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Abstract: Given a real-valued weighted function f on a finite dag, the Lp isotonic regression of f , p ∈
[0,∞], is unique except when p ∈ [0, 1]∪{∞}. We are interested in determining a “best” isotonic regression

for p ∈ {0, 1,∞}, where by best we mean a regression satisfying stronger properties than merely having

minimal norm. One approach is to use strict Lp regression, which is the limit of the best Lq approximation

as q approaches p, and another is lex regression, which is based on lexical ordering of regression errors. For

L∞ the strict and lex regressions are unique and the same. For L1, strict qց1 is unique, but we show that

qր1 may not be, and even when it is unique the two limits may not be the same. For L0, in general neither

of the strict and lex regressions are unique, nor do they always have the same set of optimal regressions, but

by expanding the objectives of Lp optimization to p < 0 we show p ր 0 is the same as lex regression. We

also give algorithms for computing the best Lp isotonic regression in certain situations.

Keywords: strict isotonic regression, lex regression, monotonic, Polya approach, L0, L1, L∞, Hamming

distance

1 Introduction

This paper considers isotonic regression (also known as monotonic regression) on an arbitrary finite dag

G = (V,E). A real-valued function h on G is isotonic if for all vertices u, v ∈ V , if u ≺ v (i.e., if there is a

path from u to v) then h(u) ≤ h(v), i.e., it is a weakly monotonic function from G into ℜ. We are given a

weighted function (f,w) on V , where f is a real-valued function and w is the positive real-valued weights,

and wish to produce a real-valued isotonic function g that is closest to f . If all the weights are the same

then we say that the function is unweighted. Isotonic regression is a form of nonparametric regression, and

hence very useful when parametric assumptions are unwarranted. Currently Google lists tens of thousands

of results for a search on ”isotonic regression”. They have become quite important in data science and

machine learning, with all of the major software packages in these areas including algorithms to compute

them. An extensive overview of such applications appears in [3].

Normally the distance between f and g is measured in terms of the weighted Lp distance, i.e., for

1 ≤ p < ∞ is

(
∑

v∈V

w(v)·|f(v) − g(v)|p)1/p

Finding a g that minimizes this is the same as finding one that minimizes the same sum without taking the

1/p root. This then extends to 0 < p < 1, where there is no longer a true norm, but there is an F-norm. We

also extend to p = 0 (the Hamming distance) and p = ∞. Thus the goal is to minimize

∑

v∈V w(v)·1(f(v) 6= g(v)) p = 0
∑

v∈V w(v)·|f(v) − g(v)|p 0 < p < ∞

maxv∈V w(v)·|f(v) − g(v)| p = ∞
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among all isotonic functions g on G. If g is an isotonic function minimizing this quantity then we say g is

an Lp isotonic regression of f .

An important special case is when G is a simple linear order and f is a non-increasing function. In this

case the best isotonic regressions will be constant functions, and the value of any constant minimizing the

regression error is a weighted Lp mean. For weighted means the location of the function values is solely

determined by the function values, so we often just consider the values of f without specifically noting

which vertex has which function value, i.e., it reduces to considering the weighted mean of a multiset of

weighted values. Let midp(S) denote the set of weighted Lp means of S.

For p ∈ (1,∞) it is well-known that an Lp regression g is always unique due to the strict convexity of

the objective function, and similarly midp(S) is unique for any S. For p ∈ [0, 1] the objective function is

not strictly convex and Lp regression, nor midp(S), need not be unique. E.g., for all such p, for unweighted

data 1, 0 on a linear order both 1, 1 and 0, 0 are optimal Lp isotonic regressions, and are the elements in

midp for p ∈ (0, 1). For p ∈ (0, 1) the objective is in fact strictly concave. For p = 1 the objective behavior

is a bit more subtle, and mid1 is either a single point or an interval. For example, mid1({0, 1}) = [0, 1]. For

p = 0 mid0(S) is the set of values with maximum total weight.

This paper is concerned with p = 0, 1,∞, values for which the isotonic regression need not be unique.

A natural question is whether there are “best” L0, L1 and L∞ isotonic regressions. Section 2 gives two

approaches to this question. One is via limits of Lp regressions as p → 0, 1, or ∞; the other is via lexical

ordering of the regression values, useful for L0 and L∞. Section 3 discusses the fact that for L∞ the

limit from below and a lexical approach give the same regression, Section 4 shows that for L1 the two

limit approaches give different results, and Section 5 shows that for L0 the limit from above and a lexical

approach give different results, but if Lp optimization is extended to p < 0 then the limit from below and

the lexical approach are the same.

Section 6 gives algorithms for computing these regressions on linear orders using partitioning and “pool

adjacent violators” (PAV), and Section 7 gives some concluding remarks.

2 Definitions

To determine best isotonic regressions, one approach is by looking at the limiting behavior of Lq regression

as q approaches p. These limits are sometimes called strict isotonic regressions. Given a weighted function

f on a dag, for L∞ we consider the limit of Lp regressions as p ր ∞, denoted strict
↑∞(f) (Section 3); for

L1 we consider strict↑1(f) and strict↓1(f) (Section 4); and for L0 consider strict↓0(f) (Section 5). Given

the strict convexity of the objective functions being optimized, for 1 < p < ∞ it is not difficult to show that

strict
↑p(f) and strict↓p(f) are the unique Lp isotonic regression. Many problems have been analyzed using

strict↓1(f) and strict
↑∞(f) [4, 5, 7, 15]. The use of strict↑∞(f) is sometimes called the Polya approach,

and, less frequently, the use of strict↓1(f) is called the Polya-1 approach. While here strict
↑∞(f) and

strict↓1(f) are unique, for some classes of functions on infinite sets this is not true [12].

We also consider another approach that has been used to determine “best”’ L∞ and L0 regressions.

For an isotonic regression g of an unweighted function f on a DAG of n vertices, take the regression

errors of g at the vertices and sort them in decreasing order, giving a vector of n entries. Order all such

vectors lexically, and let v be the minimal vector in this ordering. While there are infinitely many isotonic

regressions of f it can be shown that v is well-defined and corresponds to a unique isotonic regression [23]

h which minimizes the L∞ error. h has been called the minimizing lex regression or similar terms. Here we

denote it as lex∞(f). For L0 on unweighted functions use the same process, but now have the vector entries

in increasing vertex error. Once again there is a well-defined minimal vector v in the lexical ordering of the
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vectors, though there may be multiple isotonic regressions corresponding to v (Sec. 5), each of which is an

L0 optimal isotonic regression of f . We denote these regressions as lex0(f), though they have also been

called strong L0 regression [25].

For weighted values the definition of the lexical orderings have to be generalized a bit. For lex∞(f,w),
for isotonic regressions g, h define g ≺ h iff there is an α > 0 such that

∑

{w(v) : |g(v)−f(v)| ≥ α, v ∈ V } <
∑

{w(v) : |h(v)−f(v)| ≥ α, v ∈ V }

and for all β > α,

∑

{w(v) : |g(v)−f(v)| ≥ β, v ∈ V } =
∑

{w(v) : |h(v)−f(v)| ≥ β, v ∈ V }

For lex0(f,w), for isotonic regressions g, h define g ≺ h iff there is an α > 0 such that

∑

{w(v) : |g(v)−f(v)| ≤ α, v ∈ V } >
∑

{w(v) : |h(v)−f(v)| ≤ α, v ∈ V }

and for all β < α,

∑

{w(v) : |g(v)−f(v)| ≤ β, v ∈ V } =
∑

{w(v) : |h(v)−f(v)| ≤ β, v ∈ V }

As before, lex∞(f,w) and lex0(f,w) are initial elements in their orderings.

It had previously been shown that strict
↑∞(f) = lex∞(f) [23], while in Section 5 we show that

strict↓0(f) is not always the same as lex0(f). In Section 4 we show how to approximate strict↓1 and

that in general it is different than strict
↑1. In the Appendix we show that if an L∞ isotonic regression algo-

rithm satisfies monotonicity and level set trimming then it is in fact lex∞. A slightly improved algorithm for

finding the lex∞ regression is given in Section 3.

For p ∈ [0,∞) let mid↓p(S) be limqցpmidq(S), and for p ∈ (0,∞], mid
↑p(S) denotes limqրpmidq(S).

If g is an isotonic function on G then a set S ⊆ V is a level set if it is a maximal weakly connected

set where all the values of g are the same. It is straightforward to show that for any p ∈ (0,∞), if g is an

optimal Lp isotonic regression then for any level set S of g, g’s value on the level set is in midp(S).
Given a function f on a dag G = (V,E), say that u, v ∈ V are a violating pair if u precedes v in G

but f(u) > f(v), i.e., they violate the isotonic condition. The fastest known algorithms for determining

lex∞ and lex0 on a general dag are based on first finding all violating pairs. This can be done in time linear

in the time to find the transitive closure of G, which can be done in O(nm,nω) time, where n = |V |,
m = |E|, and ω is such that binary matrix multiplication can be done in O(nω) time. However, there

are some orderings where the violating pairs can be found more quickly. For example, suppose the dag

has vertices where the ordering relationship can be determined directly from pairwise comparisons of the

vertices’ labels and the edges are not explicitly given. The violating edges can therefore be determined in

O(n2) time. An example of this is where vertrex labels are strings and u ≺ v iff u is a substring of v (though

a timing analysis should take the time of the comparisons into account since strings can be of varying size).

Another example is planar rectangles of arbitrary orientation and size, where p ≺ q iff p is contained in q
(and, more generally, polyhedral containment in d-dimensional space). A particularly important class where

edges are given implicitly are points in d-dimensional space, where u = (u1, . . . , ud) ≺ v = (v1, . . . , vd)
iff ui � vi for all 1 ≤ i ≤ d. This is sometimes known as domination ordering, where v dominates u, and it

is also known as multidimensional ordering or coordinate-wise ordering. For these orderings the transitive

closure can be found in Θ(C + n logd n) time, where C is the size of the transitive closure and where the

implied constants depend on d. Use of these facts to quickly find L0 regressions appears in [25].
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3 L∞

The best L∞ regression has been defined both as strict↑∞ (the Polya approach) and as lex∞. A proof that

these are the same, and the regression is unique, appears in [23]. To date apparently all efficient algorithms

for determining the regression on finite dags are based on the lex∞ definition. For an arbitrary dag of n
vertices and m edges a O(min{nm,nω} + n2 log n) time algorithm appears in [23] (where ω is such that

boolean matrix multiplication can be performed in O(nω) time), and the CompLexMin algorithm in [9]

computes it in Θ(nm) expected time. Algorithm A below is a simplification of [23] which should be the

fastest in practice.

Algorithm A is essentially as follows: for each violating pair of vertices (u, v) determine the weighted

average x = (wuf(u)+wvf(v))/(wu +wv), i.e., their wmeanp for any 1 ≤ p ≤ ∞, and let their mean err

be wu·|f(u)−x|, which is the same as wv·|f(v)−x|. Create a record which includes u, v, and the mean err

of their weighted function values. Sort these records by the mean err value in decreasing order, and then

process them in sequence. If the next record contains vertices u ≺ v and neither has had their regression

value determined yet set the regression values to x = wmean, set the upper bound of all predecessors of v to

the maximum of their previous value and x, and set the lower bound of all successors of u to the minimum

of their previous value and x. If both have had their regression value determined already discard the record,

and if one has had the regression value defined while the other hasn’t the steps are shown in Algorithm A.

A proof of correctness is essentially the same as the proof of the algorithm in [23].

The total time of the algorithm is the time to find all violating pairs, the time to sort the records, and the

time to process them. For any violating pair p ≺ q the conceptual edge from p to q is used at most twice,

once when p’s regression value is determined and once when q’s is. Since the time to process the records is

linear in the number of records, the sorting time dominates the remaining steps other than the time to find

the violating pairs. In terms of the original dag this is at most Θ(n2 log n), and thus A’s worst-case time is

O(min{nm,nω} + n2 log n), i.e., the same as the time of the algorithm in [23] though some of the steps

are slightly faster. Note that for dags such as those discussed at the end of Section 2 the time for finding the

violating pairs is Θ(n2), in which case Algorithm A takes Θ(n2 log n) time. Further, in terms of the number

of violating pairs, m∗, the time to sort and process is Θ(m∗ logm∗) and thus the more in-order the data is

the faster the later parts of the algorithm are.

4 L1

Most published L1 isotonic regression algorithms use a median data value as the value of a level set [1,

10, 13, 19, 20, 21, 24, 26], greatly simplifying the search for optimal regression values. Other regression

values can also optimize the L1 regression error, and have additional desirable properties. However, com-

puting them can be more complicated. We will show that for a set S of weighted real numbers, in general

mid↓1(S) 6= mid
↑1(S), and hence in general strict↓1(f) 6= strict

↑1(f). When f is unweighted data on

a linear order, with values 1, 0, algorithms based on data values would result in either 0, 0 or 1, 1 as the

isotonic regression. Meanwhile, strict↓1(f) is 0.5, 0.5 and mid↓1({0, 1}) is {0.5}, while strict
↑1(f) is 0, 0

or 1, 1 and mid
↑1({0, 1}) is {0,1}. While some attention had been paid to mid↓1, apparently none had been

to mid
↑1.

One could also define versions of best L1 isotonic regressions in terms of lexical properties. Take the set

of L1 optimal regressions, order their regression errors as for lex∞, and take a regression corresponding to

the first element in this ordering. Denote this by lex1,∞. For a set S of weighted real numbers let mid1,∞(S)
be the regression of smallest L∞ error among mid1(S). For unweighted data S = {1, 1, 3, 7}: mid1,∞(S)
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input: weighted data (f,w), lists of successors and predecessors for each vertex in dag G

output: S = lex∞(G, f,w)
violators: array of (mean error,u,v) for violating pairs u ≺ v, f(u) > f(v)
lowbd(v), upbd(v): lower and upper bounds on S(v)

numviolate=0

for every vertex v

lowbd(v) = −∞; upbd(v) = +∞; S(v) = undefined
for every successor s of v

if f(v) > f(s) then violators(numviolate)= (mean err(v,s), v, s); numviolate++

sort violators by decreasing order of mean err. For ties sort by decreasing order of weight

for i=0 to numviolate-1

(mean err,pred,suc)=violators(i)

if (S(pred) defined) ∨ (S(suc) defined) then cycle
wmean = weighted mean of pred and succ

if wmean ≥ upbd(pred) then {f(pred) is ≥ upbd(pred), no later mean is < upbd(pred)}
S(pred) = upbd(pred)

if wmean ≤ lowbd(suc) then {f(suc) is ≤ lowbd(suc), no later mean is > lowbd(suc)}
S(suc) = lowbd(suc)

if (S(pred) undefined) ∧ (S(suc) undefined) then {low(suc) ≤ wmean ≤ high(pred)}
S(pred) = S(suc) = wmean

if S(pred) defined then

for every successor s of pred

lowbd(s) = max{lowbd(s),S(pred)}
if S(suc) defined then

for every predecessor p of suc
upbd(p) = min{upbd(p),S(suc)}

end for i

for every vertex v

if S(v) undefined then

if f(v) ≥ upbd(v) then S(v)=upbd(v)

else if f(v) ≤ lowbd(v) then S(v)=lowbd(v)

else S(v)=f(v)

Algorithm A: Computing S=lex∞(G, f,w) (= strict
↑∞(G, f,w)) via Transitive Closure

5



is 3; mid∞(S) is 4; mid↓1(S) is a value in (1,3) that is closer to 3 than to 1 (see Sec. 4.1); and mid
↑1(S)= 1

(see Sec. 4.2). A similar technique can be used for lex1,0, though this is not always unique. For example,

for S = {1, 2, 3, 4}, mid1,0(S) = {2, 3} while mid1(S)= [2, 3]. While there is likely some interest in lex1,∞

and lex1,0, they won’t be pursued any further here.

4.1 strict↓1

Jackson [8] was apparently the first to determine mid↓1(S). He only considered unweighted data, but the

extension to weighted data is straightforward. If S has a unique median value then that is mid↓1(S). Other-

wise, a nonempty S must have unique values a < b where both are weighted medians. In this case mid↓1(S)
is the unique value c ∈ (a, b) such that

∏

yi≤a

(c− yi)
wi =

∏

yi≥b

(yi − c)wi

or, equivalently,
∑

yi≤a

wi ln(c− yi) =
∑

yi≥b

wi ln(yi − c)

Finding an L1 isotonic regression where all level sets have data values and then using Jackson’s formula

on the regression values to determine the regression value of the level set does not always produce strict↓1.

For example, on a linear order with unweighted data values 0, -2, 2, 0 one optimal L1 isotonic regression

is 0, 0, 0, 0. Applying Jackson’s formula to this level set regression values would of course give the same

values, but strict↓1 is -1, -1, 1, 1. Note that the level sets are not the same, let alone the regression values.

Jackson’s formula needs to be applied to the original data values, not the regression values.

It appears that no previous algorithm has been published which determines strict↓1 for isotonic regres-

sion on finite sets, though strict↓1 isotonic regression has been examined in settings where the functions are

integrable [7], and has been examined in more general settings where the goal is to find a closest point on a

closed convex set [11]. To find a close approximation of strict↓1 one can determine a p > 1 close enough

to 1 so that the Lp isotonic regression is sufficiently close to strict↓1. Then approximate the Lp isotonic

regression. To simplify, assume we want an approximation to within 2δ pointwise, δ > 0, and each of these

two steps has its parameters chosen to produce an approximation within δ at each vertex.

Suppose all the function values are integers in the range [−h, h] and the weights are integers in the

range [0,W ]. If the values and weights aren’t integers then just round and do pointwise approximation to

within δ/2. For a given p > 1, for any set S of n or fewer weighted values, the largest difference between the

weighted L1 mean of S and the Lp mean occurs if all vertices have weight W and half have value h while the

other half have value −h. The difference in means is nWh−(nWhp)1/p, which is ≤ δ iff nW−(nW )1/p ≤
δ/h. Rearranging and taking the log of both sides, this will be true if 1/p ≥ ln(nW −δ/h)/ ln(nW ), which

will hold if p is sufficiently close to 1. Note that this approach can be used for arbitrary L1 regression, not

just isotonic regression [11].

To find an approximation to the Lp isotonic regression there are several approaches. In [10] they use

interior point methods, while [24, 26] iteratively use an algorithm for weighted L1 binary-valued isotonic

regression to converge to an approximation in a logarithmic number of steps. For a connected dag with n
vertices and m edges, the algorithm in [10] produces an approximation within δ in O(m1.5 log2 n log(n/δ))
time, while the approach in [24] depends on the dag. If K = nhW then the time is Θ(n logK) if the dag is

linear, a tree, or a 2-dimensional grid; Θ(n log n logK) if the dag is arbitrary points in 2-dimensional space

with domination ordering; Θ(n2 log n logK) for a d-dimensional grid, d ≥ 3, and Θ(n2 logd n logK) for
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arbitrary points in d-dimensional space with domination ordering (for these results the implied constants

depend upon d).

The fastest known algorithms for arbitrary dags are approximations based on algorithms for L0 [26],

which are in turn based on flow algorithms [16]. Given a flow algorithm F , let F(n,m, nU) denote the

time to solve an integer-valued flow on a graph with n vertices, m edges, and integer edge flow limits in

[nU ] for some positive integer U . Let G′ = (V ′, E′) be a violator dag of a dag G = (V,E), where G′

has n′ vertices and m′ edges. Then for 1 < p < ∞, given a weighted function (f,w) on G with integer

weights in [0, U ], and given G′, for δ > 0 an isotonic function within δ of the Lp isotonic regression of f
can be found in O(F(n′,m′, nU) logK) time, where K = (maxv∈V f(v)−minv∈V f(v)) /δ and where

the implied constants in the O-notation depend on p. A recent improvement in flow algorithms [2] reduces

their time to Õ(m) if K grows at most polynomially in n, and thus the total time is bounded by this plus the

time to construct the violator graph.

4.2 strict
↑1

Minimizing
∑

v∈V w(v)·|f(v)−g(v)|p when p ∈ (0, 1) is different than minimizing it when p ≥ 1 because

for p < 1, |f(v) − y|p is a concave function of y on y ≤ f(v) and on y ≥ f(v). This in contrast to it

being convex throughout the full range of y when p ≥ 1, and strictly convex when p > 1. Given the set

S = {f(v) : v ∈ V }, let a, b two elements of S where a < b and there are no elements of S in (a, b).
Then for 0 < p < 1, the Lp error of using y as the mid

↑1(S) is a concave function on [a, b]. This because

each term of the error sum is concave in y and the sum of concave functions is concave. Thus the minimum

on [a, b] is achieved when y = a or y = b. Since this is true for any consecutive pair of data values, the

minimum, i.e. mid
↑1(S), is achieved at one of the data values.

First we show that the value is a median. If the regression value is chosen to be ŷ, then, letting p = 1−ǫ,
for ǫ > 0 sufficiently close to 0, the Taylor expansion series shows that the regression error is

∑

v∈V

wv|f(v)−ŷ| (1 + l.o.t.)

The sum with the final factor in each term being 1 instead of (1 + l.o.t.) is the sum under the L1 norm, so it is

the medians which minimize it. Since the minimizer for mid
↑1(S) must be a data value, it must be a median

of S, either the unique median if S has a unique median, and otherwise there are unique values a < b in S
which are medians of S. Thus mid

↑1(S) is either a or b. To determine if it is a, let c(v) = |f(v) − a| and

d(v) = |f(v)− b|. The relevant question is if

∑

v∈V, v 6=a

w(v)c(v)1−ǫ <
∑

v∈V, v 6=b

w(v)d(v)1−ǫ

is true for ǫ sufficiently small. Using Taylor expansions, and the fact that
∑

v∈V w(v)d(v) =
∑

v∈V w(v)e(v)
(since both are medians), this will be true if

∑

v∈V, v 6=a

w(v)c(v) ln c(v) <
∑

v∈V, v 6=b

w(v)d(v) ln d(v)

or, equivalently,
∏

v∈V, v 6=a

c(v)w(v)c(v) <
∏

v∈V, v 6=b

d(v)w(v)d(v)

7



mid
↑1(S) will be b if the inequality is reversed. If these are equal then one can go to the next order term in

the Taylor expansion, etc.

Note that if there is not a unique median value then mid↓1(S) cannot be one of the data values, while

mid
↑1(S) is always a data value. Thus in general strict↑1 is not the same as strict↓1. Further, they need not

have the same level sets. On a linear order, if the unweighted data values are 1, 1, -10, -11, 0, 0, -2, -3, then

for the first 4 entries mid
↑1 is 1, 1, 1, 1 and for the second 4 is 0, 0, 0, 0, while mid↓1 is negative on the first 4

and negative but somewhat larger on the second 4. For mid
↑1 the 8 elements have to be merged into a single

level set with value in {-2,0}, while for mid↓1 the level sets are not merged.

There does not appear to be any published algorithm for determining isotonic regressions when 0 < p <
1, so currently one cannot approximate strict

↑1 by using a published Lp approximation algorithm for p < 1
sufficiently close to 1.

5 L0

The definition of the best L0 regression as being lex0 apparently first appeared in [25], where in the first

version of that paper it was called strong L0 isotonic regression. In general lex0 is the not same as strict↓0
since for 11, 8, 5, 2, 0, lex0 is 2 and strict↓0 is 5. However, we can consider strict↑0 by using an extension

to negative p. For 0 > p > −∞ let

||f − g||p = (
∑

v∈V

w(v)·|f(v) − g(v)|p)1/p

This is not a norm, but we have the same goal as before, namely in minimizing it. Since p < 0, this requires

maximizing
∑

v∈V w(v)·|f(v)− g(v)|p. Viewing the set of optimal g as a function of p, we define strict
↑0

as the set limpր0. We will show that this is lex0.

To explain our approach assume all the weights are 1. The approach works for arbitrary positive weights,

but unit weights simplifies the explanation. Recall that to determine lex0 for each L0 regression we consider

its errors at the vertices in nondecreasing order. For regression A denoted this list by a1, . . . , an, where

a1 ≤ a2 . . . ≤ an, and for regression B denote its list by b1, . . . , bn, where b1 ≤ b2 . . . ≤ bn. We will show

that if A’s list precedes B’s in lexical order then A has smaller Lp error for p sufficiently close to 0, p < 0.

A’s precedes B’s iff there is an index i, 0 ≤ i ≤ n − 1, such that aj = bj for 1 ≤ j ≤ i, and

ai+1 < bi+1. We can ignore the values of aj and bj for j ≤ i since they contribute the same to each sum.

Let Ap =
∑n

k=i+1 a
1/p
k and Bp =

∑n
k=i+1 b

1/p
k . Then the sum over the vertex regression errors of A to the

pth power, minus the vertex regression errors of B to the pth power, is Ap − Bp. Since p < 0 and the ai
and bi are nondecreasing, this is at least the value one would have if for all j > i + 1, bj = bi+1 and aj
is extremely large. In fact, we can let aj be infinite and 1/aj = 0. Thus Ap − Bp > api+1 − (n − i)bpi+1.

As p → 0, (ai+1/bi+1)
p → ∞ since ai+1 < bi+1 and p is negative. Since (n − i) is a constant, for small

enough p, api+1 > (n − i)bpi+1 (recall we were trying to maximize the sum of the errors to the pth power).

Thus if A precedes B in the lex0 ordering it precedes B in the strict
↑0 ordering of regression errors. This

implies that iflex0 is strict↑0.

Note that lex0, and hence also strict
↑0, are not unique since for 1, 0 on a linear order both 0, 0 and 1, 1

are optimal. Nor are they monotonic since their unique regression of 6, 6, 4, 2, 0 is all 6s, while increasing

the 2 and 0 values to 4 gives a unique regression of all 4s.
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6 Linear Orders

Our approach for determining strict↓1 on a linear order is based on partitioning, using 0-1 isotonic regression

to iteratively narrow down to the regression value for each point [24]. We describe the process in terms of

regression values being in boxes, where the horizontal extent of each box is the interval of vertices it is

representing and the vertical extent is guaranteed to include the regression value of every vertex in the box.

For each iteration there are 2 stages: the first partitions each box (or the box may be unchanged), and

the second pools (merges) partitions of adjacent boxes to maintain the isotonic property. At the end of an

iteration the vertical extents of the boxes are consecutive intervals that are the same, followed by another

sequence of vertical extents that are higher but all the same, followed by another sequence, etc. The vertical

extents are intervals or single points. Figure 1 shows a sequence of steps in the pooling stage.

Initially each data point is in its own box, with the vertical extent being the range from smallest to

largest data value. At an intermediate stage, the boxes with vertical extent which is the open interval (a, b)
form a sequence (the lower bound a may be included if it is the smallest data value, and similarly for the

upper bound b). Let [i, j] be the sequence of index values, i.e., the box is [i, j] × (a, b). Denote this box by

B(i, j, a, b), and let W =
∑j

k=iwk. Let ŷ be any value in (a, b), and let

S�(i, j, ŷ) =
∑

{wk : i≤k≤ i, y(k)� ŷ} for � ∈ {<,=, >}

and

P�(i, j, ŷ) =
∏

{|b− y(k)|wk : i≤ k≤ j, y(k)� ŷ} for � ∈ {≤,≥}

These values have several properties. First, for all of the blocks combined they can be computed in

Θ(n) time. Further, for a given block the S and P values can be used to determine where the median

interval is located and its relation to ŷ. Also, when two adjacent blocks with the same vertical extent are

merged the S, P , and W values of the resulting block can be computed in constant time from the values

of the blocks being merged. This fact is important because the 2nd step of each stage merges blocks, using

pool adjacent violators (PAV). This is a standard operation in isotonic regression on a linear order, merging

adjacent blocks with regression values in the wrong order into a larger block and then determining it’s

regression value, which will be in the interval of the lower regression value (from the block on the right) to

the larger regression value (the block on the left). In the most common implementation of PAV the blocks

are examined in increasing order of the range of their independent variable, and if an out of order pair is

discovered they are merged and the interval of regression values determined. This may be smaller than the

preceding block, in which case they are merged, etc. Fig. 1 illustrates this process, and Fig. 3 gives an

implementation used for strict↓1. The total number of mergers throughout the entire algorithm is ≤ n− 1.

An important aspect of Jackson’s formula is that the P values are only relevant if ŷ is in the interval of

median values and the interval has more than one point. If the interval of medians is [c, d] and ŷ ∈ [c, d] then

when P≤(·) = P≥(·) the optimal median is ŷ; when P≤(·) > P≥(·) then the optimal median is < ŷ; and

otherwise is > ŷ. During this iteration of the partitioning process B(i, j, a, b) is replaced by B(i, j, ŷ, ŷ)
(i.e., a vertical extent of a single point) if S<(·) and S>(·) are both < W/2 or ŷ is one of the median values

and P≤(·) = P≥(·); else is replaced by B(i, j, a, ŷ) if ŷ is in the interior of the interval of medians and

P≤(·) > P≥(·); else is replaced by B(i, j, ŷ, b).
The only part of the algorithm still unspecified is how to choose the ŷ values. There are several options

depending on the objectives one wants. One way is to use data values, initially using a median data value and

then at each iteration, for the sequence of blocks with vertical interval (a, b), choosing the data value which

is a median of those in that range. This would take Θ(n log n) time, and for each level set of strict↓1(f)

9



Figure 1: Steps in PAV (pool adjacent violators)

If ŷ is a data value in B (i.e., S= > 0) then

if S< and S> are < W/2 then ŷ is the unique median, shrink B to B′(i, j, ŷ, ŷ)
else ŷ cannot be the desired median

if S< ≥ W/2 then (a, ŷ) contains the desired median, shrink to B′(i, j, a, ŷ)
else (ŷ, b) contains the median, shrink to B′(i, j, ŷ, b)

else ŷ is not a data value

if S< = S> {both are W/2, ŷ is in the median interval, use Jackson’s formula}
if P< = P> shrink to B′(i, j, ŷ, ŷ)
else if P< > P> shrink to B′(i, j, a, ŷ)
else shrink to B′(i, j, ŷ, b)

else ŷ is not in the median interval

if S< > W/2 shrink to B′(i, j, a, ŷ)
else shrink to B′(i, j, ŷ, b)

Figure 2: Partitioning a block for strict↓1

For the sequence of blocks all initially with vertical extent (a, b) in this stage

Determine ŷ
Partition the first block {Figure 2}
While there are still blocks in this sequence

Let B(i, j, a, b) be the next block

Partition B, resulting in B′(i, j, a′, b′) {note that (a′, b′) is (a, ŷ), [ŷ, ŷ], or (ŷ, b)}
Repeat

Let B∗(h, i−1, a∗, b∗) be the predecssor of B {it has already been partitioned}
If (a∗, b∗) is above (a′, b′) then repeat {the blocks are not isotonic}

reset B to be the block (h, j, a, b) {i.e., merge the unpartitioned B and B∗},

using the s, p, and W values from B and B∗ to calculate those for the new B
partition B, resulting in a new B′(i, j, a′, b′)

until (a∗, b∗) is not above (a′, b′)

Go to the next sequence of blocks (their vertical extents will be above the current one)

Figure 3: PAV for a sequence of partitioned blocks with same initial vertical extent
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definition time reference

L0 lex0 Θ
(

n3
)

[25]

strict
↑0 ?

L1 strict↓1 Θ(n log(max{n,U/δ})) Section 6

strict
↑1 ? See note

L∞ lex∞ Θ(n log n) [23]

strict
↑∞ ?

Table 1: Fastest Known Isotonic Regression Algorithms for Weighted Data on a Linear Order

? : Apparently no algorithm is based on this definition

Note: The two definitions do not always produce the same regression

which is a data value the algorithm would identify this as being the level set’s value. Another option is to

guarantee that at the end each interval is within δ of its true value. In this case one chooses ŷ = (b− a)/2,

continuing this until b − a ≤ δ for every block. This would take Θ(n log(U/δ)) time. One could combine

these, first using partitioning based on data values followed by dividing the range for blocks that do not have

a data value as their correct regression value. In this case the time is Θ(n log(max{n,U/δ})). One typically

assumes that if the largest absolute value of any data value is U then U/δ grows at most polynomially with

n, in which case the time is Θ(n log n).

7 Conclusion

For real-valued weighted data on a finite dag Lp isotonic regression is typically defined purely in terms of

minimizing the regression error, but here the “best” Lp isotonic regressions used additional criteria. For

1 < p < ∞ the regression is unique and therefore imposing additional criteria is not useful. However, for

p ∈ [0, 1] ∪∞ there may be infinitely many regressions minimizing the regression error, and such criteria

helps select among them.

For example, for unweighted data f on a dag G most researchers use the function g(x) = (max{f(y) :
y � x}+min{f(y) : x � y})/2 as the optimal L∞ regression of choice. While its simplicity and speed of

computation recommend it, for data 2, 0, 1 on a linear order this results in 1, 1, 1.5. In fact, any function of

the form 1, 1, r minimizes the L∞ norm if r ∈ [1, 2]. However, likely many would prefer to use 1, 1, 1. This

is both the regression obtained as the limit, as p → ∞, of the Lp regression, strict↑∞(f), and the unique one

defined via a lexical ordering of the regression errors, lex∞(f) (see Sec. 2). The lex∞ definition is based

on explicitly minimizing large errors, not just minimizing the maximum error, and appears in [10, 23]. The

strict
↑∞ definition has been used repeatedly in various analytical situations, not just isotonic regression, and

is known as the Polya approach. For finite dags the definitions are equivalent but lex∞ is more useful in

terms of developing efficient algorithms.

There are numerous papers on minimizing L1 error in various settings involving convex cones, but

few are as focused as Jackson [8] in defining the best median value of a set as mid↓1. The set of isotonic

regressions forms a convex cone. Almost all papers finding L1 regressions on finite sets result in one where

all regression values are data values, but for a level set with non-unique median Jackson’s value will never

be a data value. Trying to define a best L1 regression as strict
↑1 is not as successful since Lp-optimal
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regressions are not unique when p < 1, and the objective function is concave, not convex (Sec. 4.2).

Far less attention has been paid to L0, but a natural lexical definition, lex0, restricts the regressions

minimizing the L0 metric down to a much smaller set. lex0 is based on maximizing the number of small

errors, not just maximizing the weight of points with 0 error. A definition of best was also given in terms of

limits, strict↑0, by extending the minimization of Lp objectives to negative values of p. It was shown that

strict
↑0 = lex0 (Sec. 5).

Many others have studied related problems such as the rate of convergence of strict↑∞ and strict↓1 [5,

15], other ways to select subsets of L0 isotonic regressions with desired properties [17, 25], generating all

L0 isotonic regressions [22] or their core [18], and finding a minimal L1 isotonic regression [21].

There are several open questions concerning algorithms for the problems studied here. For example, it

is known how to use maximal flow algorithms to find L0 isotonic regressions of weighted data on arbitrary

dags [6, 14, 17, 25]. However, these algorithms are only guaranteed to produce L0 isotonic regressions, not

lex0 regressions. It would be interesting to find a more efficient algorithm for general dags. For L1, for

general dags the algorithms for finding isotonic regressions do not always produce strict↓1, and it would be

useful to find an efficient algorithm that produces strict↓1 directly, rather than through approximation as in

Sec. 4.1.
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Appendix

In general there are widely varying L∞ isotonic regressions of a specific dag and data, and in [23] there are

characterizations of various properties of L∞ isotonic regression algorithms. Two properties of particular

interest are monotonicity and maintaining level set trimming. For an L∞ isotonic regression algorithm A,

for dag G = (V,E) and weighted function (f,w) on G let A(G, f,w) denote the isotonic regression that A
produces. A is an L∞ isotonic operator on G if A(G, f,w) is an L∞ isotonic regression of (f,w) for all

(f,w).
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A is monotonic on G iff for all weight functions w and functions f and g on V , if f is pointwise less than

or equal to g on V then A(G, f,w) is pointwise less than or equal to A(G, g,w). Algorithm A preserves

level set trimming on G iff for any weighted function (f,w) on G, for any level set L of A(G, f,w), the

regression values on L are mid
↑∞((f,w)|L)

In [23] it was shown that strict↑∞ is monotonic and preserves level set trimming for all dags. The

following shows that this characterizes strict
↑∞, in that any L∞ isotonic regression algorithm which is

monotonic and preserves level set trimming of weighted data functions on a dag G always produces strict↑∞

on G. It does not appear in [23] since the author only noticed it after that paper was in the publication

processes.

Theorem 1 For any DAG G = (V,E) and L∞ isotonic regression algorithm A on G, if A is monotonic

and preserves level set trimming then A always produces strict↑∞ (and hence lex∞) on G.

Proof: We use proof by contradiction. Suppose A is monotonic and preserves level set trimming, and

there is a weighted function (f,w) for which A(G, f,w) 6= strict
↑∞(G, f,w). Among the level sets of

strict
↑∞(G, f,w) which are not level sets of A, or where the regression values differ, let L be one of

maximal error. Let f1 be f trimmed on all level sets of strict
↑∞(G, f,w) with error greater than L’s.

Then strict
↑∞(G, f1, w) = strict

↑∞(G, f,w), A(G, f1, w) = A(G, f,w), and the L∞ regression error of

strict
↑∞(G, f1, w) is its L∞ error on L (there may be other level sets with the same error). Let c be the

value of strict↑∞(G, f1, w) on L. If A(G, f1, w) does not equal c on all of L then it has larger regression

error than strict
↑∞(G, f1, w), in which case it is not an isotonic regression. Otherwise, it has a level set

B ! L with regression value c. Let B′ = {u : u ∈ B, strict↑∞(G, f1, w)(u) < c} (if B′ is empty then a

similar proof can be applied to the set where strict
↑∞(>)c). Since strict

↑∞((f1, w)) < c on B′, and raising

the values to c would not violate the isotonic condition, it must be that mid∞(B′) < c.
Let f2 be the function formed by trimming f1 on all level sets of A(G, f1, w) except B. Then A(G, f2, w) =

A(G, f1, w). Define f3(u) to be f2(u) if f2(u) < c or u ∈ B′, and M otherwise, where M is the maximum

value of f2. Since A(G, f2, w) = c on B′ and pointwise f3 ≥ f2, by monotonicity A(G, f3, w) ≥ c on B′.

Let h be the function where h(u) = f3(u) on V \ B′, and h(u) = max{mid∞(B′),D} on B′, where D
is the largest value of f3 less than c. Then h is isotonic, and as a regression of f3 has no error on V \ B′

and smaller L∞ error than A(G, f3, w) on B′. Thus A(G, f3, w) is not optimal and hence A is not an L∞

regression operator on G.

�
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