
In Proc. 4th Conf. on Hypercube Concurrent Computers and Applications(1989), ACM, pp. 59–66.

PARALLEL ALLOCATION ALGORITHMS FOR HYPERCUBES
AND MESHES

(Preliminary Version)

Marilynn Livingston� Quentin F. Stouty

Department of Computer Science Dept. of Elec. Eng. and Comp. Sci.
Southern Illinois University University of Michigan

Edwardsville, IL 62026-1653 Ann Arbor, MI 48109-2122

Abstract

We consider the problem of subsystem allocation in the
mesh, torus, and hypercube multicomputers. Although the
usual practice is to use a serial algorithm on the host proces-
sor to do the allocation, we show how the free and non-faulty
processors can be used to perform the allocation in parallel.
The algorithms we provide are dynamic, require very little
storage, and work correctly even in the presence of faults.

For the 2-dimensional mesh and torus withn processors,
we give an optimal�(

p
n) time algorithm which identifies

all rectangular subsystems that are not busy and not faulty.
For thed-dimensional mesh and torus of sizen = m�m�
� � � �m, we show how to find all submeshes of dimensions
k � k � � � � � k, for all k � m, in optimal�(dn1=d) time.

Since the number of subcubes in a hypercube of dimension
d is 3d, the current practice is to allocate only a fraction of
the possible subcubes, which degrades the fault tolerance and
dynamic allocation ability of the system. We consider two
approaches to this problem. In one approach, we limit the di-
mensions of the subcubes to be allocated, and show, for fixed
q, how to determine all non-faulty and non-busy subcubes
of dimensiond � q in a hypercube of dimensiond in time
�(d). The second approach involves allocating only a subset
of the possible subcubes in all dimensions. We give optimal
parallel algorithms for implementing several previously sug-
gested allocation schemes of this type, including single and
multiple versions of buddy, Gray-coded-buddy, andk-cube
buddy systems. The parallel versions of these are signifi-
cantly faster than the known serial allocation algorithms, and
they provide a significant improvement in the fault tolerance
of the system. We also introduce a new allocation system, the
cyclical buddy system, which has a simple, efficient parallel
implementation but which does not naturally arise as a serial
allocation system.

1 Introduction

In MIMD parallel computers containing large numbers of
processors it is desirable to be able to allocate subsystems.

�Partially supported by National Science Foundation grant CCR-
8808839

yPartially supported by National Science Foundation grant DCR-
8507851 and an Incentives for Excellence Award from Digital Equipment
Corporation

This capability is needed in multiuser environments such as
those provided by the Intel or NCUBE series of hypercubes,
and also in single user systems that allow multiple subtask-
ing. In addition, subsystem allocation can be used to increase
fault tolerance by allocating only subsystems with nonfaulty
processors. Unfortunately, the existence of a large number
of subsystems in a network results in an allocation problem
that is computationally intensive, if one tries to allocate all
possible subsystems. Thus, in practice, only a small fraction
of the possible subsystems are checked for availability.

One consequence of using a scheme that allocates only a
part of the possible subsystems is that a request for a par-
ticular size may be refused even when one is available. To
see how this affects the fault tolerance of the system, con-
sider the performance of the buddy system in allocatingq-
dimensional subcubes in ad-dimensional hypercube. This is
the system currently used on the NCUBE hypercubes, and it
is discussed in more detail in Section 3. While there is a to-
tal of

�
d
q

�
2d�q subcubes of dimensionq, the standard buddy

system allocates only thoseq-dimensional subcubes deter-
mined by fixing the high-orderd� q address bits. There are
only 2d�q of these and each processor is in exactly one such
subcube. Now, withn = 2d andm = 2q, letBw(n;m) de-
note the least number of faulty (or busy) processors which
make all the buddy system subcubes consisting ofm proces-
sors unavailable for allocation in a hypercube ofn proces-
sors, and letKw(n;m) denote the analogous number for the
case of complete allocation. That is,Kw(n;m) is the least
number of faulty processors which cause all subcubes ofm
processors to be unavailable. Takingd = 20 andq = 18
we see that the buddy system allocates only 4 of the possible
760 subcubes of dimension 18. Also, it is straightforward to
check thatBw(2

20; 218) = 4 andKw(2
20; 218) = 8. Ex-

tending this example, we find thatBw(2
d; 2d�2) = 4 while

Kw(2
d; 2d�2) = log d+�(log log d) ([BeSi, GHLS, KlSp]).

Thus, the buddy system becomes progressively less fault tol-
erant asd increases. Further, if we consider the expected
case behavior, whereBe(n;m) andKe(n;m) denote the cor-
responding numbers for the situation in which the faulty (or
busy) processors are distributed independently and uniformly
throughout the hypercube, it is shown in [LiSt] through sim-
ulation thatBe(2

20; 218) � 8:1 andKe(2
20; 218) � 24:6.

Thus, in the worst case, we suffer a 50% decrease and, in the
expected case, a decrease of 67% in the fault-tolerant alloca-
tion ability of the system.

1

To increase the number of subsystems which can be al-
located, without increasing the time required to do the allo-
cation, we abandon the current practice of having only the
host computer decide the allocation, and instead utilize the
parallel computer. In this paper, we give optimal algorithms
to allocate subsystems in parallel for the hypercube, mesh,
and torus. We use only free and nonfaulty processors to de-
termine the available subsystems, thereby avoiding any in-
terference with currently running tasks and assuring that the
process works correctly even in the presence of faults. More-
over, apart from the transmission of final availability infor-
mation to the host, only neighbor-to-neighbor communica-
tion among the processors is used.

Our allocation algorithms actually find every available
subsystem that is allowed under the given allocation scheme.
This information allows choices to be exercised to minimize
fragmention of the whole system. For example, if a sub-
system of sizek were requested, a desirable choice among
several available ones would be one that is not contained in
any available subsystem of size greater thank. A further ad-
vantage of our parallel allocation algorithms is that they are
dynamic and require very little storage. By determining lo-
cally which processors are nonfaulty and free at the time of
the request, there is no need to maintain this information cen-
trally. These allocation algorithms should be of considerable
practical interest, particularly in large systems, for not only
are they efficient, most of them are relatively simple to im-
plement, and a significant improvement in fault tolerance is
attained by their use.

In Section 2 we consider the allocation problem for thed-
dimensional mesh and torus of sizen = md and dimensions
m � m � � � � � m. We find all submeshes of dimensions
k � k � � � � � k, for all k � m, in optimal�(dn1=d) time.
A simple modification of this algorithm determines, for a
givenk, the available subsystems of dimensionsk�k � � ��k
in time �(dk). Furthermore, whend = 2, our algorithm
finds, for each non-faulty and non-busy processor, the size
of the largest non-faulty and non-busy rectangular submesh
for which the given processor appears in the upper left-hand
corner.

We address the problem of allocatingq-dimensional sub-
cubes in ad-dimensional hypercube in Section 3 and show
how to implement previously suggested schemes such as
those based on the buddy system, the gray-coded buddy
system, multiple-buddy and multiple-gray-coded buddy sys-
tems, all in time�(d). We also introduce a new allocation
scheme, called the cyclical buddy system, which arises nat-
urally from our parallel implementation of the buddy sys-
tem, and show how to implement this system in optimal�(d)
time, as well.

The problem of implementing the complete allocation
scheme for hypercubes is considered in Section 3.4. Since
there are3d subcubes in a hypercube of dimensiond, deter-
mining all fault-free subcubes of all dimensions at the time
of the request is impractical. Allocating only the subcubes
of dimensiond � q, for fixedq, is still impractical if we use
a naive serial algorithm such as one which checks each of
the2d�q pe’s in all

�
d
q

�
2q subcubes, for this requires at least

�(
�
d
q

�
2d) time. Much more efficient serial algorithms are

possible which require significantly less time, but they typi-

cally require extensive storage and still have poor worst-case
times. At the least, any serial algorithm which must check
the current fault status of processors must have a worst-case
time of
(2d). Here we give a parallel algorithm which finds,
for fixedq, all subcubes of dimensiond� q in �(d) time.

Complete allocation in hypercubes may not be the method
of choice whend, q, andd� q are all large, or when alloca-
tion of all sizes is necessary. For such cases, we recommend
the use of thek-cube buddy systemfirst introduced in [LiSt].
For fixedk, this system allocatesq-dimensional subcubes in
which the lastd� k bits are arbitrary and the firstd� q + k
bits are the nodes of ak-subcube of ad� q+ k-dimensional
cube. In Section 3.5 we give a�(d) algorithm for the al-
location of all subcubes allowed by this system. With al-
most no increase in allocation time, our implementation of
the k-cube buddy system offers a significant improvement
in fault tolerance over the buddy and gray-coded buddy sys-
tems currently in use. To contrast the behavior of thek-cube
buddy system with the buddy system, for example, let us take
k = 2, d = 20, q = 18, and letQBw(n;m) andQBe(n;m)
denote the quantities analogous toBw(n;m) andBe(n;m)
for the 2-cube buddy system. AlthoughQBw(2

20; 218) = 5
which is a small improvement overBw(2

20; 218), we have
QBe(2

20; 218) � 12:8 [LiSt], which represents a 50%
improvement over the expected case behavior of the single
buddy system.

Throughout this paper we will assume that each processing
element (pe) in each of the networks under consideration has
a unique identification number (id), and that each pe knows
its own id. Further, we assume each pe has a fixed number
of registers, each of size�(logn), and can perform standard
arithmetic and Boolean operations on the contents of these
registers in unit time. In addition, we assume that each pe can
send (receive) a word of data to (from) one of its neighbors
in unit time, and that it can determine which of its neighbors,
if any, are faulty. Finally, we assume that there is some host
or controller which sends a message to all processors initial-
izing the process, and that each pe can communicate back to
the host.

A processing element will be termedavailableif it is nei-
ther busy nor faulty. Our algorithms are performed by all
available processors, and are designed so that no messages
are sent to, nor expected from, unavailable processors. While
the algorithm descriptions appear synchronous, they are to
be run asynchronously, with each processor waiting for the
appropriate messages from its nonfaulty neighbors. Timing
will be in terms of the slowest available processor. We con-
sider only the time to locate subsystems, not the time used by
the host to pick among them since that is dependent on the
process used to make the selection.

2 Mesh and Torus Allocation

Before describing the allocation algorithms, we first intro-
duce some notation for the mesh and torus.

Theone-dimensional mesh, or linear array, of sizen con-
sists ofn processing elements arranged in a line with adja-
cent nodes connected. We denote this array byM1(n) and
usePi to denote theith pe,1 � i � n. Thetwo-dimensional

2

Algorithm 2.1 (1-Dimensional Mesh or Torus)
Each available pePi has integer variablessi anda, and ex-
ecutes the following algorithm.

1 si := 1.

2 For a:=2 to n do

3 If Pi�1 available then sendsi toPi�1.

4 If Pi+1 available then

5 Receivesi+1.

6 si := si+1 + 1.

meshof sizen = m2, denotedM2(n), consists ofn pe’s ar-
ranged in anm�m two-dimensional grid. For1 � i; j � m,
the pe in rowi and columnj will be denoted byPij and is
connected toPi�1;j andPi;j�1, when they exist. In general,
a mesh of dimensiond and sizen = md, denotedMd(n), is
made up ofn pe’s arranged in anm�� � ��m grid of dimen-
siond. Each pe has an id which is ad-tuple representing its
coordinates in this grid. Two pe’s are connected if and only
if their coordinates differ by one in exactly one position, that
is, for1 � i1; i2; : : : ; id � m, processing elementPi1;i2;:::;id

is connected toPj1;j2;:::;jd provided
Pd

t=1(it � jt)
2 = 1.

The d-dimensionaltorus of size n = md, denoted by
Td(n), is the d-dimensional meshMd(n) enhanced with
wrap-aroundconnections. Two pe’s will have a wrap-around
connection if their id’s are the same in all but one compo-
nent and in that one component one pe’s id has value 1 and
the other has the valuem. For example,T1(n) is a ring and
T2(n) is a cylinder open on both ends.

In all of our algorithms, the components of a pe’s id in the
torus are to be interpreted modulom, while, in the mesh, any
reference to a nonexistent pe is treated as a reference to a
nonavailable pe.

2.1 Dimension One

A subsystemof sizet of M1(n) or T1(n) is a string oft pe’s
of the formPi; Pi+1; : : : ; Pi+t�1. Thus, there is a total of
n�t+1 subsystems of sizet inM1(n) andn subsystems of
sizet in T1(n) for 1 � t � n�1. We will consider processor
Pi to be theleaderof a subsystem of sizet, for somet < n,
provided that each ofPi; Pi+1; : : : ; Pi+t�1 is available but
Pi+t is not. We sayP1 is the leader of the subsystem of size
n in case all pe’s are available.

The allocation algorithm for the one-dimensional mesh
and torus, Algorithm 2.1, results in each available pe deter-
mining the size of the subsystem for which it is the leader.
This information can then be used by a variety of algorithms
to choose which of the available subsystems should be used
in satisfying the request.

At the end of each iteration of the for-loop, if
Pi; : : : ; Pi+a�1 are available thensi equalsa, otherwise it
equals the size of the subsystem for whichPi is the leader.
Algorithm 2.1 has worst case time complexity�(n), and is
therefore asymptotically optimal for both the mesh and torus

Algorithm 2.2 (2-Dimensional Mesh or Torus)
Each available pePi;j has integer variablessi;j ; ti;j ; ui;j
anda, and executes the following algorithm.

1 Computesi;j using the 1-dimensional algorithm, as if each
column were a 1-dimensional computer.

2 ui;j := si;j ; ti;j := 1;

3 For a :=2 to
p
n do

4 If Pi;j�1 available then sendui;j toPi;j�1.

5 If Pi;j+1 available then

6 Receiveui;j+1;

7 ui;j := min(ui;j ; ui;j+1)

8 elseui;j := 0;

9 ti;j := max(ti;j ;min(a2; u2i;j)).

since the communication diameter ofM1(n) is n� 1 and of
T1(n) is bn=2c. Note that if we are interested only in deter-
mining if there are any subsystems of sizek, then we need
only have the for-loop run from 2 tok, reducing the time to
�(k).

2.2 Dimension Two

Letn andt be squares of integers. By asubsystem of sizet of
M2(n) or T2(n) we will mean a square subgrid isomorphic
toM2(t). The processor id’s of a subsystem of sizet form a
set of the formf(a+ i; b+ j) : 0 � i; j <

p
tg for somea; b

in the range[1::
p
n]. There are(

p
n�p

t+1)2, subsystems
of size t in M2(n), andn2 systems of sizet in T2(n), for
1 � t � n. A processorPa;b will be called aleaderof a
subsystem of sizet, for somet < n, provided (1) all proces-
sors with id’s in the setf(a+ i; b+ j) : 0 � i; j <

p
tg are

available but (2) not all processors in the setf(a+ i; b+ j) :
0 � i; j � p

tg are available. ProcessorP1;1 is considered
the leader of the system of sizen if all the pe’s are available.

Algorithm 2.2 proceeds by first finding, for each pe, the
largest 1-dimensional subsystem along the first coordinate
for which that pe is a leader. We then use the fact that a
processor is a leader of a system of size at leastt provided it
and each of thet�1 processors following it along the second
dimension are leaders of 1-dimensional systems of sizet or
greater. At the end of each iteration of the for-loop, if proces-
sorPi;j is the leader of a subsystem of sizea2 or greater, then
ti;j equalsa2, otherwise it equals the size of the subsystem
for whichPi;j is the leader.

It is straightforward to show that Algorithm 2.2 has
�(
p
n) time and thus is optimal.

Notice that at the end of each iteration of the for-loop,ui;j
is the width of the largest available rectangle with upper left
corner atPi;j and heighta. The number of processors in this
rectangle isui;ja, so by changing line 9 to

ti;j := max(ti;j ; ui;j � a);

3

one can find the largest available rectangle withPi;j as its
leader in time�(

p
n) as well.

2.3 Higher Dimensions

For the case of thed-dimensional mesh and torus, subsys-
tems of sizet and leaders of subsystems of sizet are defined
analogously to the cased = 2. The method of computation
used in Algorithm 2.2 can be used as a model for higher di-
mensions, building up information dimension by dimension.
In this manner, the leaders and sizes of the subsystems of
Md(n) andTd(n) can be found in�(dn1=d) time. If one
is only interested in determining if there are any subsystems
of sizek, then the total time can be reduced to�(dk1=d) by
changing all for-loops to run from 2 tok.

3 Hypercube Allocation

Let Q(2d) denote ad-dimensional hypercube with2d pe’s.
Each pe has a unique binaryd-tuple as its id number, and
two pe’s are connected if and only if their id numbers differ
in precisely one position. Now, supposeS is a set ofq dis-
tinct integers from the interval[1::d] and(b1; b2; : : : ; bd) is
a fixed binaryd-tuple. The pe’s with id numbers in the set
f(c1; c2; : : : ; cd) : ci = bi for i 62 S; 1 � i � dg form aq-
dimensional subcube which will be denoted bya1a2 : : : ad,
whereai = � for i 2 S and ai = bi otherwise. Aq-
dimensional subcube will be called aq-subcube. There are
a total of

�
d
q

�
2d�q q-subcubes inQ(2d) and each pe is in

exactly
�
d
q

�
q-subcubes. Moreover, since each subcube is

uniquely represented as a string of lengthd over the alphabet
f0; 1; �g, we see thatQ(2d) has3d subcubes.

Thus, for larged, allocation of all possible subcubes of
Q(2d) becomes computationally intensive, particularly in the
presence of faults and when both dynamic allocation and de-
allocation is allowed. In this section we will consider two
approaches to alleviate this problem. The first approach, dis-
cussed in Sections 3.1, 3.2, 3.3, and 3.5, is to allocate only
a subset of the possible subcubes in all the dimensions. We
provide�(d) time parallel algorithms to perform the allo-
cation for each of the systems under consideration. In the
second approach we consider allocation of all subcubes of
dimensiond� q, for fixedq, and give a�(d) algorithm here
as well.

Consistent with our presentation of algorithms in Sec-
tion 2, each step is to be carried out in parallel by each avail-
able peP�, where� denotes an arbitrary binaryd-tuple. The
value of theith component of� will be denoted by�(i) and
the neighbor ofP� along dimensionk will be represented by
P�;k. In addition, processorP� will be called theleaderof
the subcubea1a2 : : : ad provided�(i) = ai for eachi such
thatai 2 f0; 1g and�(i) = 0 otherwise.

3.1 Buddy Systems

For a given dimensionq, the standardsingle buddy systemal-
locates onlyq-subcubes inQ(2d) of the forma1a2 : : : ad�q �
: : : �, that is, the high-orderd � q bits of the id numbers

Algorithm 3.1 (Buddy System)
� is a given permutation of1; 2; : : : ; d. Each availableP�

has integer variabless�, z�, j,andk.

1 s�:=0; z�:=0;.

2 If � = (0; 0; : : : ; 0) thenz� := d

3 else while�(�(z� + 1)) = 0 doz� := z� + 1.

4 For j := 1 to z� do

5 k := �(d+ 1� j).

6 If P�;k available then

7 Receives�;k.

8 If (s�;k = j � 1 ands� = j � 1) thens� := j.

9 If (z� < d andP�;�(d�z�) available) then

10 Sends� toP�;�(d�z�).

are fixed. More generally, each permutation� of the inte-
gers1; 2; : : : ; d gives rise to a single buddy systemB� which
allocates onlyq-subcubes of the forma1a2 : : : ad where,
a�(i) = � for d � q + 1 � i � d. The standard buddy sys-
tem corresponds to the identity permutation. Notice that, for
each permutation�, B� allocates only2d�q of the available�
d
q

�
2d�q q-subcubes.

The buddy system is attractive since it is easy to imple-
ment. Moreover, if only static allocation is considered and
the presence of faults is ignored, the buddy system is an op-
timal allocation strategy in the sense that it fails to grant a
request only if there is an insufficient number of available
nodes to satisfy the request. In dynamic allocation and de-
allocation, however, it is no longer optimal. Studies of the
behavior of subcube allocation in this dynamic situation have
been made in [ChSh, DuHa] for the purpose of evaluating
various policies governing the selection of which subcube to
allocate when there are several available subcubes.

One of the problems in using a serial algorithm to imple-
ment any allocation system is in maintaining the availability
information when faults occur. This is no longer a problem
in our parallel implementation. Our algorithm for the single
buddy system proceeds by recursive halving, determining the
sizes and leaders of all of the available subcubes allowed by
the buddy system. At the end of line 3 of Algorithm 3.1,z�
is the dimension of the largest subcube for whichP� would
be the leader in a completely available hypercube using the
buddy allocation system. At the end of the algorithm,s� is
the dimension of the largest available subcube for whichP�

is the leader, among those subcubes allocable under the given
buddy system.

Variations of the single buddy system have been suggested
which allocate the union of several single buddy systems.
For example, an orthogonaldouble buddy systemallocatesq-
subcubes inQ(2d) of the forma1a2 : : : ad�q � : : : � together
with the form� : : : � bq+1bq+2 : : : bd. Thus, forq < n, the
orthogonal buddy system allocates twice the number of sub-

4

Algorithm 3.2 (Gray-Coded Buddy System)
� is a given permutation of1; 2; : : : ; d. Each availableP�

has integer variabless�, j, k, and an integer arrayD[1::d].

1 s�:= 0.

2 For j := 1 to d do

3 k := �(d+ 1� j).

4 If P�;k available then

5 Sends� to P�;k.

6 Receives�;k.

7 D(d+ 1� j) := s�;k.

8 If s� = j � 1 ands�;k = j � 1 thens� := j.

9 elseD(d+ 1� j) := -1.

cubes as does the single buddy system. To implement this
double buddy system in parallel, we run Algorithm 3.1 twice,
once for the choice of permutation�1 which corresponds to
the first single buddy system, followed by a run with per-
mutation�2 which corresponds to the second. This gives us
an algorithm with twice the overhead to implement a sys-
tem which allocates twice the number of subcubes. Extend-
ing these ideas to multiple buddy systems is straightforward.
Given any multiple buddy system whose allocable subcubes
are the union of a fixed number, saym, of single buddy sys-
tems,m runs of Algorithm 3.1 would perform the allocation
in �(md) time. However, while the time increases linearly
with m, the number of new allocableq-subcubes does not
increase as rapidly because some of theq-subcubes are allo-
cated by more than one buddy system.

3.2 Gray-Coded Buddy Systems

Let gd denote the binary reflected Gray code map from
f0; : : : ; 2d�1g to d-bit strings. The standardsingle Gray-
coded buddy systemallocates q-subcubes that arise as
pairs ofq�1-subcubes of the formfa1 : : : ad�q+1 � : : : �,
b1 : : : bd�q+1 � : : : �g, where g�1d�q+1(a1 : : : ad�q+1) and

g�1d�q+1(b1 : : : bd�q+1) are consecutive mod2d�q+1. As in
the case of the single buddy system, each permutation� of
1; 2; : : : ; d gives rise to a gray-coded buddy systemG� . Each
G� allocates roughly the same number of subcubes as does
the double buddy system. With a few modifications, Algo-
rithm 3.1 can be used to implementG� in �(d) time, as given
in Algorithm 3.2.

After the completion of Algorithm 3.2, the largest sub-
cubes which are both available and allocable under the gray-
coded buddy systemG� are identified as follows. For each
availableP�, where� = (a1; a2; : : : ; ad), the value ofs�
shows that that a subcube of dimensions� is allocable un-
der the standard buddy system, which is a subset of the sub-
cubes allocable under the Gray-coded buddy system.P�

cannot be in a gray-coded buddy allocable subcube of di-
mensions� + 2 or greater, and it is in a gray-code alloca-

Algorithm 3.3 (Cyclical Buddy System)
� is a given permutation of1; 2; : : : ; d. Each availableP�

has integer variabless�, t�, z�, j, andk.

1 s� := 0; t� := 0; z� := 0.

2 For j := 0 to (2d� 3) do

3 k := �(d� (j mod d)).

4 If P�;k available then

5 Sends� to P�;k; Receives�;k.

6 s� := 1 +min(s�; s�;k).

7 If t� < s� thent� := s�; z� := k.

8 elses� := 0.

ble subcube of dimensions� + 1 if and only if there is a
j such thatD(j) � s� andg�1d�s�

(a�(1) : : : a�(d�s�)) and
g�1d�s�

(a�(1) : : : a�(j�1)(1 � a�(j))a�(j+1) : : : a�(d�s�)) are
consecutive mod2d�s� .

The double Gray-coded buddy system, first suggested
in [ChSh], allocatesq-subcubes by using the Gray-coded
buddy system corresponding to the identity permutation, plus
the Gray-coded buddy system corresponding to the permu-
tation which reverses the order of the bits. This allocation
scheme could be implemented in�(d) time by running Al-
gorithm 3.2 twice, analogous to that done for the double
buddy system. This analogy extends to schemes consisting
of a larger number of gray-coded buddy systems, producing
a�(md) time algorithm form systems.

3.3 Cyclical Buddy Systems

While developing the allocation algorithms in this paper,
we discovered a simple, efficient parallel allocation system
which does not seem to arise naturally as a serial allocation
system. This system, which we call acyclical buddy system,
allocatesq-subcubes of the forma1 : : : ad, whereai through
ai+q�1 are� for somei, with the subscripts calculated mod-
ulo d. The cyclical buddy system allocates exactlyd2d�q

q-subcubes, giving complete allocation forq = d � 1. This
system always allocates at least as manyq-subcubes as the
double buddy and Gray-coded buddy systems, and allocates
strictly more than these systems whend > 2.

At the end of each iteration of the for-loop in Algo-
rithm 3.3,s� contains the largest numberq such that theq-
dimensional subcubea1a2 : : : ad is available, whereai = �
for i = �(d � j); �(d � j + 1); : : : ; �(d � j + q � 1), and
ai = �(i) otherwise. Forj � d these indices are interpreted
in a modular fashion. (Ford = 1 the upper limit of the for-
loop should be increased to 0 to work properly. A natural
upper limit on the for-loop is2d � 1, resulting in all dimen-
sions being processed twice, but a little reflection shows that
going through the last two dimensions a second time cannot
produce a larger subcube than has been found earlier.) The
variablet� records the largest value ofs�, andz� records

5

Algorithm 3.4 (Complete Allocation)

1 For all subsetsS of f1; : : : ; dg of sizek,

2 Let� be any permutation off1; : : : ; dg such
thatf�(1); : : : ; �(k)g = S.

3 Perform Algorithm 3.1 to find alld� k cubes
with S as their defining positions.

the dimension along which it occurred. At the end of the
algorithm each available processor stores the largest dimen-
sion of an available cyclical buddy subcube containing that
processor, along with the starting dimension of the subcube.

The time of Algorithm 3.3 is clearly�(d). Just as for the
buddy and Gray-coded buddy systems, one can extend to a
multiple system by usingm different cyclical buddy systems,
utilizing m permutations, in�(md) time.

3.4 Complete Allocation

As we have seen, there are
�
d
q

�
2d�q subcubes of dimension

q in Q(2d). This number reaches its maximum value when
q = bd=3c, giving a value which exceeds3d=d for d > 2.
Thus we cannot expect to find an algorithm to identify all
availableq-subcubes with a running time polynomial ind if
we have at most2d processors. On the other hand, if we
restrict the dimensions to be allocated, then it is possible, as
we shall see, to have a polynomial time algorithm provided
we use the hypercube.

We consider first a parallel algorithm based on the cor-
responding simple serial algorithm for allocatingd � k-
subcubes inQ(2d). The serial algorithm proceeds by check-
ing the availability of each of the2d�k pe’s in each of the�
d
k

�
2k d � k-subcubes, which gives us a�(

�
d
k

�
2d) time al-

gorithm. In anyd � k-subcube, thek bit positions which
are the same in all processors will be called thedefining po-
sitions. For each choice ofk defining positions there are2k

d�k-subcubes. Our first algorithm sequentially goes through
all possible defining positions, using the buddy system al-
gorithm to find all the available subcubes with the selected
defining positions. These steps are displayed formally as Al-
gorithm 3.4. Since there are

�
d
k

�
choices for defining posi-

tions, and Algorithm 3.1 takes�(d) time for each choice of
defining positions, the total time is�(

�
d
k

�
d).

Our second algorithm, although more difficult to imple-
ment than Algorithm 3.4, finds all availabled � k-subcubes
in �(d) time, for fixedk. LetCk =

�
2k+1
2

�
. If d < Ck then

use Algorithm 3.4. Otherwise, enumerate all pairs (without
replacement) of the integers1; : : : ; (2k+1) in lexicographic
order. Let�1(i) denote the smallest element of theith pair,
and �2(i) denote the largest element, for1 � i � Ck.
For example, fork = 1 the pairs in order are (1,2), (1,3),
and (2,3), and�1(2) = 1 and�2(2) = 3. Let Dk denote
b(d � Ck)=(2k + 1)c. We define subsetsSi of the coordi-
natesf1; : : : ; dg, for 1 � i � 2k + 1, by

Si = ��11 (i) [��12 (i) [
fCk + (i� 1) �Dk + 1; : : : ; Ck + i �Dkg

for i � 2k, and

S2k+1 = ��11 (2k + 1) [��12 (2k + 1) [
fCk + 2k �Dk + 1; : : : ; dg :

Notice that each set contains exactly2k elements in
f1; : : : ; Ckg, and each contains at leastDk elements in
fCk +1; : : : ; dg, with S2k+1 containing more if2k+1 does
not divided� Ck.

Each setSi is used to find all availabled � k-subcubes
with defining positions in the complement ofSi. For, given
anyd � k-subcube, there is somei such that thek defining
positions of the subcube must be in the complement ofSi.
This is because there are2k + 1 setsSi, and any defining
positionj is in only 2 of theSi, if 1 � j � Ck, and in only
oneSi, if Ck < j � d. Therefore everyd � k-subcube will
be found.

For eachi, the availabled� k-subcubes with defining po-
sitions in the complement ofSi will be found by recursive
halving to a subcubeTi of dimensiond � jSij, and then re-
cursively solving the problem inTi. The subcubeTi con-
sists of all processors which have 0 as theirjth coordinate
for j 2 Si \ fCk +1; : : : ; dg, and forj 2 Si \ f1; : : : ; Ckg,
have 0 if�1(j) = i, and 1 if�2(j) = i. Notice that there is
no overlap in subcubes corresponding to two different sub-
sets, since for any given subsetsSi andSj , i < j, if m is the
number of the pair(i; j), then in coordinatem all processors
in the subcubeTi corresponding toSi must have a 0, while
in the subcubeTj , corresponding toSj , the processors must
have a 1 in that coordinate.

The recursive halving to create the subcubes correspond-
ing to theSi is performed in two stages. First, the halving
along dimensions inSi \ f1; : : : ; Ckg is performed for the
Si one at a time. This takes exactly2Ck total steps, and at
its end, the information needed to createTi is contained in
a larger cube, which we denote byT �i . Observe that these
larger cubes have the property that they are pairwise disjoint.
(This can be seen by the discussion in the preceeding para-
graph). Therefore once the initial recursive halving in di-
mensionsf1; : : : ; Ckg is completed, the remaining halving
along the rest of the dimensions inSi can be done in paral-
lel. The results of this second stage of recursive halving will
be stored in the subcubesTi. The recursive solution can now
take place, in parallel, in each of the subcubesTi. These steps
are displayed formally in Algorithm 3.5.

The worst-case time of this algorithm will correspond to
those subsets having the largest complement. The size of the
largest complement isd� (2k +Dk), which isdd2k=(2k +
1)e � k. The worst-case number of communication steps
therefore obeys a recurrence of the form

Tk(d) = 2Ck +

�
d� Ck

2k + 1

�
+ Tk(

�
d2k

2k + 1

�
� k)

which is �(d) for any fixedk. Further, for any fixedk,
Tk(d)=d � 1.

Although Algorithm 3.5 is fast, there are circumstances
when allocation of all subcubes of dimensiond�k, for fixed
k, or, say boundedk, may not be the system of choice. In
such cases, it may be preferable to allocate subcubes of all
dimensions but restrict the type of subcube such as is done

6

Algorithm 3.5 (Complete d� k Allocation)
This algorithm determines alld�k-dimensional subcubes of
a d-dimensional hypercube.

1 If d < Ck then use Algorithm 3.4

2 else Fori := 1 to 2k + 1 do

3 FormT �i by recursive halving for each
coordinatej 2 Si \ f1; : : : ; Ckg.

4 In parallel within each subcubeT �i ,

5 FormTi by recursive halving in each
coordinatej 2 Si \ fCk + 1; : : : ; dg.

6 Recursively call this algorithm to find all
d� k � jSij-subcubes inTi.

in the buddy or gray-coded systems. We must then contend
with the trade-off between the number of allocable subcubes
in a given allocation scheme and the time required to do the
allocation. In the next subsection, we consider a generaliza-
tion of the buddy and Gray-coded buddy systems that offers
significant improvement over the schemes described in sub-
sections 3.1 and 3.2.

3.5 k-Cube Buddy Systems

We describe here a family of allocation schemes which we
first introduced in [LiSt]. Letk � 1 and consider an alloca-
tion scheme forQ(2d) that will allocateq-subcubes in which
the lastq�k bits are arbitrary and the firstd�q+k bits form
the nodes of a subcube of dimensionk in Q(2d�q+k). We
call this system the standard singlek-cube buddy system. In
general, if� denotes a permutation of1; 2; : : : ; d, andk is a
positive integer, thenQBk;� denotes the singlek-cube buddy
system that allocatesq-subcubes in which bits�(d� q+ k+
1); : : : ; �(d) are arbitrary and bits�(1); : : : ; �(d � q + k)
form ak- subcube inQ(2d�q+k). We see thatQBk;� allo-
cates

�
d�q+k

k

�
2d�q q-subcubes inQ(2d). Note thatQB0;�

is the single buddy system,QB1;� extends the single Gray-
coded buddy system, andQBd;� is the complete allocation
system.

To implement thek-cube buddy system in parallel, sup-
pose� is a given permutation of1; 2; : : : ; d. Sequentially
perform recursive halving along dimensions�(d), �(d � 1),
: : :, �(d�q+k+1). For an available peP� with �(�(j)) = 0
for d�q+k+1 � j � d, if the resultings� is q�k thenP�

represents a completely availableq � k-subcube that might
be combined with others to form an allocabled� q-subcube,
and otherwise it represents an unavailable subcube.

Now it merely remains to find allk-subcubes among the
pe’sP� with �(j) = 0 for d� q+ k+1 � j � d which rep-
resent availableq�k-subcubes. If Algorithm 3.4 is used, we
obtain all availableq-subcubes which are allocable byQBk;�

in �(
�
d�q+k

k

�
k) time. By a fairly straightforward procedure,

one can modify the approach of Algorithm 3.4 to move from
one choice of defining bits to another in a manner than allows
partial results to be reused. By incorporating this technique,

Algorithm 3.6 (k-Cube Buddy System)
Assume� is a given permutation of1; 2; : : : ; d, and each
availableP� has an integer variables�.

1 s� := 0.

2 For t := d downtod� q + k + 1

3 Perform recursive halving along dimension�(t).

4 Find all k-subcubes in the remainingd � q + k-subcube,
where ifs� < q�k thenP� is treated as being unavail-
able.

one could reduce the time to�(
�
d�q+k

k

�
k=2k). A more sig-

nificant time reduction can be obtained by not solely reducing
to those pe’sP� with �(j) = 0 for d � q + k + 1 � j � d.
If instead all available pe’s are used, in a manner similar to
that used in Algorithm 3.5, one can reduce the time to�(d)
for any fixedk andq. Due to space limitations we omit the
details.

Since thek-cube buddy system can be implemented effi-
ciently in parallel, we see that it provides an attractive alter-
native to the buddy systems. As we noted earlier, even for
k = 2, we find a 50% improvement in its expected case be-
havior over that of the single buddy system.

Of course, multiplek-cube buddy systems can also be em-
ployed, and allocation can be performed using multiple runs
of Algorithm 3.6.

4 Conclusion

We have considered the problem of allocating subsystems
in MIMD parallel computers, a problem which becomes in-
creasingly important and as the number of processors in the
system grows.

Using only the non-busy and non-faulty pe’s in the par-
allel computer to do the allocation, we have given algo-
rithms which determine the available subsystems for thed-
dimensional mesh and torus and for thed-dimensional hy-
percube.

We have given a simple,�(
p
n) time algorithm to deter-

mine all rectangular subsystems in the two-dimensional mesh
and torus with dimensions

p
n � p

n. In addition, we have
given an algorithm which determines, for alld, all subsys-
tems of the formk � k � � � � � k in a d-dimensional mesh
and torus of dimensionsm �m � � � � �m in optimal time
�(dm).

To deal with subsystem allocation in hypercubes, we con-
sidered two approaches: one approach is to allocate only a
subset of the possible subcubes in each dimension, the other
approach is to limit the dimensions of the subcubes to be al-
located. Using the first approach, we considered several allo-
cation schemes including the buddy system, the gray-coded
buddy system, the cyclical buddy system, and thek-cube
buddy system, and provided optimal parallel algorithms for
these. We found that with only small time and memory re-
quirements there are several options available to increase the

7

number of allocable subcubes, thereby significantly improv-
ing the fault tolerance of the system. For the second approach
to the problem, we gave a parallel algorithm which finds, for
fixedk, all d� k dimensional subcubes in time�(d), which
is optimal. Depending on the specific requirements of the
users of large systems, it may be advantageous to use some
combination of complete allocation and the partial allocation
schemes. Simulation studies are needed to evaluate the effec-
tiveness of such a scheme in a given environment, however.

There is another approach to subsystem allocation which
attempts to reconfigure or reroute to avoid a faulty node.
For example, suppose we wish to allocate a subcube of
dimensiond � 1 in a d-dimensional hypercube and sup-
pose all nodes of0 � � � � � are available except the node
� = (0; 1; 1; : : : ; 1) is faulty. If a nearby node, such as
� = (0; 0; 1; : : : ; 1), is available, we could allocate the “re-
configured” subcube of dimensiond � 1 in which � is re-
placed by�. Since any message sent to� from a neighbor of
node� now must travel twice as far, we say this cube hasdi-
lation 2. Thus, our allocation problem could be extended to
the allocation of subsystems with some limited dilation. This
situation was investigated in [Hals]. Under the assumption
that faults are distributed uniformly and randomly with prob-
ability p < 0:5 in a hypercube of dimensiond, it is shown
that, with high probability, it is possible to assign ad � 1-
dimensional subcube with dilation at most7. Further studies
need to be done and algorithms for allocation need to be de-
veloped in which dilation of some bounded size is allowed.

References

[BeSi] B. Becker and H. Simon, “How robust is then-
cube?”,Proc. 27th IEEE Symp. on Foundations of
Comp. Sci.(1986), 283-291.

[ChSh] M.-S. Chen and K. Shin, “Processor allocation in
ann-cube multiprocessor using gray codes”,IEEE
Trans. Computers C-36(1987), 1396-1407.

[DuHa] S. Dutt and J. P. Hayes, “On allocating subcubes
in a hypercube multiprocessor”,Proc. Third Con-
ference on Hypercube Computers and Applications
(1988), 801-810.

[GHLS] N. Graham, F. Harary, M. Livingston, and Q.F.
Stout, “Subcube fault-tolerence in hypercubes”,
Univ. Michigan Comp. Res. Lab. Tech. Rept. CRL-
TR-12-87 (1987).

[Hals] J. Hastad, T. Leighton, and M. Newman, “Recon-
figuring a hypercube in the presence of faults”,
Proc. 19th ACM Symp. Theory of Comp.(1987),
274-284.

[KlSp] D. Kleitman and J. Spencer, “Families ofk-
independent sets”,Discrete Math.6 (1973), 255-
262.

[LiSt] M. Livingston and Q.F. Stout, “Fault tolerance of
allocation schemes in massively parallel comput-
ers”,Proc. 2nd Symp. on the Frontiers of Massively
Parallel Computation(1988), (to appear).

8

