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ABSTRACT

Given a type of resource such as disk units, extra memory modules, connections to the host processor, or

software modules, we consider the problem of distributing the resource units to processors so that certain

performance requirements are met at minimal cost. Typical requirements include insisting that every pro-

cessor is within a given distance of a resource unit, that every processor is within a given distance of each of

several resources, and that every m-dimensional subcube contains a resource unit. The latter is particularly

important in a multiuser system in which different users are given their own subcubes. In this setting, we

also consider the problem of meeting the performance requirements at minimal cost when the subcube allo-

cation system cannot allocate all possible subcubes and the requirements apply only to allocable subcubes.

Efficient constructive techniques for distributing a resource are given for several performance requirements,

along with upper and lower bounds on the total number of resource units required.

1 Introduction

The hypercube graph provides an attractive interconnection scheme for parallel computers. It has a low

diameter, high fault-tolerance, high bandwidth, and scalability over a useful range. It is also homogeneous,

meaning that no node is distinguished from any other. Homogeneity is quite useful in that hypercube al-

gorithms are not required to have different code for processors of different types, or they may choose to

utilize processors differently (for example, creating a tree structure to broadcast information, with one node

acting as the root) and dynamically change which processors serve which role (for example, the first pro-

cessor to determine an answer may start a broadcast tree). Another useful property of hypercubes is the
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fact that an n-dimensional hypercube (an n-cube) has many m-dimensional subcubes (m-subcubes). There

are
(n
m

)

2n−m such m-subcubes, which can be grouped as
(n
m

)

partitions of the n-cube into 2n−m disjoint

m-subcubes. With proper hardware and software, this permits multiple users on an n-cube, each having

their own subcube.

When expensive resources such as disks are attached to an n-cube, however, these properties may be

lost if it is too costly to attach a resource to each processor. To regain a semblence of homogeneity, and to

reduce communication, it may be desirable to distribute the disks so that no processor is very from a disk.

Similarly, to retain the multiuser capability offered by the multiple subcubes, it may be desirable to insure

that each m-cube has at least a minimal number of disks. This paper considers such situations, assuming

that there is some performance requirement that must be met with the objective of minimizing the number of

resource units needed to satisfy the requirement. A variety of performance requirements will be considered,

and upper and lower bounds are derived for the number of resource units needed to satisfy them. We also

give constructive techniques for distributing the resource.

In Section 2 subcube requirements are analyzed and related to previous work on fault tolerence of n-

cubes and k-independent sets. One important variation considered is where each processor can contain at

most one resource unit, as opposed to arbitrarily many units. It is shown that this restriction can result in

more resource units being required. Section 3 considers subcube requirements where the operating system

cannot allocate all possible subcubes and the requirements need to be satisfied only for allocable subcubes.

Section 4 considers satisfying multiple subcube requirements simultaneously. Section 5 considers distance

requirements, relating them to dominating sets and error-correcting codes. Section 6 considers partitioning

the nodes into classes and insuring that a performance requirement is satisfied for each class. Section 7

concludes with comments.

Throughout, Qn will denote the n-cube, where the nodes of Qn are labeled with all the n-bit strings

and two nodes are adjacent if and only if their labels differ in exactly one position. A string x1 . . . xn,

xi ∈ {0, 1, ∗}, denotes the subcube of Qn containing all processors with labels of the form a1 . . . an,

ai ∈ {0, 1}, such that ai = xi whenever xi 6= ∗. The dimension of the subcube is the number of x’s which

are equal to *. lg is used to denote log2, and ln denotes loge. Due to space limitations, proofs of results

will be omitted. This paper is part of a series dealing with various aspects of resource allocation and fault

tolerance, and these results are only a preliminary announcement of work in progress.

2 Subcube Requirements

This section considers the problem of distributing a resource to the nodes of Qn so that every m-subcube

contains at least k units of the resource, using as little of the resource as possible. Notice that if the resource

is divisible, then supplying each processor with k/2m units will satisfy the requirement, using only k2n−m

total units. This is the minimal amount possible since each Qn can be partitioned into 2n−m disjoint m-

subcubes, each of which must contain at least k units. However, it is often the case that the resource is a

disk or some other indivisible object, and the problem of determining an optimal distribution satisfying the

requirement is a difficult combinatorial problem. Throughout it is assumed that the resource is indivisible.

Let Cs(n;m,k) denote the requirement that every m-subcube of Qn contains at least k units of the

resource, and let C ′
s(n;m,k) denote the same requirement with the additional restriction that there can be

at most one resource unit at any processor. Denote by Rs(n;m,k) and R′
s(n;m,k) the minimum number

of resource units needed to satisfy Cs(n;m,k) and C ′
s(n;m,k), respectively.

If we interpret placing a resource unit at a node as making the node “faulty”, then R′
s(n;m, 1) is the

minimum number of faulty nodes which could cause every m-subcube to be faulty. These numbers have
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been extensively studied by the authors and others [BeSi, GHLS], and many of the techniques used to study

them apply to general values of Rs(n;m,k) and R′
s(n;m,k). These techniques will be used repeatedly

throughout this section, and the reader is referred to [GHLS] for an overview of them. Table 1 shows some

values of Rs(n;m, 1), repeating a table appearing in [GHLS].

n
0 1 2 3 4 5 6

0 1 2 4 8 16 32 64

1 1 2 4 8 16 32

2 1 2 5 10 21

m 3 1 2 6 12

4 1 2 6

5 1 2

6 1

Table 1: Values of Rs(n;m, 1)

Elementary Properties of Rs and R′
s

The following theorem lists several bounds on Rs and R′
s that follow from elementary considerations. The

constraint that m ≥ ⌈lg k⌉ is needed only to insure that R′
s is defined, and can be omitted for any bound

involving only Rs. For (i), (ii), (iii), and (iv) the results are constructive in that any resource allocation(s)

satisfying the condition(s) of the right hand side can be used in a straightforward manner to satisfy the

conditions of the left hand side. For (v), an optimal distribution is obtained by having each processor receive

one unit, for (vi) each processor with even parity should receive one unit, for (vii) any k processors should

receive one unit, and for (viii) any k processors in (n−1)-subcube can be chosen, along with their antipodal

processors. Note that (iii) is a special case of (iv).

Theorem 2.1 For n ≥ m ≥ ⌈lg k⌉,

i) Rs(n;m, 1) = R′
s(n;m, 1),

ii) Rs(n;m,k) ≤ R′
s(n;m,k),

iii) Rs(n;m,k) ≤ Rs(n;m, i) +Rs(n;m,m− i),

iv) Rs(n;m,k) ≤ Rs(n; p, i) +Rs(n;m,k − i2m−p), p ≤ m,

v) Rs(n;m, 2m) = R′
s(n;m, 2m) = 2n,

vi) Rs(n;m, 2m−1) = R′
s(n;m, 2m−1) = 2n−1,

vii) Rs(n;n, k) = R′
s(n;n, k) = k,

viii) Rs(n;n− 1, k) = R′
s(n;n− 1, k) = 2k.

✷

3



The inequality in part (iii) cannot always be replaced by equality since, for example, Rs(4; 2, 1) = 5
(Table 1), and Rs(4; 2, 2) = 8 (by part (vi)). In Fact 2.4 below we show that the inequality in part (ii) cannot

be replaced by equality. One natural question is whether (iii) holds for R′
s, and in particular whether it is

true that R′
s(n;m,k) ≤ kR′

s(n;m, 1)? We can show that this is true whenever k is an integral power of 2,

or in various other special cases, but do not know if it is always true.

In the next theorem inequalites (i), (ii), and (iii) are satisfied by both Rs and R′
s, but to conserve space

they are stated only for R′
s. The results in (i) and (ii) are constructive in that any resource allocations which

satisfy the right hand side can be directly used to generate an allocation which satisfies the left hand side.

Similarly, in (iii) and (iv), any resource allocation for the left hand side satisfies the constraints for each of

the components of the right hand side.

Theorem 2.2 For n ≥ m ≥ ⌈lg k⌉,

i) R′
s(n;m,k) ≤ 2R′

s(n− 1;m− 1, ⌈k/2⌉),

ii) R′
s(n;m,k) ≤ R′

s(n− 1;m− 1, k) +R′
s(n− 1;m,k),

iii) R′
s(n;m,k) ≥ max{2R′

s(n− 1;m,k), R′
s(n;m+ 1, 2k)},

iv) Rs(n;m,k) ≥ Rs(n− 1;m− 1, k).

✷

The weight of a processor is the total number of 1’s in its label. Suppose some distance d and integer

a, 0 ≤ a < d, are chosen, and one resource unit is attached to each processor with weight congruent to a
mod d. The number of units used is

∑

{
(n
i

)

: i ≡ a (mod d), 0 ≤ i ≤ n}, which for fixed d is minimized

when a = ⌊(n − d)/2⌋. Any given m-subcube contains exactly
∑

{
(m
i

)

: i ≡ b (mod d), 0 ≤ i ≤ m}
units for some b which depends on a and the subcube chosen, and hence any given m-subcube contains at

least K(m,d) =
∑

{
(m
i

)

: i ≡ ⌊(m− d)/2⌋ (mod d), 0 ≤ i ≤ m}. Therefore we have:

Theorem 2.3 For n ≥ m ≥ d+ 1,

R′
s(n;m,K(m,d)) ≤

∑

i≡⌊(n−d)/2⌋ (mod d)

(n
i

)

≤ 2n/d . ✷

The next result shows that the Rs and R′
s functions are not the same, and hence it can be that allowing

only one resource unit per processor will increase the number of units required.

Fact Rs(5; 2, 3) < R′
s(5; 2, 3).

Proof: By inequality (iv) of Theorem 2.1, Rs(5; 2, 3) ≤ Rs(5; 1, 1) + Rs(5; 2, 1) = 16 + 10 (see Table 1).

Let S denote a set of R′
s(5; 2, 3) nodes of Q5 satisfying Cs(5; 2, 3). Consider the four disjoint 3-subcubes

of Q5 given by A = 00***, B = 01***, C = 10***, and D = 11***. Each of these must have at least

6 elements in common with S to satisfy Cs(3; 2, 3). On the other hand, if A ∩ S contains only 6 elements

then the nodes of A − S must be diagonally opposite. Both B and C must then be contained in S in order

to satisfy Cs(5; 2, 3). It follows that R′
s(5; 2, 3) ≥ 28. ✷

Multiply t-Independent Sets

The function Rs(n;m, 1) is intimately connected with t-independent sets [Al, CKMZ, GHLS, KlSp, LeKa].
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We extend these ideas to the notion of multiply t-independent sets and find an analogous relation to Rs(n;m,k).
A family F of subsets of a set X is (k, t)-independent if for every pair of subsets U and V of F such that

|U | + |V | = t there are at least k elements of X common to all sets in U and which are in no set in V .

A (k, t)-independent family F with n members can be used to construct a multiset S of n-bit strings with

the property that if a resource unit is placed at each processor with its label in S (taking multiplicities into

account), then the resulting distribution satisfies Cs(n;n − t, k). To construct S, fix an ordering on the

elements of X and let M be the r×n matrix with columns equal to the characteristic functions of the sets in

F . The rows of M are the elements of S. Moreover, every multiset of processor labels listing a distribution

of resources satisfying Cs(n;n − t, k) must arise in this manner. This yields the following result.

Theorem 2.4 Let F (r; k, t) denote the maximum size of a (k, t)-independent family of subsets of a set of r
elements. Then Rs(n;m,k) = min{r : F (r; k, n −m) > n}. ✷

Using this result and Theorem 2.2, we can show the following.

Theorem 2.5 Fix k ≥ 1.

i) For n ≥ ⌈lg k⌉+ 2, Rs(n;n− 2, k) = lg(n) + O(log log n),

ii) For n ≥ m+ 2 ≥ ⌈lg k⌉+ 2, Rs(n;m,k) ≥ 2n−m−2[lg(m+ 2) +O(log log n)],

where the implied constants inside the O’s are dependent on k. ✷

Asymptotic Bounds

For fixed n −m, an asymptotic upper bound for Rs(n;m,k) and R′
s(n;m,k) can be established which is

independent of k.

Theorem 2.6 For fixed n−m ≥ 1 and m ≥ ⌈lg k⌉, R′
s(n;m,k) < 2n−m[ln

( n
n−m

)

+ 2(n −m) ln(2)]. ✷

3 Subcube Requirements for Allocable Subcubes

In practice, for a multi-user or multi-tasking hypercube, the routines which allocate a requested subcube

examine the availability of only a subset of the subcubes of the requested dimension. Currently the buddy

system is the predominate allocation scheme, allocating only m-subcubes of the form a1 . . . an−m ∗ . . . ∗. If

A is a given allocation scheme, let Cs(A;n;m,k) denote the requirement that every m-subcube of Qn that is

allocable by A contain at least k resource units, and let C ′
s(A;n;m,k), Rs(A;n;m,k), and R′

s(A;n;m,k)
be defined accordingly.

In addition to the buddy system, other systems that have been suggested include using multiple buddy

systems, Gray-coded buddy systems, and multiple Gray-coded buddy systems. In the simplest form of the

multiple buddy system, the doubly indexed buddy system, m-subcubes of the form ∗ . . . ∗ am+1 . . . an are

also allocated. In general, multiple buddy systems use multiple permutations of the index set {1 . . . n}, and

for each permutation π allocate m-subcubes by fixing index positions π(1) . . . π(n − m) and varying the

remaining m indices. For Gray-coded buddy systems, let gt denote the binary reflected Gray code map from

{0 . . . 2t − 1} to t-bit strings. The m-subcubes allocated are those pairs of (m − 1)-subcubes of the form

{a1 . . . an−m+1 ∗ . . . ∗, b1 . . . bn−m+1 ∗ . . . ∗}, where g−1
n−m+1(a1 . . . an−m+1) and g−1

n−m+1(b1 . . . bn−m+1)
are consecutive mod 2n−m+1. Multiple Gray-coded buddy systems combine Gray codes with the multiple

index permutations of multiple buddy systems.
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In Qn, the buddy system allocates only 2n−m m-subcubes, and the doubly indexed buddy system and

Gray-coded buddy system allocate 2n−m+1 (n > m). This is significantly less than the
(n
m

)

2n−m m-

subcubes available, and the resource allocation problems are greatly simplified.

Theorem 3.1 For each of the buddy system, doubly indexed buddy system, and Gray-coded buddy system,

Rs(A;n;m,k) = R′
s(A;n;m,k) = k2n−m for n ≥ m ≥ ⌈lg k⌉. ✷

4 Multiple Subcube Requirements

Rather than just requiring that each m-subcube have a certain minimal amount of resource, it may be that

one also needs to insure that larger subcubes have even more of the resource. Tasks run on larger subcubes

presumably need more resources, and while it is true that if each m-subcube has at least k resource units

then each (m+ i)-subcube has at least k2i resource units, it may be that the minimal requirements for larger

subcubes grow faster than this rate. Suppose a resource is to be distributed so that it satisfies requirements

Cs(n;m1, k1) and Cs(n;m2, k2). Let Rs(n; (m1, k1), (m2, k2)) denote the least number of resource units

required to satisfy both requirements, and define R′
s(n; (m1, k1), (m2, k2)) accordingly. If m1 ≤ m2 it is

easy to see that

Rs(n; (m1, k1), (m2, k2)) ≤ Rs(n;m1, k1) +Rs(n;m2, k2 − k12
m2−m1).

On the other hand, the corresponding inequality for R′
s fails infinitely often.

Theorem 4.1 For n ≥ 5, R′
s(n; (1, 1), (2, 3)) > R′

s(n; 1, 1) +R′
s(n; 2, 1). ✷

The problem of satisfying multiple requirements can be extended to more than 2, and can also be com-

bined with the notion of considering only allocable subcubes. For the some simple allocation schemes, the

number of resource units needed are straightforward to calculate.

Theorem 4.2 Let n, (m1, k1), (m2, k2), . . ., (mt, kt) be such that m1 ≤ . . . mt ≤ n and mi ≥ ⌈lg ki⌉ for

1 ≤ i ≤ t. For the buddy system, doubly indexed buddy system, and Gray-coded buddy systems,

Rs(A;n; (m1, k1), . . . , (mt, kt)) = R′
s(A;n; (m1, k1), . . . , (mt, kt)) = ct2

n−mt ,

where ct is defined recursively by c1 = k1 and ci+1 = max{ci2
mi+1−mi , ki+1}. ✷

5 Distance Requirements

Instead of requiring that each m-subcube have a suitable number of resource units, one may instead need

to insure that each node is within some distance δ of a suitable number of resource units. Let Cd(n; δ, k)
denote the requirement that every node of Qn be within δ of k or more resource units, and define C ′

d(n; δ, k),
Rd(n; δ, k), and R′

d(n; δ, k) correspondingly. When k = 1, a distribution of the units satisfying Cd(n; δ, 1) is

a δ-dominating set of Qn. Constuctions of optimal distributions of some δ-dominating sets are given with the

aid of error-correcting codes. For example, perfect single error-correcting codes show that Rd(2
t−1; 1, 1) =

22
t−1−t.
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n
0 1 2 3 4 5 6

0 1 2 4 8 16 32 64

1 1 1 2 2 4 7 12

2 1 1 1 2 2 2 4

δ 3 1 1 1 1 2 2 2

4 1 1 1 1 1 2 2

5 1 1 1 1 1 1 2

6 1 1 1 1 1 1 1

Table 2: Values of Rd(n; δ, 1)

6 Partitioning a Resource

Suppose each processor contains a unit of resource, and these are to be partitioned into different classes.

For example, the resource may be memory, and it may be that multiple copies of different software modules

are to be stored throughout the hypercube, with each processor containing one copy of one module. All

the processors storing the same module form a single class. As another example, the resource may be a

connection to another device, with all processors connected to the same type of device forming a class.

Or it may be that the resource is a connection to a processor in another n-cube, where the collection of

n-cubes form the nodes of a hypercube graph and the classes are determined by the dimension that the

link corresponds to in this large hypercube. This situation could be considered as “cube-connected cubes”,

similar to the “cube-connected cycles”. It can arise when the degree of the node is fixed, perhaps by pin

limitations, and a good approximation of a hypercube of larger degree is desired.

In resource partitioning situations one may need to insure either that every processor is within a certain

distance of a processor in each class, or that each m-subcube contains at least one processor in each class.

In this latter case one may also invoke the notion of allocable subcubes. Let Ps(n;m) denote the largest

number of classes that Qn can be partitioned into such that every m-subcube contains at least one processor

of each class, and let Pd(n; δ) and Ps(A;n;m) be defined accordingly.

7 Comments

We have considered some of the problems that arise when one is trying to satisfy a resource distribution

requirement using a minimal number of resouce units.
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