it along, sends a
copy of the bit it is storing, and then
sends an end-of-messags (EOM) indicator.
(The first processor in PRZ2 knows it is
first since its type is PR1 and it is
adjacent to a processor of typs PR1.)

This message is passed along, and as each
processor in PR2 recsives the EOM it adds
its bit and then sends the EOM. When the
stream reaches the first processor in PRU,
it passes along the instruction, and than

{n-1,n-1)

(0,0)

a) Clerks ona the base

Figure 1.

stores the next bit received (without
passing it along). Each processor in PRY
acts similarly, later processers having to
wait longer betwesn the arrival of the
instruction and their bit. We call this
process rolling a numbar into a pseundo-
register, When the last processor in PRY
receives EOM it sends back a signal that
the instruction is completed. Th= con-
troller receives this in 0 (log (n)) time
from the start of execution.

Compariscns and additions are similarly
performed, with other arithmetic opera-
tions being somewhat more complicated. A
suitable multiplication algorithm was
given by Atrubin[2], and is repeated in
Knuth[7,p.276]. For division and sgquare
oot extraction ome can either adapt the
fast izerative algorithms, as in [7], or
the on-line algorithes in [5,14]. (The
on-line algorithas produce an answer using
the digits {-1,0,1}, so their ansver must
be converted to standard binary notation.)

Details of these cperations will appear in
Stoutf 12], and each has the property that
it is completed in C (log(z)) tim=.

The crucial feature is that programs
consist of a fixed fipite number of
instructions, which can therefore bhe
stored in a finite RAM. Each instruction
takes O(log(n)) time, but since the con-
troller just issues an iastruction and
waits until it receives a signal to pro-

274

i

__. ¥ processors function
L-k[1g(n)+1]-1 extra
lg(n)+1 PRk
Ig(m)+l PR2
lg(a)+1 PR1
:] il centrcller

b) Processors wirhin a clark

Clerk Organization in a PCA

ceed, this dependence on n does not pre-
vent it from being an automaton.

2.2 TYPING AND INITIALIZATION

Algorithms have three parts: typing
each processor, initializing the pseudo-
registers, and performing the calcula-
tions. Each part takes O(log(m)) time,
giving O (log(n)) total tim=. The details
of typing and initialization are similar
to those in Stoutf{ 13], so we will only
briefly sketch the process. First wse
identify supervisors and bosses, which
requires us to deteraine 1lg(L). The ap=2x
states a message of 3 1s, one at a time,
followed by EOM. Each processor recsiving
this passes it on to its lower left son,
and whenever a processor raceives the £20M
it adds 2k 1s before sending the EOK
along. When this resaches the base (at
processor (0,0)) this processor passes it
along to processor (0,1), which starts
relling the 1s onto ths first row. dhen
processor (0,0) rsceives the ECH it adds
its 2k 1s and then the EGM. The last
processor to have a 1 rolled onto it is at
(O,k*(2*1g(n)+3)). Tais is tke only proc-
essor not having cther 1s pass over, and
when it receives the EQOM it starts it
up¥ards. The first processor to receiva
the EOM which also helped send the origi-
nal message downwards is at height 1g(l).
This is the highest level of a supervisor,

and it is straightforward to use this
processor to set the type of all other
supervisors and bosses in O (log(n)) time.

Since the bosses and supervisors have
been set, from now on, unless otherwise
specified, all messages from the apex will
entar a clerk only through the controller,

and all messages are sent to all clerks.
First the apex sends a 4, which when
received by a base processor tells it that
it is of type controllar. To identify the
processors in each clerk's PR1, the apex
sends three 5's fcllowed by ECGM. This is
passed on, each processor adding two 5's
¥vhen the EOM is received. When it reaches
the coatroller it is passed to the next
processor and rolled onto the clerk, and
when the controller receives EOM two 5's
are added and a message 1is sent upward to
start the next step. Each previously
untyped precessor receiving a 5 is of type
PR1. Each pseudo-register is built in
similar fashion, finishing the typing of
all processors in O (log(rn)) time.

de initialize ps2udo-registers so that
each clerk contains the x and y coordi-
nates of its ccntrcller, the x and y coor-
dinates of the initial 4 and B processors,
and L. These are similar, so we describe
giving each clerk the x coordinatas of its
controller. The apex first sends a 0 sign
bit to all children, then a 0 to its two
left children and a 1 to its two right
childran, siaultansously, followed by EOH.
Each boss and sup=2rvisor passes this
along, adding a final 0 for left children
and a 1 for right ones. Obtaining the x
and y cocordinates of A and B requires hav-
ing them inpitiate the stream, with esach
processor adding igitial bits depending on
which son is passiang up th2 message. When
this resaches the apex it is sent back down
to all clerks.

2.3 CALCULAIIN

(7]

We complete the algorithm by doing cal-
culations within clerks. Let (xc,yc) be
<ha coordinates of the controller, (xA,yA)
bz th=s ccordinates of the initial A proc-
zss50r, and (xB,yE) the coordinates of the
initial B procsssor. fach cleck first
comput2s (xA-x8)2 + (ya-y3B)2
square of the distance Zrom A
d represent this valuas.

the
Lazt

iz

to B).

Within a clerk, the processors to ba
labaled "A"™ form an (p2rhaps sapty) inter-
val. There ars thrse possibilities:
yc2yB, in which cas= the ipterval, if any,

goas from tha ccntrcllar upwards;
yc+L=-1<yB, whers ths interval goss down-

ward from the otb=r =nd of th2 clerk; or
yc<yB<yc+L-1, in wanich cas= tas intearval
is in the siddle or ths clerk. In

275

0(log(n)) time each clark de==
case applies to it. Thess ars
we discuss only what happens 1
one. The clerk tasts
(xc-xB)2 + (yc-yB)2 > @ ,
if true then no processors ars labeled
If false, it t=sts
(xc-xB)? + ((yc+i-1)-yB)Z < 4,
and if this is trus tk=n all processors in
the clerk become A's. OUtherwise deter-
minss the largest j in 0<j<L-1 such that
(xc-xB8)2 + ((yc+i)-yB)2 < 4,
for it is the centrellsr and the next j
processors which bscocm= A, It solvss this
quadratic equaticn by using, among other
operations, division and squars root
extraction. The clerk converts the j into
unary notation (using the entire clerk)
and labels the ccatrcller and the nsxt j
processors. Finally, the clerk signals
that it is f£inishsd. Whenever the lowsrt
tw0o sons of a supsrvisor, or all four sons
of a boss, signal that thay are done, that
processor in turn tells its parent that it
is done. The entire algorithm is finished
when the four scns cof the apex are done.
The last detail is that one must inspect
the computations to determins how many
pseudo-registers are needsd, and choses k
to be this valus.

rmines which
similar, so
n the first

and
h.

i+

Theorem There is an autcmaton such that
any pyramid cellular automaton constructed
from this automaton will solve the circile
problem in time linear in its height. []

our solution to the connected 1s prob-
lem is based on a divide-and-conguer stra-
tegy. This was used by Kosaraju[8] im his
vork on an extension of the 2-dimensional
connected 1s problem, and by Kassimi and
SahAni{ 10] for labeling connected compo-
nents of 1s using mesh-connected coaputars

of arbitrary dimeansion. Thes ¥Hassimei and
Sahni mesh-connected computers had a word-
size of O(log(mn)), and it is basically
their algorithm we will simulate. Their
algorithm labels each procassor containing
a 1, with two processors naving ths saae
label if and only if their 1s are con-
nected. Each prccessor containing a 1
starts with a labsl consisting of a conca-
tenation of its coordinates, and when fin-
ished each componeant is labeled with the
minimium such latel among its processors.

The algorithm labels components within
small cubes, and then coabines these to
label components within larger ones. #hat
appear to be seperats components in a
small cube may be connected together in a
larger one, but cply if they touch a side
of the smaller cubz. «hen 8 cubes of

edgesize k combine to form one of sdgesize
2k, one need only determine changes in
component labels due to adjacent 1s in
seperate cubes, and the2n inform all proc-
essors on the sides of the resulting cube.
This is repeated until the sides of the
entire computer are correctly labeled, and
then it is subdivided into 8 subcubes and
the process 1s repeated. Smaller cubes
are repeatedly merged to correctly label
the sides of the target cube, which is
then divided into 38 smallar target cubes.

The crucial part is ths joining of 8
cubes of edgesize k to form one of adg=-
size 2k. To simplify discussion we call
the original 8 cubes "prothers" and the
resulting cube the "parent". Each proc-
essor containing a 1 wnich lies on a side
of a brother which is adjacent to another
brother checks the adjicent processor in
the other brother. If it also contains a
1 then the processor forms a record con-
taining its label, the label g9i the adja-
cent processor, and its coordinates.
Meanwhile, processors on the sides of the
parent form a record containing their
label and coordinates. Tnis results in
0(k?) records to be brought together to
decide the new labelinygs. In O(k) time
the53_are moved to a subcube of edgesize
0[k2 3). There the new labels are deter-
mined using a ccnnected compon=nt algor-
ithm of Hirschberg[6] for use on a

paracomputer. Hirschberg®s algorithm
takes 0(log(k)2) time, but to simulate a
single step of the paracoamaputer takes
0(k2/3) time on the subcube, tesulting in
O(log(k)2 *k2/3) time o determine new
labels. These are then sa2nt pack to the
original processors, taking O(k) time to
arrive. HRepeated use of this procedursa
solves the labeling problem in O(n) tim=.

To adapt this algorithm to a clerk-
based solution of the connactad 1s problem
basically involves four areas. First we
need to show how to build clerks im a
3-PPA. Second, the most important feature
of the relabeling of the parent is that
most of the work is done in the subcube.
The subcube needs 0(k?) clerks, which
will take O(log(n)*kZ) spac=. As long as
k is 0(log(n)3) there will be sufficient
space, but for smaller cubes a completely
different procedurs must be used. The
3-PPA will be divided into small initial
cubes, labeled by this different proce-
dure, aad then all larger cubp=as will be
multiples of these initial ones. Third,
Wwe note that moving the records during the
relabeling of a parent's sides 1is the part
which takes 0(k) time. Thersfiore to avoid
an 0(n*log(n)) algerithm we must perform
this movement in O (k) time also, not the
0 (k*¥log(r)) which we g=t from blindly lst-
ting each step on the mesh-connected com-
puter be simulated in O0{log(mn)) time in

the clerks. Fourth, we must use the
resulting labeling %o decide the connected
15 problem.

3.1 CLERKS IN B J-PRA

The structure of cl=2rks is as befcre,
with a suitable number of pseudo-registers
of length O(log{n)). Again we let L
denote the length of a clerk. For simpli-
city we assum2 L<n and bocth n and L are
powars or 2., One diffarence is that we
now need three overlapping sets of clerks.
There is a set parallel to the x-axis,
having their controllers in the left, a
set parallel to the y-axis with their con-
trollers at the bottcom, and a set parallel
to the z-axis with their contrellers in
front. See Figure 2. We uses three sats

so that, given any processor on the facse
of an initial cube, there is a clerk con-
taining the processor and perp=sndicular to
the face. Purther, th2 processor will
either be the ccntroller or the last proc-
essor of the clerk. (Initial cubes will
have an edgesize which is a multiple of
the clerk length.) We say that the clerk
is attached to the processor. WNo clerk is
attached to more than One procassor.

since processors on edges and corners have
a choice of clerks to pe attached to, uwe
arbitrarily decre= that clerks parallel to
the x-axis have first priority, tollowed
by clerks parallel to the y-axis. UNotice
some clerks are not attached to any proc-
essor, and processors in the interior of
the initial cuobes have no attached clesrks.
This attachment is determinad py the
clerks prior to labeling the imitial
cubes, and clerks stay attached througnout
the algorithm. Since all later cubes are
multiples c¢f initial cubes, for all cuabes
it is still true that each surface proc-
essor has an attached clerk.

(n-1,n-1,n-1)

<

z
/Jh—_“-_
e X
(0,0,0)
Figure 2. Orientation of a 3-PPA

Each processor is in three clerks, so
we can think of each time unit as being
divided in three parts, with a processor
performing its action for each clerk dur-
ing its part. Usually we will discuss
clerks in cnly one direction, with th2
understanding that tha other directions
behave similarly.

Since we are allowed O(n) time to form
the clarks it can be done in several
straightforwvard ways. In O(n) time one
can deteramine lg{n) and I, and froa this
set up a single clerk. If this clerk is,
say, the one parallel to the x-axis with
its controller at (0,0,0) then it can, in
o(n) time, be corpied along the bottom
line. This line can then be copied along
the bottom plane, and then the plane
copied throughout the cub2, 1in O (m) time.
Clerks can also be initialized in 0(n)
time so that they centain ths coordinates
of their controller, their orientation
(i.e., the axis they are parallel to), L,
and lg{n). The datails of all of this are
left to the reader.

3.2 INITIAL CUBES

#e need to determins ths sizes of oar
initial cubes. We note that there is a C
{(¢hich we will nct determine) such that if
a cube has edgesize greatsr than Cc*1g(n)3
then there is roca to carry out the
Hirschberg procedure. Define k to be

2*xx[1g[C*1lg(n)’ 17 -
our initial cubes will have an edgesize of
k. Since L is alsc a power of 2, L evenly
divides K. Pirst =ach clzark determinss
whether or not it is attached to a proc-
essor. If so then the processor is on the
surface of an initial cuba, and the clerk
inforas it of the directions "outward" to
the cub2. All uninformed cubes must be in
the interior of an initial cube. This
“gutward® informaticn will enable us to
keep some operations within a single ini-
tial cube.

Each processor containing a 1 starts in
an "ynused" state and may later bescome
wysed”, We start going around the surface
of the cube in increasing order of the
concatenated coordinates. Each surface
processor has a "turn" which takes a fixed
number of steps, and it is notified when
to start its turn by its attached clerk.
If the processor ccntains a 0 then nothing
happens during its tura, and similarly
nothing happens if it contains a 1 but has
been Mused". Otherwiss it contains a 1
which lies om an untraced component. It
turns "on", and informs sach processer
which is net in an outward direction.

Each processor ccntaining a 1 which is
informed that a neighbor is "on" turns
itself "on" and passes along the message,

277

never passing it in an outward direction.
This can ccntinue fcr no more than k

time units, after which no EOIe pProcCesscors
can turn on. All clerks have been count-
ing, and when this time is reached they
change any “on" preocesscrs within them to
Hysed", Further, if the clerk is attached
to a surface processor which was turned on
in this turn, then its label beceomes that
of the processor whose turn it was. Thare
are only 0(k2) turns, taking O(k3) time
each, resulting in a total of 0(k-?) time,
or O[loq{n)l5). MYow the surfaces of the
initial cubes are correctly labeled, amnd

all larger cubes are labeled via the
Nassimi and Sakni algorithm.

3.3 RECORD HOVEMENT

Suppose 8 brother cubes of edgesize k
are being merged and relabelsd to form a
parent cube. W#e nsed to show that in only
0(k) time we can mova the records gener-
ated at the surfaces down to the subcube
where the Hirshberg algorithm is par-
formed. (¥ote: we are using a 3-PPA to
simulate a mesh-connected computer which
is simulating a paracomputer!) The prob-
lem of mowving the data tc the subcube can
be solved if we can solve the follcwing
problem: sSuppose ¥e have a cube of edge-
size m, where m is a aultiple cf L and
m2/3 is an integsr. Suppose each clerk
perpendicular to tne leftmost rface of the
cube has a record. In U(m) time we must
move these records, one par clerk, into
the m2 clerks parallel to the x-axis in
the rectangular box in th= lower left cor-
ner withiheiqht 22/3, length L*n2/3 , and
depth m2/3,

To solve this new problem, imagine the
n processors on the end as peing in
m2/3 squares with sidas m2/3 . Thesa
squares are numbered in some =asily compu-
tible marner, frca 1 to m2/3 . GEach clerk
parallel to the x-axis ccmputes thne number
of the sguare on the line of that clerk,
and each clerk determines if it is that
clerk along this line. <That is, if the
square is number 4, it determines whethsr
or not it is the fourth clerk from the
left in this cube. Then the records are
passed right until they ra2ach the appro-
priate clerk along their line. What is
happening is that entire sguarss are mov-
ing in parallel, finding their appropriate
x position. This takes O(L*m2/3) tiame,
and then all squares are amoved along the zZ
direction until they are at the front of
the cube. This takes O(m) time, and thsan
they are moved down in thz y direction
until they are at the bottom. This also
has taken O(m) time, and the movement is
completed. Furthar, the inverse opera-
tions can be similarly performed in O(m)
time, and we thersfore coacluds that we

can merge 8 brothers of edgesize k in 0(k)
tiae.

The final details inveolve adapting the
labeling algoritha into a scolution of the
connected 1s proktlem. The processor at
(0,0,0) will be the omnes which determines
the answer. When we set up tha clerks we
also tell each processor wiaich way to send
information towards the origin. W2 notice
that for each labeled component of I1s
there is exactly cne processor whose con-
catenated coordinates e2guals the label of
the coaponent. When the labeling is com-—
pleted, each clerk which is attached to a
processor determines whether or not this
condition is true, and if true starts a
message toward the origirn. If two such
componant messages arrive at a processor
at the same time then it sends a "no" mes-
sage toward the origin, and if the origin
ever receives twe such mesSsagss its answer
is no.

Unfortunately, the labeling process
will miss small compon=nts which lie
entirely in the interior of an initial
cube. To check for this, esach processor
at the lower left front corner of an ini-
tial cube starts a signal which systemati-
cally moves through the cube. (Remember
that processors cn the sides of this cube
know which directions are outward.) It
the signal reaches the upper back right
corner it returns to where it started, but
if it reaches an "unused™ 1 it turns that
1 on, which then starts tracing out its
component. Meanwhile the clerk attached
to the processor in the lower front left
of the cube is ccunting, and if the signal
has not returned after a time =qual to
twice the number of processors in the cube
then it knows that a new component has
been rfound and sends a signal to the ori-
gin. In this case it also starts a second
signal through the cube, just like the
first, which either rsaches the far corner
and returns or else encounters an unused
1, Cepresenting yet another componsnt.
Again the one clerk is counting, and if
the second signal alsc fails to raturn

then it starts a "no" signal towards the
origin., Meanwhils the clerk attached to
the origin determines the maximum time it
must wait. If two or more component sig-
nals, or any "no" signals, resach the ori-
gin within this time then the ansvwer is
no, while otherwise it is yes. This
solves the 3-dimensicnal connected is
problem in O(n) time, and the sclution
method =asily extsnds to all higher dimen-
sions.

278

Theorem Fcor any dimensicm 4 there is a
finite automaton such that a d-dimensional
hypercube formed from n**d copies of this
automaton will sclve the connected 1s

problem in O(mn) tims. []

This theoream, and its proof, can be
applied to a variety of topological compu-
tations. We dc not pursu= this here, but
do state a corollary linking PPAs and
automata traversing finits dimensional
tapes. The interested reader should con-
sult [3,8].

Theorem For any dimension d and any pred-
icate recognizable by a d-dimensional
finite state autcmata, there is a d-dimen-
sional PPA which recogniz=s in linear
time. [J

p % o

4. FPINAL BEHABKS

The two-stage process of first design-
ing an algeriths for a more powerful com-
puter and then simulating this using
clerks can be a ussful method for sclving
a range of problems on a varisty of models
of parallel computation. This procass
tries to postpone as many gruesome details
as possible, enabling one to g2t a reason-
able start on a problem. O©Of course, the
process also points out the desirability
of working with the more powerful compu-
ter, with its aeple sordsize, instead of
shackling oneself with a model based on
finite state autcmata.

Since clerks cccupy several processors,
one requirement for a clerk-bas=d solution

is that the number of powerfui processors
being simulated must bes less than the
total number of processors. In the circle
problem this reduction was accoamplished by
using geometric considsrations, while for
the connected 1s problem it required a
completely different a=thod to start the
small cubes. Sec far aost image processing
problems seem amenable to such a reduc-
tion.

We should mention that each clark used
herein is a linear automaton, but in gen-
eral one cculd arrange them in other
shapes. For exampls, squares or cubes nay
be useful for prcblems whers each powarful
processor does many computations. The
reason for this is that a square clerk
could keep a k-bit pseudo-ragister in a
square VExvK and do all opsrations (addi-
tion, multiplication, division, square
root, compariscas, etc.) in O(+k) time,
instead of the O (k) needed if the pseudo-
register is linear. The details of such

arithmetic will appear in Stout[13].
do not yet kmow of an algorithm which
requires these mers rapid clerks, but we
suspect that is because so rfew problems
have bezn analyzed. Other possible varia-
tions on clerks include having pseudo-re-
gisters which are largsr than a logar-
ithmic function of th2 computerfs size,
having clerks whose size changes through
the algoritha (perhaps starting with a
fixed size and grosing until their length
is 0(iog(m))), oz, for pyramid computers,
having clerks which do not lie entirely in
the base.

We

BEFERENCES

1« C. Arcelli and S. Levialdi, Parallel
shrinking in three dimansions, Comp.
Graphics and Image Proc. 4 (1972), 21-30.

2. A. J. Atrubin, 3 on=-dimensional real-
time iterative multiplier, IEEE Trans.
Elect. Comp. EC-14 (19685), 394-399.

3. ¥. T. Beyer, Eecognition of topological
invariants by iterative arrays, Ph. D.
thesis, Mathematics, Massachusetts
Institute of Technoclegy, 1969.

4, C. R. Dyer, A& fast parallel algorithm
for the closest pair problem, Info. Proc.
Latt. 11 (1980), 49-52.

5. M. Ercegovac, An on-lin= sguare rooting

algorithm, Proc. 4th Symp. on CCHp.
Arith., IEEE Computer Society, 1978,
183-189.

6. D. Hirschperg, Parallel algorithms for
the transitive closure and the connected
compon=nts problems, Proc. ACM 3th Anmn.
Symp. Theory of Ccmputing, 1976, 55-57.

7. . ©. Knuth, Ihs A
Programaing, Yol. 5
Algorithms, Addison-wesley
1969.

g8, S. R. Kosaraiju, Fast parallesl process-
ing array algoritnms for soms2 Jraph prob-

lems, ACHM Symp. cn Theory of Comp. 11
(1979), 231-236.
9, S, Lewvialdi, Cn shrinking binary pic-

ture patterns, Comm. ACM (1972), 789-801.
10. D. Hassimi and S. Sahni, Finding con-
nacted components and connected ones oOn a
mesh-connected parallel computer, S5IAM J.

Comp. 9 (1980).

279

1. B. Sakoda, Parall=sl construction of
polygonal boundaries from givan verticsas
on a raster, Penn. State. Univ. Comp. S5ci.
cS31-21.

12 Do
with a
appear

F. Stout,
pyramid cellular automaton,
in Info. Eroc. Letters.

prawing straight lines
to

Arithametic om finitse
to appear.

13. Q. F. Stout,
dimensional automata,

14. S. L. Tanimoto ana A. Klinger (eds.).,
Structured Computsr Vision: Maching
Perception Throygh Hierarchical
Computation Structures, Academic Press,
New York, 1980.

15. K. 5. 1Irivedi and 2. D.

On-line algorithms for division and multi-
plication, IEEE Trans. Computers C-26
(1977), 681-687.

Ercegovac,

