
Computational Statistics & Data Analysis 31 (1999) 397–416
www.elsevier.com/locate/csda

A program for sequential allocation
of three Bernoulli populations

Janis Hardwick a;∗, Robert Oehmke b, Quentin F. Stout b

aPurdue University, West Lafayette, IN 47907, USA
bUniversity of Michigan, Ann Arbor, MI 48109, USA

Received 1 October 1998; received in revised form 1 March 1999; accepted 1 April 1999

Abstract

A program for optimizing and analyzing sequential allocation problems involving three Bernoulli pop-
ulations and a general objective function is described. Previous researchers had considered this problem
computationally intractable, and there appears to be no prior exact optimizations for such problems,
even for very small sample sizes. This paper contains a description of the program, along with the
techniques used to scale it to large sample sizes. The program currently handles problems of size
200 or more by using a modest parallel computer, and problems of size 100 on a workstation. As an
illustration, the program is used to create an adaptive sampling procedure that is the optimal solution
to a 3-arm bandit problem. The bandit procedure is then compared to two other allocation procedures
along various Bayesian and frequentist metrics. Extensions enabling the program to solve a variety of
related problems are discussed. c© 1999 Published by Elsevier Science B.V. All rights reserved.

Keywords: Sequential sampling; Multi-arm bandit; Parallel computing; Dynamic programming; Adap-
tive allocation; Clinical trial; Load balancing; High-performance computing; Recursive equations;
Design of experiments

1. Introduction

A sequential (or adaptive) allocation problem is one in which an investigator has
the option to determine how to expend resources during the experiment based on the
observations that have been obtained so far. This is in contrast to �xed allocation
problems in which resources are assigned prior to the beginning of the experiment.
Here, the focus is on adaptive sampling problems in which the resources in question
are the experimental units available and the investigator identi�es the population
from which to sample at each decision time. Note that this is a design problem and

∗ Corresponding author.

0167-9473/99/$ - see front matter c© 1999 Published by Elsevier Science B.V. All rights reserved.
PII: S 0167-9473(99)00039-0

398 J. Hardwick et al. / Computational Statistics & Data Analysis 31 (1999) 397–416

that the expressions sampling from a population and allocating an experimental unit
refer to the same action.
Bandit problems, in which each population has associated with it a random re-

ward, form an important class of sequential sampling problems. The goal of a bandit
experiment is to sample from the available populations in such a way as to maximize
the expected total reward at the termination of the experiment. The term “one-arm
bandit” is a reference to a slot-machine with a single lever that has an unknown
probability of paying o�. Each time a coin is put into the machine, a random out-
come is observed. One can extend this process to the case in which the number
of available machines is �, and coins are dropped in the di�erent machines in an
attempt to locate the machine that delivers the most money on average. Thus, an
�-arm bandit is a model for problems in which there are � populations with unknown
reward structures, sampling (or arm pulling) takes place sequentially, and decisions
are made with the intent to optimize the total payo�.
Bandit models are typically fully sequential, in that each outcome is observed

before a decision is made as to the next population to be sampled. They are used to
model a variety of optimization and learning problems. In particular, bandits arise in
the design of ethical clinical trials in which the goal is to minimize patient failures
that occur during the trial. See Berry and Fristedt (1985) for an in-depth discussion
of bandit problems.
In many situations, the performance of an adaptive design can be dramatically

superior to that of a �xed allocation design in which all sampling decisions have
been made in advance. An example of a �xed design for a clinical trial is one in
which 1=� of the subjects are assigned to each of the � therapies under consideration.
If, during the trial, one of the treatment groups appears to be faring far less well than
the others, a �xed design provides no mechanism for adjusting the sampling ratios.
Through adaptation, however, one can signi�cantly reduce costs or fatalities without
sacri�cing statistical objectives such as maximizing the probability of determining
the best or better therapies.
Adaptive statistical designs have many applications and are highly exible. Nev-

ertheless, such designs are rarely used. One reason for this is that many statisticians
are unfamiliar with them. Further, most practitioners are aware that examining data
during an experiment can introduce bias and error during the analysis phase of a
study. Analyzing sequential data requires new approaches. The “rules” are somewhat
di�erent and thus a bit controversial. Another important impediment to the adoption
of adaptive designs has been their analytic and computational intractability. With re-
gard to the computational complexity, Armitage (1985), for example, comments “the
computation involved is prohibitive except for trivially small horizons”. Wang (1991)
reiterates that “In theory the optimal strategies can always be found by dynamic pro-
gramming but the computation required is prohibitive”. Note that the “horizon” of
an experiment refers to the number of experimental units that are available for the
experiment. For our purposes here, the horizon is simply the sample size, n, of the
experiment.
In this paper, the three-armed problem will be used to illustrate the progress that

has been made in generating solutions to these demanding problems. An algorithm

J. Hardwick et al. / Computational Statistics & Data Analysis 31 (1999) 397–416 399

has been implemented for the optimization and analysis of sequential allocation prob-
lems involving three Bernoulli populations. For optimization, there is some objective
function V , and the goal is to produce the sequential allocation procedure that mini-
mizes (or maximizes, as appropriate) the value of V . For example, in a clinical trial,
V may be the expected number of failures, while for an estimation problem it may
be the mean squared error of an estimator. Note that such estimators may involve
nonlinear functions of the observations on the di�erent arms, whereas bandit prob-
lems involve simpler linear combinations. Optimization, as opposed to evaluation,
requires a Bayesian framework.
By analysis we mean that the expected behavior or operating characteristics of an

arbitrary adaptive allocation procedure can be evaluated. For example, it may be of
interest to determine the expected value of V for a simple adaptive procedure and
compare it to the value attained using the optimal sampling procedure. As another
example, an investigator may have determined the optimal procedure with respect to
an objective function V , but then ask for the expected value of this procedure with
respect to other objectives. Either a Bayesian or frequentist point of view can be
taken in the analysis phase. Note that the analysis framework need not be the same
as the framework used to design the allocation procedure. This allows investigators
to approach their research with added exibility.
In the rest of this section, previous work is reviewed and the problem and model

are speci�ed. In Section 2, the general computational approach to the 3-arm problem
is described, and in Section 3 space requirements are discussed. In Section 4, par-
allelization is considered with an emphasis on load balancing and scalability issues.
An example in which the algorithms have been applied to a multi-criteria problem is
presented in Section 5. Finally, in Section 6, extensions to the basic 3-arm problem
are described and future work is discussed.

1.1. Previous work

While there is extensive literature on sequential sampling, almost all of it is con-
cerned with asymptotic behavior. Very little exact optimization or evaluation has
been done.
With regard to bandit problems, there is a highly prominent result that deter-

mines optimal procedures for a class of multi-armed bandit problems with in�nite
horizons (see Gittins, 1989 for this result and related work). However, as is the
case with the present problem, the computations required to generate the procedure
are very di�cult. Further, even if the procedure were readily available, the results
would apply exactly only if the horizon were in�nite and geometric discounting
were being used for a bandit objective function. Most of the other work on bandit
problems involving exact optimizations has focused on 1- or 2-arm Bernoulli bandit
designs with very small sample sizes. Bernoulli bandits are also used here, so to
simplify the discussion, the term bandit problem is used to mean Bernoulli bandit
problem.
A 1-arm bandit represents a model in which there are two populations and the

reward structure for one of them is known. Such problems are stopping rule problems

400 J. Hardwick et al. / Computational Statistics & Data Analysis 31 (1999) 397–416

and do not require the treatment described here. However, with the addition of a
second random arm, the problem requires a dynamic programming solution. For
2-armed bandits, a typical optimization was carried out by Jones (1992), who solved
a problem of size n = 25, and noted the di�culties of solving larger problems.
Kulkarni and Kulkarni (1987) also noted that the computation required for 2-armed
bandits make it “impractical to compute the decision even for moderate values of
n≥ 50”. It is our understanding that, prior to the 1991 work described in Hardwick
and Stout (1993), the largest 2-armed bandit problem to be solved was described
in the paper of Berry and Eick (1995), which reports on work done around 1987.
Utilizing a Cray 2 supercomputer, the authors were able to handle a sample size of
n = 200. In Hardwick and Stout (1999), improved algorithms for 2-armed bandits
were proposed. This made it feasible for workstations to solve problems involving
sample sizes greater than n = 400. Not only were solutions to these larger bandit
problems obtained, but extensive evaluations of the optimal procedures’ operating
characteristics were also carried out. More recently, the authors began work on gen-
erating solutions to 3-arm bandit problems. A move to parallel architectures was
necessary to go beyond non-trivial sample sizes. A preliminary description of the
initial work, which corresponds to Algorithm 3 in Section 4 applied to the bandit
objective function, appears in Hardwick et al. (1997).
It is useful to recall that a variety of approaches have been utilized for the more

general problem of sequential sampling from three or more arms. For example,
Siegmund (1993) and Coad (1995) have applied repeated signi�cance testing to the
case where several arms are available and the outcome variables have normal distri-
butions. Betensky (1996,1997), also working with normal outcomes, has used various
hypothesis testing approaches to tackle the 3-arm problem. In particular, Betensky
(1997) examines a 3-arm problem with censored outcomes. Bather and Coad (1992)
addressed the multi-armed problem with Bernoulli outcomes, and in this work, the
authors emphasize locating procedures that work well along several criteria but do
not attempt to optimize on any given criterion. A number of researchers have also
examined multi-arm problems using nonparametric ranking and selection methods,
where the primary goal of such designs is to select either the best of several arms
or a best subset of arms. See Buringer et al. (1980) and Gupta and Liang (1989)
for examples of this approach.
Whether it is a testing problem or a selection problem, most multi-armed designs

incorporate a mechanism for removing obviously poor arms during the experiment.
When this occurs in the early stages of an experiment, the complexity of the pro-
cedure being used is often signi�cantly reduced. While no such option is explicit in
the procedures presented here, the optimal sampling procedures generated e�ectively
remove poor arms, in the sense that they do not continue to sample from them.
Further, the proposed analysis routines can easily evaluate arbitrary 3-arm sequential
procedures, including those that eliminate arms.
As noted, most of the procedures that have been suggested for multi-arm problems

have been derived from asymptotic arguments. To ascertain the behavior of the
procedures for practical sample sizes, simulation studies are typically used. Many
excellent procedures have been developed in this manner. However, it is di�cult

J. Hardwick et al. / Computational Statistics & Data Analysis 31 (1999) 397–416 401

to ascertain the quality of such rules without having access to the optimal solution.
Thus, even if exact optimizations are not required in a given setting, the determination
of optimal solutions is important to the evaluation process.
With regard to other research in which exactly optimal solutions to 3-arm problems

have been obtained, we are familiar only with the work of Palmer (1993). Palmer
optimized a 3-arm knock-out tournament in which one samples equally often from
each population, sampling until 1 arm can be eliminated. The experiment continues
with equal allocation from the remaining 2 arms. While this is an optimal solution
to the problem stated by the author, it is not equivalent to the problem of identifying
the best arm, since the allocation strategy is partially �xed. Palmer’s solutions also
required that fairly restrictive conditions be imposed on the prior distributions for
the parameters representing the success probabilities of the arms.

1.2. Model used

The focus is on �-arm sequential allocation problems in which the arms represent
populations of Bernoulli random variables, indexed as 1; : : : ; �. The outcomes are
viewed as successes and failures, where the success probability on arm i is Pi for
i = 1; : : : ; �.
The arms and pulls are assumed to be independent. At each stage, m=0; 1; : : :, of

an experiment, one selects a population and observes the response. At stage m, let
(si; fi) represent the number of successes and failures, respectively, observed on arm
i. Then m =

∑
(si + fi) and 〈s1; f1; : : : ; s�; f�〉 is a vector of su�cient statistics for

this problem. This vector will be called a state. A Bayesian approach is utilized, in
which the population parameters, Pi, have a prior distribution which is the product
of � independent distributions. In our examples these distributions are beta, but in
general one could utilize arbitrary distributions.
It is assumed that there are exactly n observations available, the �xed horizon

model. This assumption merely provides a uniform framework for comparison, and
can easily be relaxed to allow for optional stopping.
It is assumed that there is an objective function V . For optimization the goal is

to minimize E(V), while for analysis the goal is merely to determine E(V). It is
assumed that V can be computed by knowing merely the terminal state reached (and
the priors). While this includes the majority of objective functions of interest, it does
exclude some. For example, if one wanted to determine the expected length of the
longest run (consecutive pulls on the same arm) during the experiment, somewhat
di�erent programs would be needed. In such a situation, one would expand the state
space to include the information needed to determine V .

2. Computational issues

To describe the time and space requirements of algorithms, “generalized O-
notation” from computer science will be used, in which O and o have the same mean-
ings as in statistical use; and in which one says a function f=�(g) or f(n)=�(g(n))

402 J. Hardwick et al. / Computational Statistics & Data Analysis 31 (1999) 397–416

if there exist positive constants C, D, N such that C · g(n)≤f(n)≤D · g(n) for all
n≥N .
For a sequential allocation problem of horizon n involving � Bernoulli arms, there

are (
n+ 2�
2�

)
≈ �(n2�=(2�)!)

states. (Our �-analyses assume �. n, and for most purposes � will be �xed to be
3.) To optimize such problems, one typically uses a dynamic programming approach.
One �rst computes the value of each terminal state (those with n observations), and
then the optimal solution is found for all states with m observations based on the
optimal solutions for all states with m + 1 observations, for m ranging from n − 1
down to 0. To determine the optimal solution at a state, one determines the expected
value of each option available (a pull on an arm), and selects the best one. The
relevant recursive equations are given in Algorithm 1.

Algorithm 1. Serial Algorithm for Optimal Adaptive 3-Arm Allocation

{1si , 1fi : one success, failure on arm i}
{si, �: number of successes, failures arm i }
{m: number of observations so far }
{n: total number of observations }
{|�|: number of observations at state � }
{V: the function being optimized, where V(0) is the answer }
{ pi(si,�): prob of success on arm i, if si successes and � failures have been
observed}

for all states � with |�|= n do {i.e. for all terminal states}
Initialize V(�)

for m = n-1 downto 0 do {compute for all states of size m}
for s3 = 0 to m do
for f 3 = 0 to m − s3 do
for s2 = 0 to m − s3− f 3 do
for f 2 = 0 to m − s3− f 3− s2 do
for s1=0 to m−s3−f3−s2−f2 do
f1 = m−s3−f3−s2−f2−s1
� = 〈s1,f1,s2,f2,s3,f3〉
V(�) = min{(p1(s1,f1)·V(� + 1s1) + (1−p1(s1,f1))· V(� + 1f1)),

(p2(s2,f2)·V(� + 1s2) + (1−p2(s2,f2))· V(� + 1f2)),
(p3(s3,f3)·V(� + 1s3) + (1−p3(s3,f3))·V(� + 1f3)) }

While Algorithm 1 shows the algorithm for optimization, with only a small change
it is also an algorithm for evaluation of an arbitrary adaptive design A. If, instead
of choosing the arm that gives the optimal value of V, one uses the value of V
corresponding to the arm chosen by A, then the program determines the expected

J. Hardwick et al. / Computational Statistics & Data Analysis 31 (1999) 397–416 403

value of V obtained using procedure A. This computational approach is known as
backward induction.
For dynamic programming, it takes a constant amount of time to evaluate each

arm, and thus the total amount of time required to optimize an �-arm allocation
problem is �(n2�=(2� − 1)!). The time for backward induction can be a factor of �
faster, if the determination of which arm A uses can be done in constant time per
state, as opposed to the �(�) time per state needed by dynamic programming. For a
3-arm problem, either dynamic programming or backward induction have the rather
formidable growth rate of �(n6).
Because of this growth rate, a parallel computer was needed to solve three popu-

lation adaptive sampling problems of useful size in a feasible amount of time. Our
goals were to write parallel code that is portable, maintainable, and exible. In ad-
dition, the serial e�ciencies that had been exploited previously for 2-arm bandit-like
problems needed to be maintained (Hardwick and Stout, 1993). The code was im-
plemented assuming a distributed memory model. As distributed memory code can
easily be adapted to run on a shared memory machine, but not necessarily vice
versa, this gave the greatest exibility. Shared memory systems are discussed further
in Section 6. The parallel code is written in Fortran 77, with MPI (Message-Passing
Interface) for the communication among the processors. As Fortran 77 and MPI are
commonly available on parallel computers, as well as on distributed systems such
as networks of workstations, the present program is quite portable. See Gropp et al.
(1995) for a discussion of parallel programming using MPI.
In extending the previous 2-arm serial algorithms to a 3-arm parallel algorithm,

the major new computational issues were space reduction (useful for both serial and
parallel execution) and load balancing and communication minimization among the
processors (for e�cient parallel execution). Space, rather than time, has become the
limiting factor in solving many fully sequential allocation problems. This is due, in
part, to prior developments that allow for more e�cient computations. Even with the
space reductions described below, the ratio of computation time to RAM space for
an �-arm model grows only as �(n1+1=(2�−1)), i.e., it is nearly linear, and the ratio
of time to disk space is linear.

3. Space

There are two di�erent space issues that need to be addressed. One is the need
to reduce the space utilized to store the V array, which is typically stored in RAM.
The second is the amount of storage needed to keep track of the arm chosen at each
state, and this can be kept on disk.

3.1. RAM space

The program seems to imply that a six-dimensional array is needed to store
values of V, since the state space is six-dimensional and V is computed at each
state. However, this array can be compressed to a �ve-dimensional array by reusing

404 J. Hardwick et al. / Computational Statistics & Data Analysis 31 (1999) 397–416

memory. This can be accomplished by recognizing that, given m, the value of f1
is determined by knowing the values of s3, f3, s2, f2, and s1. Thus, f1 can be
omitted as an index, which means that array entries will be overwritten. It is simple
to verify that if each of the inner loops is increasing, then an array entry for a spe-
ci�c m value is overwritten (by the corresponding entry for m-1) after all reads of
the value corresponding to m have occurred (see Hardwick and Stout, 1993 for a fur-
ther discussion of this point). This is a well-known space compression technique for
sequential allocation and other dynamic programming problems. Because the array
locations are being reused, for high performance it is best if they are in RAM,
although the sequential access patterns allow disk storage to achieve reasonable
e�ciency.
The next observation is that, due to the constraint that s3+f3+s2+f2+s1+ f1

≤ n, only a corner of the �ve-dimensional array is actually used. The corner occupied
is only approximately 1

5 ! =
1
120 of the total array, so one can map this corner into a

linear array and translate all array references. The algebra is straightforward but te-
dious, and algebraic manipulation packages can be used to help. The most direct way
to implement this translation is to write a function, say T(s1,f1,s2,f2,s3,f3),
which computes the positions in the linear array to which states get mapped. Using
this, each reference to V(�) is replaced by V(T(�)). While this is, indeed, straight-
forward, it also has the unfortunate e�ect of dramatically increasing the computa-
tional time. This is because T is a somewhat complicated �fth degree polynomial
and relatively little computation is done per array position accessed. As a result,
far more time would be spent on determining array positions than on using their
contents.
To alleviate this problem, while still mapping into a linear array, T was decom-

posed into a sum of o�sets, i.e.,

T = T5(m; s3) + T4(m− s3; f3) + T3(m− s3− f3; s2)
+T2(m− s3− f3− s2; f2) + T1(m− s3− f3− s2− f2; s1):

The parameters to the o�set at each loop level depend only on the values of the
outer loops and the value of the current level. At each level the o�set of that level
is added to that of the previous one, and the eventual sum inside the innermost loop
is T. In general, Ti is an ith degree polynomial. Here,

T1(t; x) = x;

T2(t; x) = [− x2 + (2t + 3)x]=2;
T3(t; x) = [x3 − (3t + 6)x2 + (3t2 + 12t + 11)x]=6;
T4(t; x) = [− x4 + (4t + 10)x3 − (6t2 + 30t + 35)x2

+(4t3 + 30t2 + 70t + 50)x]=24;

T5(t; x) = [x5−(5t + 15)x4+(10t2 + 60t + 85)x3−(10t3 + 90t2 + 255t + 225)x2

+ (5t4 + 60t3 + 255t2 + 450t + 274)x]=120:

J. Hardwick et al. / Computational Statistics & Data Analysis 31 (1999) 397–416 405

This mapping is such that the o�set calculations range from most complex at the
outermost loop to simplest at the innermost, and thus the most complex calcula-
tions are done the fewest times. This method of calculating T is fairly e�cient,
but it has the regrettable e�ect of making the code harder to read and
maintain.
One useful aspect of this system of o�sets is that the same functions are used

even when the number of loop levels changes. For example, for a 2-arm problem
there are only three loops within the m loop, and the mapping would be T3(m; s2)+
T2(m− s2; f2) + T1(m− s2− f2; s1).
Note that the innermost loop accesses array positions in consecutive order. This

is important for maintaining high processor e�ciency because most accesses will
be to data in cache. The cache is a relatively small portion of the memory that
can be accessed much faster than the computer’s primary RAM. When the contents
of a memory location are retrieved from main memory, the contents of adjacent
memory locations are retrieved as well and stored in the cache. Thus a program
which accesses memory sequentially will often be able to retrieve memory contents
out of the cache instead of having to access the much slower RAM. Haphazard array
access patterns, so that few references are found in cache, are a common source of
performance degradation.

3.2. Disk space

Unfortunately, in many cases V is not the only array required, because one needs
to know more than just V(0). For example, one may want to utilize the alloca-
tion procedure for an experiment, or evaluate it along additional criteria. In such
settings, one needs to keep a record, at each state �, of which arm to pull to
achieve the optimal value. It is a common property of dynamic programming that
one must add additional storage to record the decisions which achieve the optimal
value.
Since the decisions must be retained for all states, the array used to store this in-

formation cannot overwrite values. As a result, the decision array remains 6-dimen-
sional, although it too can be collapsed into a corner, which allows one to re-
duce its space requirements by approximately 1

6 ! =
1
720 . This array needs only 3

bits per state (we allow for the possibility of ties, so there are seven possible
outcomes), although for convenience one byte per state was used. Thus the total
space for the decision array grows approximately as n6=720 bytes. In some cases
one can use monotonicity properties of the optimal decisions to reduce the space
needed (see Hardwick and Stout, 1993), but this was not exploited here because
the goal was to develop a general purpose algorithm suitable for arbitrary objective
functions.
Fortunately, the decision array is written to once, and in later analyses is only read

once. This is because nearly all analyses can be accomplished via path induction
(see Hardwick and Stout, 1999). Using path induction, after a single initialization
pass through the decision array, each evaluation is reduced to a computation over
the �nal states. This algorithm can be written to visit the states in the reverse order

406 J. Hardwick et al. / Computational Statistics & Data Analysis 31 (1999) 397–416

they were visited for the dynamic programming, and hence the decision array can be
read in reverse of the order in which it was written. Thus a simple serial write=read
mechanism can be used, which allows one to store the decision array on disk with
relatively little loss of e�ciency. A serial implementation of path induction is given
in Algorithm 2.

Algorithm 2. Serial Implementation of Path Induction

{path(�): number of paths reaching state �}
{probi(si,ni): probability that ni pulls of arm i have exactly si successes}
{prob(�): prob1(s1,s1+f1)·prob2(s2,s2+f2)·prob3(s3,s3+f3)}
{p(�,i): probability that arm i selected at state �}
{during computation of V(�), the arm(s) that were selected are written to disk}
{initialization phase}
path(0) = 1
for m = 0 to n − 1 do
for s3 = m downto 0 do
for f3=m−s3 downto 0 do
for s2=m−s3−f3 downto 0 do
for f2=m−s3−f3−s2 downto 0 do
for s1=m−s3−f3−s2−f2 downto 0 do
Read arms used for � = 〈s1,f1,s2,f2,s3,f3〉
for all arms i used for � do
path(� + 1si)=path(� + 1

s
i)+ p(�,i)·path(�)

path(� + 1fi)=path(� + 1
f
i)+ p(�,i)·path(�)

{evaluation phase}
for all post-analysis parameters � do
W (�) =

∑{path(�) · prob(�) ·W (�; �) : � a terminal state}

Note that the path induction algorithm allows for a random choice of arm. This
permits one to evaluate various biased coin or urn-based allocation schemes, or
optimal allocation schemes when ties result in randomizing among the arms achieving
the optimal V value.
Since users often want to evaluate a design on a variety of secondary criteria

(such as robustness), the use of path induction is an important step in making such
high-dimensional designs practical. Secondary criteria play a particularly important
role in the design of clinical trials, for example, since researchers may need to op-
timize competing factors. Typically, to do this requires repeated reevaluation of the
design, and this ultimately becomes the most time-consuming part of the entire com-
putational process. Prior to the introduction of path induction, each such evaluation
was carried out via backward induction (see, for example, Berry and Eick, 1995). For
three populations, this requires �(n6) time per evaluation. With path induction, there

J. Hardwick et al. / Computational Statistics & Data Analysis 31 (1999) 397–416 407

is still an initialization step that requires �(n6) time. However, each subsequent eval-
uation occurs only over the �nal states, requiring only �(n5) time. As for the space
requirements, beyond the decision array one needs the path array to keep the path
counts. However, this array can re-occupy the space used by V, utilizing the same
compression techniques. The access patterns of the path array are the exact reverse
of those occurring for V.

4. Parallelization

To develop an e�cient parallel program from a serial one, there are numerous,
sometimes competing, factors that must be taken into account. The problem must
be partitioned into pieces executed by the di�erent processors, with the goal be-
ing to subdivide the work evenly. This partitioning is called load-balancing, and
its most important aspect is that the most heavily loaded processor should be as
close to the average as possible (since the running time is determined by the last
processor to �nish). The partitioning also induces communication, since in general
processors need to utilize values computed by other processors. This communication
(which in the present program is performed by MPI) can be very time-consuming,
and thus should be minimized. Computational dependencies determine which calcu-
lations can be performed concurrently by di�erent processors, as opposed to those
that must be done sequentially with the communication of one result needed for the
calculation of the next. The communication and load-balancing are further tied to-
gether in the sense that, typically, calculation and communication alternate in rounds.
If one processor takes longer to �nish a calculation round, it may force others
to wait for its communication before they can proceed on their next round. Thus
it is important to load-balance each round, and not merely to balance the aggre-
gate calculations. Load-balancing, communications, computational dependencies, and
other aspects of e�cient parallel algorithm development are discussed in Atallah
(1999).
Load-balancing high-dimensional dynamic programming codes such as those in

Algorithm 1 is a non-trivial problem, even though all of the load information can
be determined in advance. When examining the dependencies, one sees that the
code is similar to a simple PDE solver over a regular grid, where the outermost
loop (on m, the number of pulls) acts like a time variable, and hence cannot be
parallelized, because V values corresponding to m+1 are used to determine V values
corresponding to m. At the same time, the inner loops act like space variables which
are amenable to parallelization because no value depends on any other. However,
unlike a PDE solver, the “space” rapidly shrinks with m, and is a high-dimensional
simplex.

4.1. Initial parallel version

A natural �rst approach is to parallelize at the outermost loop possible, which is
the s3 loop, assigning each processor an interval of values. Using an interval of

408 J. Hardwick et al. / Computational Statistics & Data Analysis 31 (1999) 397–416

values both reduces the amount of communication, and makes the parallel code as
similar as possible to the serial version. This is an important consideration when
one is trying to maintain and extend serial and parallel solutions to the same prob-
lem. For a given value of m, the range of s3 intervals assigned to processor Pj

is start s3(j,m): : : end s3(j,m). A very simpli�ed pseudo-code version of the
parallel code is given in Algorithm 3.

Algorithm 3. Initial Parallel Algorithm

{Pj: processor j}
{start s3(j,m), end s3(j,m): range of s3 values assigned to Pj for this m value,
with start s3(j+1,m)=end s3(j,m)+1 }
{For all processors Pj simultaneously, do}
for all states � assigned to Pj with |�|=n do {i.e. for all terminal states}
Initialize V(�)
for m=n−1 downto 0 do {compute for all states of size m}
for s3=start s3(j,m) to end s3(j,m) do
for f3=0 to m−s3 do
for s2=0 to m−s3−f3 do
for f2 = 0 to m−s3−f3−s2 do
for s1 = 0 to m−s3−f3−s2−f2 do
compute V as before

Send needed V values to Pj−1
Receive V values from Pj+1

Send needed V values to Pj+1

Receive V values from Pj−1
end for m

Once the iterations are assigned, the message-passing required to send neighbor infor-
mation is straightforward, based on the recurrence equation for V. If the start s3
and end s3 values did not change with m, then the only messages needed would
be for processor Pj to send processor Pj−1 a copy of the V values correspond-
ing to s3=start s3(j,m). This message-passing is the �rst send-receive pair in
Algorithm 3. These would need to be sent at the end of each iteration of m. How-
ever, because the iterations assigned to a processor can change with each m value, the
value of start s3(j,m-1) can be smaller than start s3(j,m). In this case, proces-
sor Pj needs the values of V corresponding to s3 in the range start s3(j,m-1): : :
start s3(j,m). These are obtained from processor Pj−1, in the second send–receive
pair in Algorithm 3.
Unfortunately the s3 iterations do not represent a uniform load since the amount

of work grows like (m−s3)4. As a result, one cannot merely assign each processor

J. Hardwick et al. / Computational Statistics & Data Analysis 31 (1999) 397–416 409

the same number of iterations. Determining the partitioning for optimal load balance
can be accomplished via dynamic programming, taking �(mp) time for p proces-
sors. To reduce the overhead, a simple yet e�ective heuristic was developed, which
emphasizes careful assignment of the iterations with the most work (i.e., those with
small s3 value). This is important because misplacing a single iteration can create a
signi�cant imbalance if the iteration requires a large amount of work. This heuristic
runs in �(m) time and is given in Oehmke et al. (1999), along with comparisons
to the optimal subdivision of the s3 loops. This algorithm will be referred to as the
initial parallel algorithm, and it is the one that was used for the work reported in
Hardwick et al. (1997).
The changes needed for the initialization phase of path induction are the same as

those needed for dynamic programming, since it performs nearly identical calcula-
tions in the reverse order. For the evaluation phase, the only modi�cation needed is
a reduction operation to combine the values from the individual processors into a
single value. Reduction operations are explicitly provided in MPI and other parallel
programming languages and tools. This communication is quite e�cient, especially
when compared to the message passing required at each stage of dynamic program-
ming or backward induction. Since it is often useful to have nearly one hundred
reevaluations of a design with n in the range of a few hundred, the use of a path
induction algorithm results in substantial savings for both serial and parallel imple-
mentations.

4.2. Improved scalability

While the initial parallel algorithm works moderately well, it su�ers because the
algorithm’s load balance is imperfect. For a given n, this imbalance worsens as the
number of processors increases, because the work per s3 iteration varies so greatly.
Thus, for example, relatively little improvement was observed for n = 50 when the
number of processors was increased from 8 to 16, even when the start s3 and
end s3 functions were determined optimally. On the other hand, if the number of
processors is �xed and the sample size increases, then the parallelization improves.
This is a well-known scaling phenomenon.
In general, when there is a speci�c problem size of concern, researchers will re-

�ne a parallel program until adequate performance is achieved on the target machine.
If the goal, however, is to solve problems far beyond current machine capabilities,
then current boundaries will continually be pushed so that the largest possible prob-
lem can be solved. This is one of the reasons for migrating to parallel computers.
Such machines allow investigators to wield computational power that would not be
available on serial computers for many years. In the present case, the generation
of optimal solutions to sequential allocation problems is in its infancy, and there is
interest in expanding the frontier as far as possible. Further, for problems of this
nature, with exponential growth in the number of arms, one cannot envisage a max-
imum size or complexity to solve that will address all problems of interest. In this

410 J. Hardwick et al. / Computational Statistics & Data Analysis 31 (1999) 397–416

sense, developing algorithms to make the most of the largest available machines is
the scenario we are trying to enable.

Algorithm 4. Scalable Parallel Algorithm

{Pj: processor j}
{start �(j,m), end �(j,m): range of � values assigned to Pj for this m value, with
start �(j+1,m)=end �(j,m)+1 }
{For all processors Pj simultaneously, do}
for �=start �(j,n) to end �(j,n) do {i.e. for all terminal states}
Initialize V(�)
for m=n-1 downto 0 do {compute for all states of size m}
for �=start �(j,m) to end �(j,m) do
determine s1, f1, s2, f2, s3, f3 from �
compute V as before
Send needed V values to other processors
Receive V values from other processors

To make a truly scalable algorithm able to e�ciently use many processors to analyze
large problems, it is necessary to balance the work much more evenly. Load-balancing
becomes critical to reduce not only the time, but also the space requirements since
they too grow rapidly with n. If one processor requires signi�cantly more space
than average, then it becomes the limiting factor. Towards this end, note �rst that
the 1-dimensional V array can easily be subdivided evenly into intervals. Note also,
however, that because a given interval may start and end at arbitrary values of s3,
f3, s2, f2, and s1, such a partitioning does not correspond to simple subdivisions
of the control loops. To address this, a conversion has been made to a control struc-
ture that worked on intervals of V entries, and determined corresponding values of
s3; : : : ;f1. Changes were also needed to determine the index ranges and location of
V entries needed from and by other processors, as processor Pj may now need to
exchange values with processors other than Pj±1. An overview of the improved algo-
rithm is given in Algorithm 4. By utilizing techniques such as the o�set calculations
mentioned in Section 3.1, the overhead for determining s3; : : : ;f1, along with the
locations of the V entries needed to determine V(�), can be kept at an acceptable
level that is comparable to that needed in the serial algorithm. Further details can
be found in Oehmke et al. (1999), along with experimental analyses of the time and
space needed by the improved algorithm.
It should be noted that such extensive changes come at a cost. Aside from be-

ing tedious, they are more error-prone, and the resulting code is more di�cult to
understand and maintain. The greater the deviation from a simple serial description,
the worse these problems become. If such changes could be made automatically,
this situation would be greatly improved, but no current systems can do this. Space
compression and nested loops with ranges that depend on outer loops are beyond
current parallelization tools.

J. Hardwick et al. / Computational Statistics & Data Analysis 31 (1999) 397–416 411

5. Application

To illustrate the use of the parallel algorithm in Algorithm 4, it was applied to
the design and analysis of three sequential allocation procedures involving 3 arms.
The intent here is not to promote any speci�c design, but rather to show that the
algorithm provides heretofore unattainable exact evaluations of these procedures for
useful sample sizes.
The procedures examined were:
Bandit. The fully sequential design which maximizes the expected number of

successes. It is determined via dynamic programming.
Myopic. A fully sequential design which chooses, at each state, the arm that has

the highest probability of producing a success.
Equal allocation. A commonly used �xed sampling approach, in which each arm

receives n=3 pulls. This procedure is also referred to as vector at a time sampling.
As noted, to optimize the bandit procedure, a Bayesian approach is taken in the

design phase. Myopic allocation also utilizes a Bayesian approach. Recall, however,
that the procedures can be analyzed from either a Bayesian or frequentist perspective.
To illustrate this, the allocation schemes were compared (analyzed) according to two
criteria — one Bayesian and the other frequentist.
The �rst criterion is the expected number of failures, “E(F)” given the prior

distribution which, in the examples here, is the product of three uniforms. This is
the criterion that the bandit optimizes. Myopic allocation, which always seeks to
make the best decision based on taking only one more observation, is a commonly
referenced ad hoc attempt to achieve similar performance. Note that dynamic pro-
gramming is needed to determine the E(F) for bandit allocation, and that backward
induction is needed to determine the E(F) for myopic allocation. For equal alloca-
tion, the E(F) is simply the sum, over all arms, of n=3 times the prior probability
of failure.
The second criterion examined is the probability of correct selection, “P(CS)”.

Given an indi�erence tolerance � (herein selected to be 0.1), the probability of correct
selection is the minimum, over all arm probabilities p1, p2, p3, of the probability that
at the end of the experiment, the arm declared the winner has a success probability
within � of the success probability of the best arm. (By winner we mean the arm
with the highest observed rate of success. In case of ties, the winner was selected
randomly, as is standard.) For an arbitrary allocation algorithm it is not known which
values of pi yield the minimum. This indicates that a search throughout the parameter
space is needed to determine P(CS). However, it can be shown that the minimum
occurs when one arm is exactly � better than the other two so the dimension of the
relevant search space is reduced. P(CS) is an example of a criterion for which an
allocation algorithm needs to be evaluated multiple times. Because of these multiple
evaluations, path induction was used to determine P(CS) for the bandit and myopic
designs. For equal allocation much simpler approaches were employed.
In general one expects equal allocation to perform extremely well on the P(CS)

criterion. For two arms, in fact, this procedure can easily be shown to be optimal.
For three arms, however, equal allocation is no longer optimal, as there exist adaptive

412 J. Hardwick et al. / Computational Statistics & Data Analysis 31 (1999) 397–416

Fig. 1. Sample size vs. E(failures).

Fig. 2. Sample size vs. P(CS), �= 0:1.

procedures that are better. For the general case and for a speci�ed n, the design that
has the optimal P(CS) is not known for three or more arms. Standard dynamic pro-
gramming approaches cannot be used to solve this problem because of the nonlinear
nature of the minimum operation in the de�nition of P(CS).
In Fig. 1, E(F) for each procedure is plotted as a function of the sample size.

Similarly, P(CS) vs. sample size is presented in Fig. 2. In these �gures, B=bandit,
M=myopic and E= equal allocation. As noted, uniform priors have been used
throughout. These were used mainly for convenience and because they are com-
monly used. Naturally, had other priors been used then the results would be somewhat
di�erent. The program can easily handle a wide range of prior distributions.

J. Hardwick et al. / Computational Statistics & Data Analysis 31 (1999) 397–416 413

Note that the bandit allocation comes very close to achieving the P(CS) of equal
allocation, while incurring far fewer failures. Myopic allocation also incurs few fail-
ures, but has a very poor ability to correctly locate the best arm. For the indi�erence
region of �= 0:1, the minimum P(CS) for myopic allocation occurs when one arm
has a success probability of 1 and the others have probability 0.9. In this situation,
there is greater than a 60% chance that the rule will never even try the superior
arm. This is largely due to the prior assumption that the average success rates for
the di�erent arms are 1

2 . The myopic rule randomizes in the �rst stage and if a suc-
cess is obtained, the parameter estimate for the arm selected is updated to 2

3 , while
the other arm estimates remain at 1

2 . This procedure selects the next observation
from the arm with the expected success rate of 2

3 . With the true parameter having a
value ≥ 0:9, the outcome is again likely to be a success. This result inclines the rule
even further in favor of the arm already sampled. There are simple ways to alter
myopic allocation so that the P(CS) signi�cantly improves with very little increase
in failures, however, a discussion of this is beyond the scope of the present paper.

6. Extensions and future work

To summarize the current standing of this work, the serial (Algorithms 1 and
2), initial parallel (Algorithm 3), and improved parallel (Algorithm 4) algorithms
have all been implemented, with fully operational dynamic programming, backward
induction and path induction. These programs can be applied with very general eval-
uation criteria V which typically will be application speci�c. While the example in
Section 5 illustrates only a bandit objective, minimizing total failures, with trivial
changes the program can be applied to estimation problems. One can also add sam-
pling costs, optional stopping, etc. As was illustrated, the dynamic programming can
be used to produce optimal Bayesian designs, and the backward and path induc-
tion can be used to evaluate arbitrary designs with respect to very general criteria
which can be either Bayesian or frequentist. All optimizations and evaluations are
exact.
At present the scalable algorithm of Algorithm 4 can handle sample sizes as great

as n=200 using only 16 processors of an IBM SP2, where each processor has 1GB
of RAM and a local disk. Using only one processor, it is able to handle sample
sizes greater than 100. We are currently conducting studies for larger values of n
and more processors, analyzing both the time and space aspects of scalability. The
results will be reported in Oehmke et al. (1999).
One way of viewing the worth of parallel programming is to note that, even

with Moore’s law which predicts a doubling of serial processor speed roughly every
18 months, it will take approximately 6 years before a serial processor has the
computing power of a current 16-processor parallel computer. Further, 6 yr from
now a 16-processor system will still be 6 yr ahead of the serial system. Finally,
even if the program is not especially e�cient and is running, say, only 10 times
faster than serial, instead of the hoped-for 16 times faster, this is still roughly 5 yr
ahead of the serial capabilities.

414 J. Hardwick et al. / Computational Statistics & Data Analysis 31 (1999) 397–416

As noted earlier, the program is designed for a distributed memory system, and
is portable to a wide range of parallel computers, including shared memory ones.
It would have been easier to develop an initial parallel version on a shared mem-
ory system, although the automatic parallelization, such systems provide, would have
failed because they currently cannot analyze nested loops that depend on outer loops.
However, an e�cient, highly scalable shared memory code would be very similar to
Algorithm 4, and would take similar amounts of time to develop and tune. This is be-
cause space compression, load-balancing, communication reduction, cache utilization,
etc., remain important concerns on any parallel system.
From a statistical vantage point, we plan to extend this work to evaluate optimal

and sub-optimal strategies along multiple criteria and also to examine the operating
characteristics of all procedures under consideration. As noted earlier, very little is
known about the behavior of 3-arm strategies, especially optimal strategies. Further,
as highlighted in the discussion of equal allocation and P(CS) in Section 5, even
problems that are well understood for two arms may be quite complex for three
arms.
We also plan to extend the design features of the algorithm. For example, the

parallel program for the 3-arm bandit can be trivially adapted to solve 2-arm ban-
dits with trichotomous responses. This is because the natural states are of the form
〈o11; o21; o31; o12; o22; o32〉, where oij indicates the number of outcomes of type i on arm j.
The recurrences for this problem would be of the form

V (�) = F(V (� + 111); V (� + 1
2
1); V (� + 1

3
1); V (� + 1

1
2); V (� + 1

2
2); V (� + 1

3
2));

where 1ij denotes a single observation of outcome i on arm j. Note that this recurrence
has the same dependency structure as the recurrence in Algorithm 1, and hence all
of the communication requirements are identical. A special case of the trichotomous
response problem is a 2-arm sequential allocation problem with censored outcomes. A
censored observation is one in which the outcome cannot be observed (e.g., a patient
dies of causes unrelated to the treatment being studied). If the censoring mechanism
is independent of the arm selected, then a 2-arm fully sequential allocation problem
can be optimized via a �ve-dimensional dynamic programming approach. However, if
censoring is not independent of the arm, then six-dimensional dynamic programming
is needed. In either case, the recurrences remain near-neighbor recurrences, as in
Algorithm 1. As a result, the present work can be easily applied to them.
With more substantive changes, one can also address problems involving 2-arm

sequential allocation with delayed responses. In delayed response problems, one does
not necessarily know the outcome of past decisions before new ones must be made. In
a cancer therapy study, for example, the ideal response is that the subject lives for a
long period of time. In the interim, however, other patients are admitted for treatment.
During an experiment, then, an investigator typically has observed some outcomes
and has also started several patients for whom the outcomes are not yet known.
Nevertheless, the investigator retains the goal of making the best possible assignment
for each new patient given the data that are actually known at the time. Clearly, the
state space for this problem is larger than it is for the problem in which each outcome
is known before the next subject needs to be assigned. However, some models of the

J. Hardwick et al. / Computational Statistics & Data Analysis 31 (1999) 397–416 415

2-arm allocation problem with delayed response can be handled by a 6-dimensional
recurrence only somewhat more complex than that which appears in Algorithm 1.
Such models can be solved by modifying the calculations and message-passing of
our current program.
Of course, one can always pursue an extension involving an increase in the number

of arms or the number of responses per arm. However, because the running time and
space grow exponentially in the total number of arm responses, this rapidly limits
the sample size that can be optimized or evaluated.
In closing, to our knowledge, no non-trivial optimal solutions have been produced

for any of the problems just described, with the exception of our preliminary work
on the 2-arm model with censoring independent of the arm (see Hardwick et al.,
1998). We are especially interested in making progress on the censored data and
delayed response problems because these extensions address important real-world
considerations that have long obstructed adaptation of adaptive experimental designs.

Acknowledgements

Research supported in part by National Science Foundation grants DMS-9157715
and DMS-9504980. Computational support was provided by the Center for Parallel
Computing at the University of Michigan. We are grateful for the comments of three
referees who reviewed this paper.

References

Armitage, P., 1985. The search for optimality in clinical trials. Int. Statist. Rev. 53, 15–24.
Atallah, M. (Ed.), 1999. Algorithms and Theory of Computation Handbook. CRC Press, Boca Raton,
1999.

Bather, J.A., Coad, D.S., 1992. Sequential procedures for comparing several medical treatments.
Sequential Anal. 11, 339–376.

Berry, D.A., Eick, S.G., 1995. Adaptive assignment versus balanced randomization in clinical trials —
a decision-analysis. Statist. Med. 14, 231–246.

Berry, D.A., Fristedt, B., 1985. Bandit Problems: Sequential Allocation of Experiments. Chapman &
Hall, London.

Betensky, R.A., 1996. An O’Brien-Fleming sequential trial for comparing three treatments. Ann. Statist.
24, 1765–1791.

Betensky, R.A., 1997. Sequential analysis of censored survival data from three treatment groups.
Biometrics 53, 807–822.

Buringer, H., Martin, H., Schriever, K., 1980. Nonparametric Sequential Selection Procedures.
Birkhauser, Basal.

Coad, D.S., 1995. Sequential allocation rules for multi-armed clinical trials. J. Statist. Comput. Simul.
52, 239–251.

Gittins, J.C., 1989. Multi-Armed Bandit Allocation Indices. Wiley, New York.
Gropp, W., Lusk, E., Skjellum, A., 1995. Using MPI: Portable Parallel Programming with the Message
Passing Interface. MIT Press, Cambridge, MA.

Gupta, S.S., Liang, T., 1989. Selecting the best binomial population: parametric empirical Bayes
approach. J. Statist. Plann. Inference 23, 21–31.

Hardwick, J., Oehmke, R., Stout, Q.F., 1997. A parallel program for 3-arm bandits. Comput. Sci.
Statist. 29, 390–395.

416 J. Hardwick et al. / Computational Statistics & Data Analysis 31 (1999) 397–416

Hardwick, J., Oehmke, R., Stout, Q.F., 1998. Adaptive allocation in the presence of missing outcomes.
Comput. Sci. Statist. 30, 219–223.

Hardwick, J., Stout, Q.F., 1993. Exact computational analyses for adaptive designs. In: Flournoy, N.,
Rosenberger, W.F. (Eds.), Adaptive Designs. Institute Math. Stat. Lec. Notes, Vol. 25, 223–237.

Hardwick, J., Stout, Q.F., 1999. Using path induction for evaluating sequential allocation procedures.
SIAM J. Sci. Comput. 21, 67–87.

Jones, P., 1992. Multiobjective Bayesian Bandits. Bayesian Statistics 4: Proceedings of the fourth
Valencia Int’l Meeting, 689–695.

Kulkarni, R., Kulkarni, V., 1987. Optimal Bayes procedures for selecting the better of two Bernoulli
populations. J. Statist. Plann. Inference 15, 311–330.

Oehmke, R., Hardwick, J., Stout, Q.F., 1999. Scalable parallel implementation of high-dimensional
dynamic programming. In preparation.

Palmer, C., 1993. Selecting the best of k treatments, In: Flournoy, N., Rosenberger, W.F. (Eds.),
Adaptive Designs. Institute Math. Stat. Lec. Notes, Vol. 25, 110–123.

Siegmund, D., 1993. A sequential clinical trial for comparing three treatments. Ann. Statist. 21,
464–483.

Wang, Y.-G., 1991. Sequential allocation in clinical trials. Commun. Statist. Theory Methods 20,
791–805.

