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ABSTRACT

A spherical 2D adaptive mesh refinement (AMR) technique is applied to the so-called Lin–Rood ad-
vection algorithm, which is built upon a conservative and oscillation-free finite-volume discretization in flux
form. The AMR design is based on two modules: a block-structured data layout and a spherical AMR grid
library for parallel computer architectures. The latter defines and manages the adaptive blocks in spherical
geometry, provides user interfaces for interpolation routines, and supports the communication and load-
balancing aspects for parallel applications. The adaptive grid simulations are guided by user-defined ad-
aptation criteria. Both statically and dynamically adaptive setups that start from a regular block-structured
latitude–longitude grid are supported. All blocks are logically rectangular, self-similar, and independent
data units that are split into four in the event of refinement requests, thereby doubling the horizontal
resolution. Grid coarsenings reverse this refinement principle. Refinement and coarsening levels are con-
strained so that there is a uniform 2:1 mesh ratio at all fine–coarse-grid interfaces. The adaptive advection
model is tested using three standard advection tests with increasing complexity. These include the transport
of a cosine bell around the sphere, the advection of a slotted cylinder, and a smooth deformational flow that
describes the roll-up of two vortices. The latter two examples exhibit very sharp edges and gradients that
challenge not only the numerical scheme but also the AMR approach. The adaptive simulations show that
all features of interest are reliably detected and tracked with high-resolution grids. These are steered by
either a threshold- or gradient-based adaptation criterion that depends on the characteristics of the ad-
vected tracer field. The additional resolution clearly helps preserve the shape and amplitude of the trans-
ported tracer while saving computing resources in comparison to uniform-grid model runs.

1. Introduction

Adaptive mesh refinement (AMR) techniques pro-
vide an attractive framework for atmospheric flows
since they allow improved spatial resolutions in limited

regions without requiring a fine-grid resolution
throughout the entire model domain. The model re-
gions at high resolution are kept at a minimum and can
be individually tailored toward the atmospheric flow
conditions. A solution-adaptive grid is a virtual neces-
sity for resolving a problem with different length scales.
To avoid, for example, underresolving high-gradient re-
gions in the problem, or conversely, overresolving low-
gradient regions at the expense of more critical regions,
solution adaptation is a powerful tool saving several
orders of magnitude in computing resources for many
problems (Gombosi et al. 2004).

Climate and weather models, or generally speaking

* Current affiliation: Geophysical Fluid Dynamics Laboratory,
Princeton, New Jersey.

Corresponding author address: Dr. Christiane Jablonowski,
University of Michigan, Department of Atmospheric, Oceanic,
and Space Sciences, 2455 Hayward St., Ann Arbor, MI 48109.
E-mail: cjablono@umich.edu

DECEMBER 2006 J A B L O N O W S K I E T A L . 3691

© 2006 American Meteorological Society

MWR3223



computational fluid dynamics codes, are among the
many applications that are characterized by multiscale
phenomena and their resulting interactions. But al-
though today’s atmospheric general circulation models
(GCMs), and in particular weather prediction codes,
are already capable of uniformly resolving horizontal
scales of order 25 km (Temperton 2004), the atmo-
spheric motions of interest span many more scales than
those captured in a fixed-resolution model run. As an
example, the resolution of convective motions and
cloud dynamics may require resolutions of order 1 km
or even finer mesh sizes (Bryan et al. 2003). The widely
varying spatial and temporal scales, in addition to the
nonlinearity of the dynamical system, raise an interest-
ing and challenging modeling problem. Solving such a
problem more efficiently and accurately requires vari-
able resolution.

Today, AMR techniques are rarely applied to atmo-
spheric flow simulations. More commonly, two alterna-
tive nonuniform-grid approaches are utilized. These are
the widely used nested and stretched grid techniques,
both of which can be implemented in a statically or
dynamically adaptive way [see also Fox-Rabinovitz et
al. (1997) for an overview]. The fundamental differ-
ences between AMR and the nested or stretched grid
strategies lie in their flexibilities to adapt readily to
arbitrary flow situations. While AMR varies the num-
ber of grid points as demanded by the adaptation cri-
terion and evolving flow features, the total number of
grid points in nested or stretched meshes stays constant
during the simulation. They may therefore be consid-
ered global remapping approaches that, in case of dy-
namic remappings, move the fine-resolution regions at
the expense of other coarsened model areas. Recent
examples of dynamic grid deformations include Iselin
et al. (2002) and Prusa and Smolarkiewicz (2003). Iselin
et al. (2002) applied flow-dependent weighting func-
tions to steer the varying grid resolution whereas Prusa
and Smolarkiewicz (2003) used a priori information
about the evolving flow field for their remapping strat-
egy. AMR, on the other hand, adds and removes grid
points locally without affecting the resolution in distant
model domains and, most importantly, does not require
a priori knowledge of future refinement regions. Both
aspects are a strength of the AMR design. However,
despite the differences between the three nonuniform-
grid paradigms they all have one aspect in common.
The varying resolution can cause artificial reflections
and refractions of waves due to incompatible mecha-
nisms at fine–coarse-grid interfaces. As an example, a
traveling wave may undergo false reflections or aliasing
when propagating from the fine grid to the coarse do-

main. Therefore, special attention needs to be paid to
the fine–coarse-grid interface conditions. Here, mass-
conserving interpolation and flux-matching mecha-
nisms that foster the smooth transport of the advected
feature across varying grid resolutions are employed.

Introduced in this paper is a 2D adaptive grid tech-
nique on the sphere, which is built upon a block-
structured data layout and an AMR grid library for
parallel computer architectures (Oehmke and Stout
2001; Oehmke 2004). For conciseness, the discussion is
focused on an adaptive advection problem, although
the underlying principles are readily applicable to non-
linear model setups (Jablonowski 2004; Jablonowski et
al. 2004). These are further addressed in a future
paper that illustrates the AMR technique for 2D
shallow water and 3D primitive equation models. In
general, atmospheric dynamics on all scales is domi-
nated by the advection process. A precise numeri-
cal solution of the advection problem is therefore
fundamentally important to the overall accuracy of
atmospheric flow solvers and tracer transport schemes.
To date, various dynamically adaptive advection
codes have been presented in the atmospheric science
literature. These include the 2D passive advection
algorithms by Behrens (1996) and Behrens et al. (2000)
who formulated an adaptive grid triangulation method
in the x–y plane. Kessler (1999) implemented a
finite-element advection technique and evaluated
different refinement criteria for the adaptive transport
process. Another AMR advection study by Stevens
and Bretherton (1996) concentrated on numerical
aspects of adaptive multilevel solvers, and Tomlin et al.
(1997) investigated adaptive gridding options for
modeling chemical transports with multiscale sources.
In particular, the analysis of Tomlin et al. (1997)
was focused on the interactions among emission plumes
and the ambient air. Similar emission scenarios were
also discussed by Odman et al. (1997), Sarma et
al. (1999), and Srivastava et al. (2000) in their adap-
tive air quality studies. In addition, Bacon et al. (2000)
and Boybeyi et al. (2001) introduced the adaptive
regional weather and tracer transport model OMEGA
(Operational Multiscale Environmental Model with
Grid Adaptivity), which is based on unstructured,
triangulated meshes with rotated Cartesian coordi-
nates. The triangulations can statically or dynamically
be adapted to user-defined regions or features of inter-
est. This operational modeling system has mainly been
designed for real-time aerosol and gas hazard predic-
tions.

Most recently and most relevant to the study pre-
sented here, Hubbard and Nikiforakis (2003) described
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the design of an adaptive 3D passive advection code for
tracer transport problems on the sphere. They utilized
an extended version of the publicly available Berger–
Oliger AMR grid library (Berger and Oliger 1984)
which was originally designed for logically rectangular
block-data approaches in Cartesian coordinates. To
date the Berger–Oliger AMR approach has also been
used multiple times in the context of limited-area or
regional atmospheric modeling in Cartesian geometry.
Examples include Skamarock et al. (1989) and Skama-
rock and Klemp (1993) who investigated adaptive
meshes for regional weather prediction applications.
Furthermore, the movable nested grids for cyclone
track predictions by Fulton (1997, 2001) as well as the
adaptive ocean model by Blayo and Debreu (1999) are
based on the Berger–Oliger AMR design. The main
differences between Berger and Oliger (1984), Hub-
bard and Nikiforakis (2003), and the AMR approach
discussed here are the underlying space–time refine-
ment paradigms, the native coordinate systems and grid
hierarchies, the AMR user interfaces, and most impor-
tantly, the software engineering aspects like the parallel
computing support for modern distributed-memory
hardware architectures. This parallel computing sup-
port is not provided by the Berger–Oliger AMR library
but will become fundamentally important for more
complex fully nonlinear AMR applications, especially
in 3D. Therefore, the AMR library proposed here has
built-in parallel communication and dynamic load-
balancing mechanisms.

The paper is organized as follows. In section 2 the
basic AMR design principles are explained. This sec-
tion includes a discussion of the block-data grid con-
figuration in spherical geometry, the refinement and
coarsening strategies, as well as the interpolation, av-
eraging, and numerical flux-matching mechanisms at
fine–coarse-grid interfaces. In addition, the functional-
ity of the AMR grid library is described. Section 3 re-
views the so-called Lin–Rood finite-volume advection
algorithm (Lin and Rood 1996, referred to as LR96
hereafter), which serves as an example application for
the adaptive mesh approach. The adaptive transport
code is tested using three standard advection examples
that increase in complexity. In particular, these are the
transport of a cosine bell around the sphere at various
rotation angles, the advection of a slotted cylinder, and
a smooth deformational flow (cyclogenesis) problem.
The model setups, error measures, test definitions, and
the results of the adaptive advection simulations are
presented in section 4. Section 5 summarizes the find-
ings and outlines the future potential of AMR for non-
linear atmospheric flow problems.

2. AMR design on the sphere

To date, dynamically adaptive meshes in atmospheric
modeling have mostly been applied to limited-area
models in Cartesian geometry. Cartesian grids are well
suited for AMR techniques since the physical locations
of neighboring grid points are uniquely defined by their
coordinate positions. This is in contrast to global grids
in spherical geometry, especially if regular latitude–
longitude grids with converging meridians are selected
as discussed here. The main differences occur at the
pole points due to the singularity of the grid and its
coordinate system. The identification of neighbors
across the poles, together with the cross-polar sign re-
versal of the velocity components in spherical coordi-
nates (see also Hubbard and Nikiforakis 2003), adds
extra complexity to the AMR approach on the sphere.
As a consequence, the AMR design in spherical coor-
dinates needs special provisions for polar regions that
take a 180° shift in longitudinal direction for cross-polar
neighbors into account. This is further discussed in sec-
tion 2b. In addition, the periodicity of the spherical grid
in longitudinal direction needs to be supported by the
AMR library.

a. Block-structured adaptive grids

The AMR approach is based on a 2D block-
structured data configuration in spherical coordinates
that only requires minimal changes to the preexisting
Lin–Rood transport algorithm (LR96). The concept of
the block-data structure is displayed in Fig. 1, which
shows an orthographic projection of the earth with a
blocked latitude–longitude grid. Each self-similar block
is logically rectangular and comprises a constant num-
ber of Nx � Ny � grid cells in longitudinal and latitu-
dinal direction. Here, Nx � 9 and Ny � 6 grid points per
block are selected with Bx � By � 8 � 6 blocks on the
entire sphere. These parameters correspond to a 5° �
5° uniform mesh resolution. The computational grid
can then be viewed as a collection of individual blocks
that are independent data units. Here the block-data
principle is solely applied to the horizontal directions so
that the whole vertical column is contained in a block in
case of 3D model configurations. Other block-data ap-
proaches, as described in Stout et al. (1997), MacNeice
et al. (2000), and Hubbard and Nikiforakis (2003), em-
ploy a 3D strategy that includes a block distribution in
the vertical direction as well.

The block-data structure is well suited for adaptive
mesh applications. The basic AMR principle is illus-
trated in Fig. 2. Starting from an initial mesh at constant
resolution with, for example, 3 � 3 cells per block, a
parent block is divided into four children in the event of
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refinement requests. Each child becomes an indepen-
dent new block with the same number of grid cells in
each dimension, thereby doubling the horizontal reso-
lution in the region of interest. Coarsening, on the other
hand, reverses the refinement principle. Then four chil-
dren are coalesced into a single self-similar parent
block, which reduces the grid resolution in each direc-
tion by a factor of 2. Both the refinement and coarsen-
ing steps are mass-conservative. In the present AMR
setup, neighboring blocks can only differ by one refine-
ment level, guaranteeing a uniform 2:1 mesh resolution
at fine–coarse-grid interfaces. As a result, continuously
cascading refinement regions are created that provide a
desired buffer zone around the blocks at the finest nest-
ing level (see also section 4b).

Each block is surrounded by ghost cell regions that
share the information along adjacent block interfaces.
This makes each block independent of its neighbors

since the solution technique can now be individually
applied to each block. The ghost cell information en-
sures that the requirements for the numerical stencils
are satisfied. The advection algorithm then loops over
all available blocks on the sphere before a communica-
tion step with ghost cell exchanges becomes necessary.
The number of required ghost cells highly depends on
the numerical scheme. In the LR96 advection scheme
the piecewise parabolic method (PPM) (Colella and
Woodward 1984) is chosen. As a consequence, three
ghost cells in each horizontal direction are needed.
Note that all ghost regions are at the same resolution as
the inner domain of the block. There are two types of
interfaces in the adaptive grid configuration as illus-
trated in Fig. 3. If the adjacent blocks are at the same
refinement level (Fig. 3a) the neighboring information
can easily be exchanged since the data locations over-
lap. The ghost cell data are then assigned the appropri-
ate solution values of the neighboring block, which is
indicated by the gray-shaded areas. If, on the other
hand, the resolution changes between adjacent blocks
(Fig. 3b), averaging and interpolation routines are in-
voked at fine–coarse mesh boundaries. Here, an inter-
polation method is chosen that is based on the PPM
approach. This conservative and monotonic remapping

FIG. 2. Refinement and coarsening principles with two
refinement levels.

FIG. 3. Ghost cell updates for blocks at (a) the same and (b)
different refinement levels. The shading indicates the overlap re-
gions of the ghost cells. In this example 6 � 6 grid points per block
with three ghost cells are chosen.

FIG. 1. Distribution of grid points and blocks over the sphere in
an orthographic projection centered at 45°N, 0°. The resolution is
5° � 5° (nonadapted case).
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technique matches the order of accuracy of the under-
lying LR96 advection algorithm.

It is important to note that the adapted blocks do not
overlay each other in the AMR approach presented
here. Instead, each block is assigned a unique surface
patch on the sphere and, as a consequence, any coarse-
grid information is no longer accessible in refined re-
gions. This is in contrast to the AMR block-data design
by Berger and Oliger (1984). In particular, the Berger–
Oliger AMR method is built upon a hierarchy of nested
grids that are individually sized and, furthermore, all
actively used during the simulation. The solution is then
concurrently computed on all blocks at all refinement
levels, and in a second step, the coarse resolution data
are overwritten wherever the fine-resolution nests
overlap. This approach adds overhead to the AMR
simulation but, on the other hand, allows a Richardson-
type estimation of the local truncation error. Such an
adaptation criterion was for example used by Skama-
rock (1989). In the study presented here, a flow-based
refinement criterion is examined instead. Also note
that the Berger–Oliger library allows the refinement
factor between neighboring blocks to be any positive
integer number whereas a constant 2:1 ratio is chosen
for the AMR approach here. This guarantees rather
accurate inflow and outflow conditions at the fine–
coarse-grid interfaces, but on the other hand, limits the
flexibility of the adapted grid. For 3D applications, the
Berger–Oliger library also supports refinements in the
vertical direction. Another difference between the
AMR approaches lies in their time-stepping proce-
dures. The Berger–Oliger AMR design provides
smaller time steps at fine resolutions and as a result, the
solvers are subcycled in the nested domains. This re-
quires temporal interpolations of the coarse boundary
data during the subcycling steps, which are not applied
in the AMR approach here. Instead, the time step is
held constant at all refinement levels, which provides
instantaneous updates of the boundary information.
Only spatial interpolations are invoked in the ghost re-
gions at fine–coarse-grid interfaces. However, there are
also limitations to such an approach. The chosen time
step must be numerically stable on the finest grid in an
adapted model run. Therefore, overhead is added to
the coarse-resolution regions that do not require a short
time step for stability reasons. These pros and cons of
the two time-stepping techniques need to be further
examined for future AMR applications.

In general, the Berger–Oliger AMR design is based
on Cartesian meshes. Thus, special extensions for polar
regions were introduced by Hubbard and Nikiforakis
(2003) when customizing the approach for global grids
on the sphere. By contrast, the AMR grid library ap-

plied here is specifically designed for spherical coordi-
nate systems. Therefore, it has built-in pole point pro-
visions, provides user interfaces for application-specific
interpolation and averaging routines, and most impor-
tantly, supports the AMR approach on today’s parallel
computing architectures. An overview of the AMR li-
brary is given in the following section.

b. Overview of the AMR grid library

The adaptive blocks are managed by a spherical
adaptive grid library for distributed memory architec-
tures (Oehmke and Stout 2001; Oehmke 2004). The
library functions can be accessed via Fortran90 subrou-
tine calls. In brief, the characteristics and functions of
the library are listed as follows.

1) Sphere. The library provides functions for the cre-
ation of a sphere that is built upon a block-
structured latitude–longitude grid configuration. In
addition, reduced spherical grids are supported that
widen the zonal grid intervals in polar regions. In
both cases, the size of the blocks as well as the num-
ber of blocks on the sphere are user defined and
determine the initial, and thereby coarsest, resolu-
tion of the adaptive simulation. Overall, the library
maintains and initializes the geometric information
and allows the reinitialization of the geometry data
after adaptations have occurred. Here, each block
covers a unique surface patch on the sphere.

2) Bookkeeping. The library maintains the adjacency
information for all blocks at arbitrary refinement
levels. These comprise the cross-polar neighbors for
blocks at the pole points, which are shifted by 180°
in longitudinal direction. A schematic view of the
neighboring blocks is shown in Fig. 4. In this con-
stant resolution example, each block has eight
neighbors, which includes the neighboring blocks in
the cross directions. The communication in the cross
direction is provided to allow for a wide range of
user-selected algorithms. In the transport example
discussed in this paper, the cross directions are
needed for the cross derivatives of the interpolation
algorithm (see below) as well as the advective-form
inner operators of the Lin–Rood advection scheme
(Lin and Rood 1996). In a more general setting with
varying neighboring resolutions, the number of
neighbors lies between 6 and 12.

3) Iterators. Iterators enable the user to loop over all
assigned blocks on a given processor. They can be
viewed as pointers that pick out the next indepen-
dent block index for application-specific calcula-
tions. Note that consecutive blocks in the data
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structure may lie at arbitrary positions on the
sphere.

4) Communication. The library provides transfer func-
tions that manage the ghost cell updates on parallel
computer architectures. The communication is ei-
ther based on the message passing interface (MPI)
library or memory copies. The former is invoked for
neighboring blocks on different processors whereas
memory copies speed up the ghost cell exchange for
neighbors on the same processor. The transfer mod-
ule utilizes send-and-receive buffers and accesses
the block-adjacency information during the ghost
cell exchange. The details of the parallel communi-
cation are hidden from the user. Instead, user-
friendly communication functions are provided.

5) Load-balancing. The load-balancing module redis-
tributes the blocks among the processors during the
adaptive model run. Currently, the dynamic load-
balancing strategy is guided by the total number of
blocks. Here, the goal is to assign an approximately
equal number of blocks to each processor. For the
future, a space-filling-curve load-balancing ap-
proach is planned that takes data locality aspects
into account (Dennis 2003; Behrens and Zimmer-
mann 2000). Note that the parallel performance, es-
pecially of complex adaptive 3D GCM applications,
strongly depends on an efficient domain decompo-
sition and load-balancing strategy.

6) Adaptation module. The library manages the coars-
enings and refinements of the blocks based on ad-
aptation flags. These flags are set via library func-
tions during a model run and guided by user-defined
adaptation criteria. The adaptation module rede-
fines the block connectivity after adaptations oc-

curred and enforces the constraint that adjacent
blocks can differ by no more than one refinement
level.

7) User interface. User-defined subroutines need to be
provided that specify the algorithms for split-and-
join and ghost cell operations. These routines in-
clude the interpolation and averaging procedures
for the initialization of new blocks and the data ex-
change algorithms for neighboring blocks at both
identical and varying resolutions.

Adaptive blocks are well suited for distributed-
memory computing concepts. Since ghosted blocks are
self-sufficient they can be readily distributed among
many processors. During the simulation each processor
then iterates over its assigned blocks to solve the model
equations on a block-by-block basis. When ghost cell
exchanges are required all processors reach a synchro-
nization point and execute a parallel exchange of ghost
cell information. A schematic view of the program flow
is presented in Fig. 5, which shows the time loop of the
adaptive grid application discussed in this paper. In par-
ticular, an adaptation cycle of n � 1 is chosen that
checks the adaptation criterion at every time step. Re-
finements are triggered if the refinement flag for one or
more grid points in a block is set. Coarsenings, on the
other hand, are slightly harder to activate. They not
only require all four children to set the coarsening flag

FIG. 4. Information exchange amongst nearest neighbors.
Blocks at the poles (NP or SP) have neighbors across the poles
that are 180° shifted in longitudinal direction. The letters N, E, S,
and W symbolize the orientation of neighboring blocks.

FIG. 5. Program flow with adaptive mesh functionality. AMR
library calls are shaded in gray. The user-defined parameter n
denotes the number of time steps before the adaptation criterion
is checked.

3696 M O N T H L Y W E A T H E R R E V I E W VOLUME 134



but also must ensure a uniform 2:1 mesh ratio at all
fine–coarse-grid boundaries after an adaptation step.
This is checked by the adaptation module of the AMR
library. Note that the gray-shaded areas in Fig. 5 indi-
cate the AMR library calls that are added to the advec-
tion model. In general, such an AMR principle is uni-
versally applicable to any flow solver that can utilize
block-structured data setups on the sphere.

c. Fine–coarse-grid interfaces

In an adaptive model run, neighboring blocks at dif-
ferent resolutions require the use of interpolation and
averaging routines to update the ghost cell regions at
every time step. In addition, blocks need to be reini-
tialized after adaptation requests. An overview of these
AMR user routines for the ghost cell exchange is pre-
sented below. In addition, a flux-matching strategy at
fine–coarse-grid interfaces is discussed that ensures
mass conservation in an adapted application.

1) INTERPOLATION METHOD

A suitable interpolation technique for the ghost cell
update in an AMR application is required to be (a)
monotonic, (b) conservative, and (c) consistent with the
selected transport algorithm. These three design prin-
ciples lead to a natural 2D extension of the underlying
1D finite-volume PPM algorithm as applied in LR96.
Details of PPM’s 1D reconstruct–evolve–average prin-
ciple can be found in Carpenter et al. (1990) and Colella
and Woodward (1984) who also show schematic dia-
grams of the PPM strategy. In short, each cell holds
cell-averaged model quantities that are pieced together
in either latitudinal or longitudinal direction to con-
struct a parabolic reconstruction of the selected field.
This is also called a “subgrid distribution,” which can be
made monotonic. Here, the 1D subgrid distributions
serve as building blocks for a PPM-like reconstruction
algorithm in 2D.

To use the PPM approach for the interpolation of a
conservative scalar h in an adaptive application, two
steps become necessary. First, a monotonic subgrid dis-
tribution h(x, y) is computed that is based on the coarse-
grid data. Then the subgrid distribution is integrated
over the nested fine-grid regions, which guarantees the
conservative mapping of the coarse-grid information.

For the 2D extension of the PPM algorithm, a bipa-
rabolic function needs to be defined. As shown by Ran-
čić (1992), a full 2D extension of the PPM scheme re-
quires the calculation of nine coefficients, which leads
to a rather computationally expensive method. There-
fore, a quasi-biparabolic approach with six components
is derived that modifies the scheme proposed by Nair

and Machenhauer (2002) with five coefficients. Here, a
directionally bias-free cross-term is added to the Nair
and Machenhauer (2002) algorithm that helps smooth
the subgrid distribution near sharp edges. A similar
mixed derivative term was also introduced by van Leer
(1985) in an alternative definition of a 2D biparabolic
subgrid function. The piecewise parabolic subgrid dis-
tribution h(x, y) for a discrete cell-averaged scalar field
h at the cell center (i, j) is given by

h�x, y� � h � �axx � bx� 1
12
� x2� � �ayy

� by� 1
12
� y2� � 1

2
�cxy � cyx�xy. �1�

The indices (i, j) are dropped for conciseness. Here,
�ax, �ay indicate the slopes, and bx, by indicate the
curvature terms of the parabola in longitudinal and lati-
tudinal direction, respectively. These 1D coefficients
are defined in Carpenter et al. (1990) who used the
notation �a for �ax and �ay, a6 for bx and by, and �a	 for
h. All coefficients are monotonized as in LR96’s mono-
tonic Flux-Form Semi-Lagrangian (FFSL-3) scheme.
The cross-term consists of the two components cxy and
cyx that are averaged to avoid a directional bias.

In particular, cxy and cyx at a cell center (i, j) are
determined by

cxy �
1
2
��ai, j�1

x � �ai, j�1
x �, �2�

cyx �
1
2
��ai�1, j

y � �ai�1, j
y �, �3�

where 
ax and 
ay are the centered-difference slopes

�ai, j
x �

1
2
�hi�1, j � hi�1, j�, �4�

�ai, j
y �

1
2
�hi, j�1 � hi, j�1�, �5�

which are further monotonized via the van Leer (1977)
monotonized-central (MC) slope limiter. This limiter is
given by

�ai, j
x � min� |�ai, j

x | , 2 |hi�1, j � hi, j | ,

2 |hi, j � hi�1, j | � sgn��ai, j
x � if

�hi�1, j � hi, j��hi, j � hi�1, j� � 0

� 0 otherwise. �6�
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The MC slope limiter is also applied to 
ay with respect
to the y direction and both cross components cxy and
c yx. Furthermore, the cell-averaged value h is de-
fined as

h � �
�1�2

1�2 �
�1�2

1�2

h�x, y� dx dy, �7�

where x, y are the local normalized coordinates in each
grid cell with x, y ∈ [�1/2, 1/2]. For the spherical coor-
dinate system (�, �) they are given as in Nair and
Machenhauer (2002):

x �
� � � i

�� i
�

1
2

, �8�

y �
� � � j

�� j
�

1
2

, �9�

with 
�i � (�i�1 � �i), 
j � (j�1 � j) and j � sin �j

[for the derivation see Nair and Machenhauer (2002)].
It is important to point out that the  coordinates are
no longer equidistant and become increasingly com-
pressed in polar regions. Nevertheless, the parameters
of the parabola in Eq. (1) are computed in the equidis-
tant (�, �) grid point space. This approximation of the
h (x, y) � h [x(�), y()] distribution is motivated by
Veldman and Verstappen (1998) who discussed the ad-
vection–diffusion problem for nonuniform meshes.
They found that equidistant estimates of the derivatives
maintain the skew-symmetry of the problem. As an al-
ternative, a more complex nonequidistant formulation
for the parameters of the parabola (Colella and Wood-
ward 1984) can also be used.

In a second step, the coarse-grid data are remapped
via analytic integrals. If assuming that the fine-grid re-
gion lies within the lower and upper limits x ∈ [xl, xu],
y ∈ [yl, yu] inside a coarse-grid cell, the new h

r
value for

the refined mesh is determined by

h
r
�

1
�x�y �yl

yu �
xl

xu

h�x,y� dx dy

� h �
�ax

2
�xu � xl� � bx� 1

12
�

1
3
�xu

2 � xuxl � xl
2��

�
�ay

2
�yu � yl� � by� 1

12
�

1
3
�yu

2 � yuyl � yl
2��

�
cxy � cyx

8
�xu � xl��yu � yl�, �10�

with 
x� (xu � xl) and 
y� (yu � yl). The limits of the
integral are also schematically shown in Fig. 6 for the
lower-right refined cell hr

4. Here, the coarse-grid symbol
hc corresponds to h in Eq. (10). Note that in practice,

the position of yu in Fig. 6 is slightly off-centered due to
the nonequidistant  distribution. As an aside, in this
specific configuration with equidistant normalized x co-
ordinates (x2

u � xuxl � x2
l )� 1⁄4 holds in each of the four

refined grid boxes. Therefore, the bx expression (third
term on the right-hand side) in Eq. (10) is identical to
zero.

2) AVERAGING

Averaging routines need to be invoked for join-
operations in newly coarsened model domains and dur-
ing fine-to-coarse ghost cell transfers. For the cell-
centered variables as shown in Fig. 6, this averaging
step involves the four fine-resolution grid cells (dotted
contours) that are entirely contained in the correspond-
ing coarse-grid domain (dashed contour). Then the
coarse-grid cell mean hc can be determined by the
weighted average

hc �
1

Ac�
i�1

4

hi
rAi

r , �11�

where Ac, Ar stand for the area of the coarse and re-
fined spherical surface patches, and hr

i symbolizes the
fine-grid cell means in the ith grid box. This averaging
strategy is mass-conservative.

3) FLUX UPDATES

In the LR96 transport algorithm, neighboring grid
cells exchange flux information across cell edges to
prognosticate the time evolution of the advected quan-
tity (details in section 3). However, at a fine–coarse-
grid interface the numerical fluxes on the coarse grid
are not consistent with the accumulated fluxes on the

FIG. 6. Location of the scalar cell-mean variable h on the coarse
and refined grid (the overbar is omitted). The coarse cell is dashed
with gray-shaded symbol h c. The four refined cells are denoted
with h r (dotted contours). For cell h r

4, the upper (u) and lower (l)
limits of the integral that span the latitudinal and longitudinal
distances 
y and 
x in the normalized coordinate system are
shown.
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fine grid. The differences result, for example, from the
approximations of the subgrid distributions in the two
domains. Therefore, flux corrections at fine–coarse-grid
interfaces are imperative to ensure global mass conser-
vation. Because of the constant time step at all refine-
ment levels, the numerical fluxes are readily available
at any given time. Neither temporal interpolations nor
flux accumulations at the interfaces are required. By
contrast, both techniques are essential for AMR ap-
proaches with subcycled time steps in refined domains
(Berger and Colella 1989). Here, it is assumed that the
fine-resolution fluxes are more accurate than the cor-
responding flux in the coarse area. Therefore, the fine-
grid fluxes are averaged and consequently override the
coarse-grid flux at the interface. This flux-matching
strategy is schematically displayed in Fig. 7. The figure
shows the locations of the coarse- and fine-grid fluxes in
latitudinal (G) and longitudinal (F) direction at the
mesh boundaries. The arrows point from the two fine-
grid fluxes to the coarse neighboring flux that is re-
placed at every time step. In this 2D design, the flux-
matching condition becomes

f c �
1

Ac � f 1
rA1

r � f 2
rA2

r �, �12�

where f symbolizes the fluxes F or G. As before, the
superscripts c and r stand for the coarse and refined
grid and A represents the area of a spherical surface
patch. One of these surface weights is symbolically in-
dicated by the dashed grid box for the lower-left cell.
Note that each flux is considered a new cell center for
the computation of the area weights that vary spatially
in contrast to equivalent weights in a Cartesian setup.
This flux update algorithm ensures mass conservation
up to machine precision.

3. Review of the finite-volume advection algorithm

The AMR advection algorithm is built upon the
LR96 finite-volume scheme, which utilizes advanced
oscillation-free numerical approaches to solving the
transport equation in conservation form. Details of the
algorithm in spherical geometry are provided in Lin
and Rood (1997) who applied the finite-volume con-
cepts to the shallow water framework. Here, only a
brief overview of the relevant transport equation in the
shallow water system is given.

The model equation for the adaptive advection ex-
periments is the conservation law

�

�t
h � � · �hV� � 0 �13�

for the free surface height h of the shallow water sys-
tem. Here, V � (u, �)T is the two-dimensional vector

velocity, and � • represents the horizontal divergence
operator. The corresponding integral form of the con-
servation law can be derived when integrating Eq. (13)
over the control volume � and time t (see also
LeVeque 2002):

�
tn

tn�1 �
�
� �

�t
h� d� dt � �

�
�

tn

tn�1

� · �hV� dt d� � 0,

�14�

where n denotes the discrete time level, and 
t � tn�1

� tn stands for the duration of a time step. In the fol-
lowing derivation, only two-dimensional control vol-
umes with surface areas A� are considered. Eq. (14)
can be rewritten as

�
tn

tn�1 � d

dt
h� dt �

�t

A�
�

�

� · F d� � 0, �15�

where the overbar ( ) symbolizes the spatial average
over the area A� and F � (1/
t)� tn�1

tn
hV dt indicates the

temporal average of the flux vector. Applying the
Gauss divergence theorem yields

�
tn

tn�1 � d

dt
h� dt �

�t

A�
�

��

F · n̂ dl � 0 �16�

in which n̂ is an outward-pointing unit normal vector to
the boundary �� of the control volume and dl is an
infinitesimal line segment along the contour. Thus, the
discrete representation of the conservation law be-
comes

h
n�1

� h
n
�

�t

A�
�
i�1

4

Fi · n̂i li , �17�

where the sum comprises the four line segments with
lengths li that surround a rectangular 2D region; Fi sym-

FIG. 7. Flux updates at fine–coarse model interfaces; G and F
symbolize the numerical fluxes in latitudinal and longitudinal di-
rection. Fine-grid fluxes are averaged and override the coarse-grid
flux at the interface. The dashed box indicates the area weight of
G in box 1.
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bolizes the time-averaged flux vectors at the cell inter-
faces, and n̂i indicates the unit normal vectors to the ith
contour line. Assuming an orthogonal x–y control vol-
ume with surface area Ai,j � 
xi,j 
yi,j and correspond-
ing 1D numerical fluxes F and G in x and y direction,
Eq. (17) is equivalent to

h i, j
n�1

� h i, j
n
�

�t

Ai, j
��yi��1�2�, jFi��1�2�, j � �yi��1�2�, jFi��1�2�, j

� �xi, j��1�2�Gi, j��1�2� � �xi, j��1�2�Gi, j��1�2� �

�18�

in which the indices i, j define the gridpoint position of
the cell center, and the half index represents the bound-
aries of the grid box. In such a Cartesian setup, the
lengths of the line segments 
xi, j � [xi�(1/2),j � xi�(1/2),j]
and 
yi, j � [yi, j�(1/2) � yi, j�(1/2)] are independent of the
y and x direction, respectively. This is in contrast to
grids in spherical geometry where 
xi,j, 
yi,j and the
surface area Ai,j in Eq. (18) are substituted with the
corresponding representation in spherical space:

�xi, j � a cos	j��i , �19�

�yi, j � a�	j , �20�

Ai, j � a2�
�i��1�2�

�i��1�2� �
	j��1�2�

	j��1�2�

cos	 d	 d�

� a2�sin	j��1�2� � sin	j��1�2����i . �21�

Here, a � 6.371229 � 106 m represents the earth’s ra-
dius and 
�i � [�i�(1/2) � �i�(1/2)] and 
�i � [�j�(1/2) �
�j�(1/2)] denote the longitudinal (�) and latitudinal (�)
grid spacings measured in radians. In the Lin–Rood
advection algorithm though (Lin and Rood 1997), a
slightly different flux-differencing approach has been
chosen that corresponds to Eq. (18) if Ai,j is replaced
with the approximation Ai,j � a2 cos�j 
�i 
�j. As a
result, the discrete conservation law for the cell-
averaged free surface height in spherical coordinates
becomes

hi, j
n�1

� hi, j
n
� Fnet � Gnet �22�

with

Fnet � �
�t

a cos	j��i
�Fi��1�2�, j � Fi��1�2�, j�, �23�

Gnet � �
�t

a cos	j�	j
� cos	j��1�2�Gi, j��1�2�

� cos	j��1�2�Gi, j��1�2��. �24�

Here, Gnet and Fnet denote the net fluxes through the
interfaces in latitudinal and longitudinal direction that
solely determine the rate of change of the spatially av-
eraged scalar field h. This notation corresponds exactly
to the Eqs. (4)–(5) in Lin and Rood (1997) when de-
fining the time-averaged fluxes as X and Y and omitting
the subscript “net” in the preceding equations. Note
that Eq. (22) still contains a directional bias when op-
erating splitting methods are applied. Therefore, the
following directional-bias free 2D scheme is employed:

hi, j
n�1

� hi, j
n
� Fnet�hi, j

n
�

1
2

g�hi, j
n
��

� Gnet�hi, j
n
�

1
2

f�hi, j
n
��, �25�

where g and f symbolize advection operators in latitu-
dinal and longitudinal direction, respectively. These ad-
vective operators avoid a deformational error (details
in LR96). In particular, LR96 combined a first-order
Euler upwind scheme in advective form (inner opera-
tor) with higher-order finite-volume methods in flux
form (outer operator). Both a second-order van Leer–
type flux algorithm (van Leer 1974, 1977) and the third-
order PPM scheme were implemented for the flux cal-
culations that are both monotonic, upstream-biased,
and fully conservative. For the adaptive advection ex-
periments discussed here, the PPM approach has been
chosen for the fluxes F and G. Details of the flux com-
putations and monotonicity constraints are provided in
Carpenter et al. (1990), Colella and Woodward (1984),
and LR96 (with monotonicity constraint FFSL-3). Note
that the scheme is in fact not strictly monotonic in two
dimensions. As explained in LR96, very minor viola-
tions of the monotonicity constraint can be observed
near sharp edges due to the application of purely 1D
monotonicity operators. The time-stepping scheme is
explicit and stable for zonal and meridional Courant
numbers [Courant–Friedrichs–Lewy (CFL) criterion]
| CFL | � 1. This restriction arises since the semi-
Lagrangian extension of the LR96 algorithm is not uti-
lized in the AMR model experiments to keep the width
of the ghost cell regions small. Note that the variables
u, �, and h for the advection experiment are staggered
as in the Arakawa C grid with originally (prior to the
AMR extension) two cell centers at the poles. For
the adaptive mesh implementations though, this base
C-grid configuration needed to be shifted by half a
grid length in latitudinal direction. Such a shift places
velocity points at the poles and avoids fixed polar
mass centers that would inhibit the flexible AMR prin-
ciple.
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4. Results

The advection algorithm is one of the fundamental
building blocks of atmospheric flow simulations. It is
therefore imperative to evaluate its performance not
only in the adaptive model runs but also in the non-
adapted model setups. This allows comparisons of the
AMR approach to both analytic reference solutions
and uniform-grid model experiments. This section dis-
cusses results from three standard advection tests with
increasing complexity. These are the transport of a co-
sine bell, the advection of a slotted cylinder and a
smooth deformational flow that describes the roll-up of
two vortices.

Different adaptation criteria are assessed. In general,
each criterion is compared to a problem-dependent
threshold value. If one or more grid points within a
block exceed this user-determined limit the block is
flagged for refinement. If, on the other hand, the grid
points in an adapted block no longer meet the adapta-
tion criterion the coarsening flag in the corresponding
block is set. The refinement criterion is examined at
each time step, which is determined dynamically during
the simulation to match a chosen |CFL | � 0.95 limit.
All adaptations occur consecutively until either the
user-defined maximum refinement level or the initial
resolution is reached. The mesh cannot be coarsened
further than the initial layout. Here, the block configu-
ration Bx � 8, By � 6, Nx � 9, Ny � 6 (as introduced in
Fig. 1) is chosen for all test cases with a maximum
refinement level between 0 and 4. Such a setup corre-
sponds to the uniform 
�, 
� grid spacings 5°, 2.5°,
1.25°, 0.625°, and 0.3125° at the individual nesting lev-
els. They are further explained in Table 1, which gives
an overview of the corresponding resolutions in spheri-
cal coordinates and physical space. The effect of the
converging meridians in the latitude–longitude grid can
clearly be seen at all refinement levels. This signifi-
cantly reduces the physical grid spacings in polar re-
gions and, as a consequence, the maximum allowable
time step for stable computations.

All three passive advection tests are driven by pre-
scribed wind speeds. These are reinitialized analytically

whenever adaptations occur during the course of the
simulation. In addition, the initial geopotential height
field is reinitialized analytically if initial adaptations are
requested. This is the case for the cosine bell and slot-
ted cylinder test scenarios. During the model runs
though, the geopotential height field in newly adapted
blocks is initialized via the conservative averaging al-
gorithm and the PPM-based interpolation method as
discussed earlier.

a. Error statistics

The performance of the advection tests is quantita-
tively measured using the standard normalized l1, l2, l�
error norms and the height error hmax. They are defined
as in Williamson et al. (1992). For the adaptive grid
runs, the following approximation to the global integral
of the scalar field h is adopted:

I�h� �
1

4
 �
0

2
 �
�
�2


�2

h��, 	� cos	 d	 d� �26�

�
1

Asp
�

m�1

Nb

�
j�1

Ny

�
i�1

Nx

hi, j, mAi, j, m . �27�

In particular, the integral is replaced by three nested
sums that loop over the total number of blocks Nb and
all grid cells. As before, Ny and Nx denote the number
of latitudinal and longitudinal grid points per block and
m stands for the block index. The spherical area weights
Ai,j,m are defined as in Eq. (21) and take the particular
resolution 
�, 
� in the mth block into account. The
normalization factor Asp � 4�a2 indicates the surface
area of the whole sphere. In a parallel computing setup,
each processor then loops over its assigned blocks and
computes a partial sum, which is collectively communi-
cated over the network to determine the global value.

b. Adaptive advection experiments

1) TRANSPORT OF A COSINE BELL

The first test of the 2D adaptive finite-volume advec-
tion model is the passive transport of a cosine bell

TABLE 1. Refinement levels and corresponding global grid resolutions on the sphere for a 5° � 5° base grid.

Refinement
level

Resolution

�, 
�

Max No. of grid points
lat � lon (full grid)

Resolution 
x (km) at different positions �

Equator 60°N/S 75°N/S Near pole

0 5° 36 � 72 556.0 278.0 143.9 24.26
1 2.5° 72 � 144 278.0 139.0 72.0 6.06
2 1.25° 144 � 288 139.0 69.5 36.0 1.52
3 0.625° 288 � 576 69.5 34.8 18.0 0.38
4 0.3125° 576 � 1152 34.8 17.4 9.0 0.09
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around the sphere (Williamson et al. 1992; shallow wa-
ter test case 1). The advecting wind field is given by

u � u0�cos� cos	 � sin� cos� sin	�, �28�

� � �u0 sin� sin�, �29�

where u and � stand for the nondivergent zonal and
meridional velocities with maximum wind speed u0 �
2�a/(12 days) � 38.61 m s�1. Various flow orientation
angles � to the equator can be chosen. Here, � � 0°,
� � 45°, and � � 90° are tested that define the advec-
tion of the cosine bell along the equator, at a 45° angle
through the Tropics and midlatitudes as well as the
transport across the poles.

The initial distribution of the free surface height h is
defined as

h��, 	� � �h0�2�1 � cos�
r�R�� if r  R

0 if r � R
,

�30�

with radius R � a/3 and the peak amplitude h0 � 1000
m. Here, r denotes the great circle distance

r � a arccos�sin	c sin	 � cos	c cos	 cos�� � �c��

�31�

between a position (�, �) and the center of the cosine
bell, initially set to (�c, �c) � (3�/2, 0). For conve-
nience, pointwise values instead of cell averages are
used for the initialization and validation. In general, the
numerical scheme is expected to translate the cosine
bell without any change of shape. The bell then reaches
its initial position after one full revolution at the end of
model day 12.

The refinement criterion for the adaptive transport
of the cosine bell is a simple threshold criterion that
assesses the value of the geopotential height at each
grid point. In particular, if the geopotential height ex-
ceeds the user-determined limit h � 53 m the block is
flagged for refinement. This sensitive value corre-
sponds to approximately 5% of the initial peak with
max(h) � 1000 m. The threshold is chosen since the
adapted blocks now tightly bind the cosine bell, which
is also illustrated in Fig. 8. This keeps the total number
of adapted blocks in the given example small while cov-
ering most of the traveling feature with the adaptive
block structure. Any smaller threshold would trigger a
wider refinement area.

Figure 8 explains the basic adaptation principle and
gives insight into the load-balancing strategy on parallel
computing platforms. The left column shows four snap-
shots of the adaptive � � 90° simulation at day 0, 1, 3,
and 4 with three refinement levels. The adapted blocks

reliably track the geopotential height field of the cosine
bell as indicated by the overlaid block distribution. It
can clearly be seen that the cosine bell passes over the
North Pole without distortions or noise. The pole point
itself with its converging grid lines is spread out in the
chosen equidistant cylindrical map projection. This em-
phasizes the numerous grid boxes in polar regions that
need to be refined for transport processes at high lati-
tudes. They severely restrict the maximum allowable
time step that obeys the |CFL |� 0.95 condition in polar
regions. For example, in this simulation with three re-
finement levels and a maximum zonal wind speed of
u � 38.61 m s�1 at the poles, the adaptive time step
depends greatly on the position of the cosine bell. It
varies between 
t � 597.3 s in equatorial regions and

t � 9.3 s at very high latitudes. The right column in
Fig. 8 displays the corresponding distribution of the
adaptive blocks in a parallel execution mode. Here four
processors are used and are indicated by the gray shad-
ings. The current load-balancing strategy assumes an
equal workload per block and therefore, assigns an ap-
proximately equal number of blocks to each processor.
If needed, new blocks are readily redistributed after
adaptations occurred. Here, the redistribution of the
blocks does not take data locality issues into account.
For the future, a space-filling-curve load-balancing ap-
proach (Dennis 2003; Behrens and Zimmermann 2000)
is planned that improves the data locality and thereby is
expected to reduce the communication across the par-
allel network. Note that the parallel speedups that can
be achieved with the AMR library highly depend on
several factors. Among them are the size of the blocks,
the ratio between compute cells and ghost cells, the
workload per block, and the frequency of the ghost cell
updates due to the algorithmic design, the data locality
of the blocks, and the performance of the network.
These issues will be thoroughly discussed in a different
publication.

The cosine bell is advected once around the sphere
and reaches its initial position after 12 days. Then the
solution can be compared to the initial conditions that
serve as the true reference field. A closer examination
of the final states at refinement level 1 (2.5°) and dif-
ferent rotation parameters � is illustrated in Fig. 9,
which also presents the overlaid true solution with dot-
ted contours. Here it is shown that the cosine bell un-
dergoes a stretching in the flow direction which is typi-
cally observed for monotonic finite-volume advection
algorithms (LR96; Nair and Machenhauer 2002; Hub-
bard and Nikiforakis 2003). The effect is clearly visible
at this relatively coarse resolution and diminishes sig-
nificantly with decreasing grid sizes (Fig. 10). As
pointed out by Nair and Machenhauer (2002) the deg-
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radation of the shape is caused by the monotonicity
constraint that translates into slightly less accurate er-
ror norms in comparison to, for example, positive defi-
nite methods. Nevertheless, in practice the advantages
of the monotonicity-preserving advection algorithm
outweigh the slight decrease in accuracy [see also com-
parisons in van Leer (1977)].

Figure 10 confirms that the shape of the cosine bell
after one revolution is well preserved at high resolu-
tions. The figure depicts a sequence of model runs with

increasing number of refinement levels at rotation
angle � � 45°. This transport direction represents the
“worst case” scenario for the advection algorithm with
underlying operator splitting approach. The results at
the highest refinement levels 3 and 4 are almost indis-
tinguishable from each other. It is also interesting to
note that the cosine bells at the higher resolutions (Figs.
10c–e) no longer show the small phase error, which is
visible in the coarser runs (Figs. 10a–b). The solutions
then resemble the true solution very closely, which is

FIG. 8. Snapshots of the adaptive cosine bell advection test (� � 90°) with three refinement levels (0.625°) at
(from top to bottom) days 0, 1, 3, and 4. (left) The geopotential height field of the cosine bell with overlaid adapted
blocks. The contour intervals are 100 m, and the zero contour line is omitted. (right) The distribution of the adapted
blocks among four parallel processors as indicated by the gray shadings.
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demonstrated in Fig. 10f. Figure 10f displays the differ-
ence of the cosine bell at refinement level 4 with the
analytic reference state. The differences mainly de-
velop along the edges in the 45° flow direction. In par-
ticular, the leading edge in the upper-right corner
shows slightly enhanced geopotential height values,
whereas the tail in the lower left corner drops below the
reference state. These errors are small in comparison to
the peak amplitude of the cosine bell. In general, the
same type of error patterns can also be found in non-
adapted model runs.

In addition, it is interesting to assess the adaptive
model performance with a cross polar flow field at � �
90°. Dynamic adaptations in polar regions are demand-
ing since they involve many more adapted blocks close
to the poles as discussed before. Nevertheless, the
adapted advection scheme performs satisfactorily at all
three refinement levels displayed in Fig. 11. Here, three
snapshots of the cosine bell at day 2, 3, and 4 (from the
bottom to the top) in a North Polar stereographic pro-
jection are shown. There are no visible distortions of
the height field at any resolution as the cosine bell ap-
proaches, passes over, and leaves the North Pole. The
increased resolution clearly helps preserve the shape
and peak amplitude.

The overall performance of the adaptive advection
tests with different rotation angles and increasing re-
finement levels is summarized in Table 2. The table
shows not only the normalized l1, l2, l�, and hmax errors
after one revolution but also contains information on
the final peak amplitude, the minimum and maximum
number of blocks during the 12-day forecast period, the
number of total time steps as well as the CPU time
measured on one processor of a SUN Ultra 60 work-

station. In addition, the error statistics of selected uni-
form-grid model runs (1.25°) are listed for comparison.
It can clearly be observed that the cosine bell is suc-
cessfully tracked in all adapted model simulations. This
is not only true for the l1 and l2 error norms that assess
the overall shape, but also for the peak amplitudes
evaluated by the l� errors. The peak amplitudes im-
prove considerably with increasing refinement levels.
An approximately second order convergence rate can
be found for the rotation angles � � 0° and � � 90°. For
� � 45° though, the convergence rate drops slightly
below second order.

Table 2 furthermore shows that the CPU time in the
adapted runs is significantly reduced in comparison to
the uniform-resolution model simulations. For ex-
ample, when comparing the uniform 1.25° runs with the
corresponding adapted runs at refinement level 2 the
speedup factors are approximately 7, 33, and 10 for the
rotation angle � � 0°, � � 45°, and � � 90°, respec-
tively. The speedup is determined by two main factors.
First, the number of blocks and therefore the overall
workload is decreased in the adapted simulations. Sec-
ond, the total number of time steps necessary for the
12-day integration is drastically reduced. The latter is
due to the fact that the adaptive time step can be
greatly increased if the fine grid does not cover the
polar regions. In particular, this effect can be seen in
the � � 45° case where the time step in the uniform run
solely depends on the CFL restriction at the poles. This
consequently leads to a rather short time step and large
number of iterations. In the corresponding adapted run,
the grid around the poles is mostly kept at the coarse
resolution so that the time step is mainly determined by
the traveling cosine bell. The latter is also true for the

FIG. 9. Geopotential height of the cosine bell after one revolution (12 days) with one refinement level (2.5°) and different rotation
angles �: (a) � � 0°: advection along the equator, (b) � � 45°: advection at a 45° angle, and (c) � � 90°: advection over the poles. The
analytic solution is overlaid (dotted contours). Contour intervals are 100 m, and the zero contour is omitted.
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� � 0° test case, where the time step exclusively relies
on the true advective wind speeds and grid distances at
the equator. Therefore, an identical number of time
steps is required for both the uniform and adapted runs
at the 1.25° resolution and the computational savings
are exclusively due to the reduced workload.

The error norms for the adaptive simulations in
Table 2 compare well to similar monotonic and conser-
vative advection schemes presented in the literature.
For example, the errors of the � � 90° run with one
refinement level (2.5°) closely resemble the corre-
sponding error measures for the weighted average flux
(WAF) scheme in Hubbard and Nikiforakis (2003), the
FFSL-3 algorithm in LR96 and the cell-integrated semi-
Lagrangian method with monotonic option (CISL-M)
in Nair and Machenhauer (2002) at comparable reso-
lutions (and a slightly wider bell radius R � a7�/64).
This is important to note since the latter two algorithms
are semi-Lagrangian-type schemes that only require

very few time steps for one revolution of the cosine bell.
Both schemes finish after 256 integration steps,
whereas the adaptive finite-volume model needs 4085
time steps due to the CFL restriction. Therefore, it is
emphasized that the error norms match despite the
large difference in the number of time steps. The sheer
number of integration steps has significant implications
on the model results. This has already been docu-
mented in Table 2, which shows that the error norms of
the adapted runs at refinement level 2 for nonzero ro-
tation angles are in fact slightly lower than the errors of
the uniform-grid runs. The effect can be linked to the
reduced number of integration steps. An even clearer
example is given in Table 3, which assesses the perfor-
mance of the � � 0° advection test with different maxi-
mum CFL numbers. As the CFL numbers decrease, the
resulting number of time steps for one revolution in-
creases, which leads to considerably less accurate re-
sults in this constant-flow test case. Here, an increased

FIG. 10. (a)–(e) Geopotential height of the cosine bell and (f) height errors after one revolution (12 days) with rotation angle � �
45°. (a) No refinements (5° resolution), (b) one refinement level (2.5°), (c) two refinement levels (1.25°), (d) three refinement levels
(0.625°), (e) four refinement levels (0.3125°), and (f) difference of the solution on the finest mesh [case (e)] with the analytic solution.
Contour intervals are 100 m in (a)–(e) and 1 m in (f). The zero contour is omitted in (a)–(e).
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number of time steps adds numerical diffusion to the
transport problem, which flattens the peak of the cosine
bell. A similar time-stepping effect was also observed
by Stevens and Bretherton (1996).

The time traces of the normalized l2 and l� error
norms with � � 45° and � � 90° are illustrated in Fig.
12. The figure displays the evolution of the errors at

three different refinement levels that show the ex-
pected decline of the solution error at finer resolutions.
The norms are slightly sensitive to the rotation angle,
especially in comparison to the � � 0° values listed in
Table 2. This is in contrast to findings by Taylor et al.
(1997) who utilized a high-order spectral element
method on a cubed-sphere computational grid. The

TABLE 2. Error measures and statistics for the solid-body rotation of the cosine bell after one revolution (12 days) for different
refinement levels and rotation angles �. The CFL number is 0.95. The number of blocks reflects the minimum and maximum during
the 12-day run. The CPU time is the user time on a single processor of a SUN Ultra 60 workstation.

Base resolution

�, 
�

Refinement
level

Height error norms

hmax

Final h
(m)

No. of blocks
No. of

time steps
CPU

time (s)l1 l2 l� Min Max

� � 0°
1.25° 0 0.0073 0.0078 0.0107 �0.0106 984.2 768 312 230
5° 0 0.1157 0.1001 0.0949 �0.0869 838.0 48 84 4
5° 1 0.0341 0.0301 0.0317 �0.0305 949.1 54 60 156 12
5° 2 0.0097 0.0103 0.0150 �0.0106 984.2 72 84 312 32
5° 3 0.0016 0.0021 0.0044 �0.0036 995.0 174 204 612 159
5° 4 0.0003 0.0005 0.0014 �0.0012 998.4 348 384 1224 642

� � 45°
1.25° 0 0.0264 0.0259 0.0557 �0.0555 939.5 768 19 872 13 873
5° 0 0.5077 0.4194 0.4835 �0.4762 480.8 48 1440 64
5° 1 0.0927 0.0911 0.1525 �0.1514 830.7 54 60 1440 97
5° 2 0.0278 0.0251 0.0507 �0.0505 944.4 72 106 3333 418
5° 3 0.0088 0.0080 0.0159 �0.0159 982.8 171 210 3871 994
5° 4 0.0031 0.0030 0.0053 �0.0039 995.8 348 462 4120 2407

� � 90°
1.25° 0 0.0250 0.0256 0.0421 �0.0420 953.0 768 27 936 19 551
5° 0 0.4683 0.3860 0.3923 �0.3902 559.7 48 2016 97
5° 1 0.0924 0.0898 0.1253 �0.1250 856.6 60 72 4085 305
5° 2 0.0244 0.0240 0.0405 �0.0405 954.5 72 200 11 152 1885
5° 3 0.0048 0.0052 0.0125 �0.0125 986.2 192 480 33 288 15 465
5° 4 0.0010 0.0011 0.0038 �0.0038 995.9 348 1440 107 199 159 708

FIG. 11. (from the bottom to the top) Polar stereographic projections of the cosine bell transported over the North Pole (the outer
circle is located at 45°N). Snapshots are taken after 2, 3, and 4 days, respectively, with refinement levels (a) 1, (b) 2, and (c) 3. Contour
intervals of the geopotential height fields are 100 m, and the zero contour is omitted.
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trace of the l� norm is rather noisy at low resolutions
and, additionally, shows distinct spikes when the cosine
bell is transported over the poles. This was also ob-
served by Rasch (1994) and Nair and Machenhauer
(2002). These spikes are not a consequence of the dy-
namically adaptive grid implementation, but also occur
in uniform-grid model runs. As pointed out by Jakob-
Chien et al. (1995) the source of the noise is the discrete
sampling of the numerical and reference solution. Here
the reference solution is computed analytically during
the course of the integration. This leads to an occa-
sional small increase in the peak amplitude of the ref-
erence field depending on the distance of the center to
the closest grid point. This effect diminishes with in-
creasing resolution.

2) TRANSPORT OF A SLOTTED CYLINDER

In the second example the cosine bell is replaced with
a slotted cylinder. All other parameters and flow fields
stay the same as discussed above. Such an advection
test was originally proposed by Zalesak (1979) and has
recently been applied in spherical geometry by Nair et
al. (2003) and Lipscomb and Ringler (2005). The slot-
ted cylinder exhibits very sharp nonsmooth edges in
comparison to the rather smoothly varying cosine bell.
Therefore, it challenges not only the numerical scheme
but also the interpolation algorithm in an adaptive
model simulation. The radius of the cylinder is set to
R � a � �/4 with a slot of width a � �/8 and length
a � 3�/8. This rather wide slotted cylinder is chosen to
allow grid coarsenings within the slot. As in Lipscomb
and Ringler (2005), the initial height of the cylinder is
set to h � 1000 m, whereas h is set to zero for all r � R
and inside the slot. The long axis of the slot is perpen-
dicular to the equator and the cylinder is initially cen-
tered at (�c, �c) � (3�/2, 0). The flow orientation angle
� � 30°, which avoids any grid symmetries along the
trajectory path, is selected.

The model is run for 12 days, which completes a full
revolution of the advected cylinder. As before, the ini-
tial conditions then serve as the true reference solution.
Four refinement levels are used that start from a coarse

5°� 5° base grid. Here, a grid-scale-dependent gradient
criterion is applied that flags a block for refinement if
one or more grid points with grid indices (i, j) exceed
the user-defined threshold

�i, j � max� |hi�1, j � hi, j | , |hi, j�1 � hi, j | � � 10 m �32�

FIG. 12. Normalized (a) l2 and (b) l� height errors of the cosine
bell for different refinement levels and rotation angles � � 45°
and � � 90°.

TABLE 3. Error measures and statistics for the solid-body rotation of the cosine bell along the equator after one revolution (12 days)
with refinement level 2 (1.25°). Results are shown for different CFL numbers. The CPU time is the user time on a single processor of
a SUN Ultra 60 workstation.

Base resolution

�, 
�

Refinement
level

CFL
number

Height error norms
Final h

(m)
Base time

step (s)
No. of

time steps
CPU

time (s)l1 l2 l�

� � 0°
5° 2 0.95 0.0097 0.0103 0.0150 984.2 3420 312 32
5° 2 0.5 0.0170 0.0184 0.0279 967.0 1800 576 58
5° 2 0.1 0.0295 0.0275 0.0354 959.6 360 2880 275
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for 0 � i � Nx and 0 � j � Ny. This criterion evaluates
the local height difference between neighboring cells,
which incorporates some ghost cell information along a
block boundary. A similar criterion was also formu-
lated by Hubbard and Nikiforakis (2003) who evalu-
ated � with centered differences.

Figures 13a–e show snapshots of the adaptive simu-
lation at model day 0, 3, 6, 9, and 12. The positive height
field is shaded in gray with overlaid adapted blocks. It
can clearly be seen that the grid is refined along the
sharp edges of the advected cylinder and kept coarse
elsewhere. At this high resolution within the refined
area (0.3125°) there is some minor numerical diffusion
along the sharp edges. This leads to a slight broadening
of the cylinder and its refined area during the course of
the simulation. The broadening can also be seen in Fig.
13f, which shows a cross section of the slotted cylinder

along the equator for four different refinement levels at
day 12. Here, the slotted cylinder can be compared to
its reference shape. The adapted grids clearly help pre-
serve the sharpness of the edges with increased resolu-
tion. This trend seems to level off at refinement levels
3 and 4, which visually overlay each other.

The performance of the refined and corresponding
uniform-resolution model runs after one revolution
(day 12) is quantitatively measured in Table 4. The
table lists not only the normalized l2 and l� geopotential
height error norms but also gives information on the
minimum and maximum number of blocks during the
12-day simulation, the total number of time steps, and
the CPU time on a single AMD Opteron processor.
The model runs are grouped according to their finest
grid resolution. It can be seen that the l2 errors of the
adaptive and corresponding uniform-resolution runs

FIG. 13. Advection of a slotted cylinder with rotation angle � � 30° and four refinement levels (0.3125°). The
positive height field is shaded in gray. (a) Initial height field (h � 1000 m), (b) height field at day 3, (c) day 6 (half
a revolution), (d) day 9, and (e) day 12 (full revolution). (f) A cross section of h along the equator at day 12 for
different refinement levels. The curves for refinement levels 3 and 4 overlay each other. The adapted blocks are
guided by the resolution-dependent criterion � � 10 m.
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closely match and slowly decrease with increasing reso-
lution. This error reduction cannot be observed for the
l� norms that measure the maximum deviations from
the reference solution. In particular, the l� norms stay
almost constant. Here, the reduced convergence rate of
both error norms is most likely due to the highly non-
smooth characteristics of the initial dataset. Overall, the
AMR simulations show considerable speedup factors of
about 17 and 120 at the two highest resolutions.

3) SMOOTH DEFORMATIONAL FLOW

An even more challenging advection test is the de-
formational flow (cyclogenesis) problem. This test was
first suggested by Doswell (1984) and has been formu-
lated for spherical geometries by Nair et al. (1999,
2002). Here, the smooth variant of the test that de-
scribes the simultaneous roll-up of two vortices is cho-
sen.

The vortices are centered at the poles of a rotated
spherical coordinate system (��, ��). This rotation is
defined with respect to the regular (�, �) coordinates
such that the North Pole of the rotated system is lo-
cated at (�0, �0) in the (�, �) reference frame. The
vortices are characterized by the normalized tangential
velocity

Vt �
3�3

2
sech2���� tanh����, �33�

with the radial distance of the vortex �� � r0 cos�� and
the constant r0 � 3. The representation of the wind
speeds (u, �) in the unrotated coordinates is described
in Nair et al. (1999). Note that all variables are nondi-
mensional and that the radius of the earth a is set to 1.

The angular velocity  � is defined by

���	�� � �
0 if �� � 0,

Vt

��
if �� � 0

, �34�

which is used for the computation of the scalar field !.
In particular, ! is given by

����, 	�, t� � 1 � tanh���

d
sin��� � ��t��, �35�

which also serves as the analytic reference solution at
times t � 0. Here, the constant d � 5 determines the
characteristic width of the two vortices. In addition, the
parameters (�0, �0) � (�/2, �/18) are chosen which
point to the location (10°N, 90°E). This avoids any grid
symmetry effects during the simulation.

The adaptive advection model is run for three non-
dimensional time units. As before, up to four refine-
ment levels are tested that start from the coarse 5° � 5°
initial grid. The chosen refinement criterion is based on
the gradient of the scalar field !. In particular, if the
magnitude of the gradient exceeds the threshold
|�! | � 1 at one or more grid points in a given block the
block is flagged for refinement. Note that such a crite-
rion is independent of the block resolution and there-
fore contrasts the resolution-sensitive nearest neighbor
refinement strategy (�) discussed in the previous sec-
tion. An example of an adapted model run with four
refinement levels is displayed in Fig. 14. The figure
shows the scalar field ! with its corresponding block
distribution at times 0, 1, and t � 3. As it can be seen in
Figs. 14a and 14d no initial adaptations are invoked.
The first refinements are triggered shortly before t � 1
is reached. This is illustrated in Fig. 14e, which only
exhibits two of the four maximum refinement levels.
The missing two refinement stages are invoked imme-

TABLE 4. Error measures and statistics for the solid-body rotation of the slotted cylinder after one revolution (12 days) with rotation
angle � � 30°. Model runs with different refinement levels and uniform-grid simulations are compared and grouped together according
to their finest grid resolution. The CFL number is 0.95. The number of blocks reflects the minimum and maximum during the 12-day
run. The CPU time is the user time on a single AMD Opteron processor.

Base resolution

�, 
�

Refinement
level

Height error norms No. of blocks
No. of

time steps
CPU

time (s)l2 l� Min Max

5° 0 0.5042 0.7725 48 1152 2

2.5° 0 0.3082 0.7506 192 3744 23
5° 1 0.3076 0.7492 72 96 3061 18

1.25° 0 0.2290 0.7682 768 14 400 342
5° 2 0.2296 0.7667 174 246 6822 103

0.625° 0 0.1738 0.7532 3072 56 160 5545
5° 3 0.1770 0.7555 420 573 8667 320

0.3125° 0 0.1313 0.7899 12 288 223 488 99 924
5° 4 0.1375 0.7968 948 1299 9399 834
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diately after this time stamp. At t � 3 the two vortices
have matured and developed very sharp gradients that
are now covered by an extended refined area. Overall,
the evolving roll-up of the scalar is well captured by the
adaptive model simulation. No noise or distortions at
fine–coarse-grid boundaries are visible.

A quantitative comparison of the refined and corre-
sponding uniform model runs is presented in Table 5.
The table lists the normalized l2 and l� error norms of
the scalar field !, an overview of the CPU times on a
single AMD Opteron processor as well as the number
of blocks and time steps at t � 3. As before, the model
runs are grouped according to their finest grid resolu-
tion. It is interesting to note that the coarse 5° base-
resolution runs only show small improvements in the
error statistics when refined up to a refinement level of
4. On the contrary, the errors slightly increase at refine-
ment level 4. It suggests that the initial errors on the
coarse mesh (until t � 1) cannot be successfully recov-

ered by later refinement regions that are initialized via
interpolations from the coarser mesh. Therefore, even
an AMR run must reasonably represent the solution on
the coarsest mesh if accuracy is expected to be gained in
the refined areas. A good compromise between accu-
racy and computational costs are the 1.25° model simu-
lations with one or two refinement levels. They show
the smallest error measures even in comparison to the
uniform high-resolution model runs 0.625° and 0.3125°.
This is mainly attributable to the reduced number of
integration steps that also lead to the considerable
speedup factors of �8.6 and �108, respectively.

5. Conclusions

A spherical 2D AMR technique has been applied to
a revised version of the conservative and monotonic
Lin and Rood (1996) advection algorithm. The adap-
tive grid design is based on two building blocks: a block-
structured data layout and a spherical AMR grid library

FIG. 14. Smooth deformational vortex test case with four refinement levels (0.3125°). Shown on the left are the
scalar field ! at the nondimensional times (a) t � 0, (b) t � 1, and (c) t � 3. (d)–(f) The corresponding adapted
blocks that are steered by the nondimensional gradient criterion |�! | � 1.
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for parallel computer architectures. The library con-
tains special provisions for ghost cell exchanges in polar
regions and supports both static and dynamic grid ad-
aptations. Furthermore, it has built-in parallel commu-
nication and load-balancing support, which reduces the
development time for parallel AMR applications. The
latter is especially important for more complex, nonlin-
ear AMR models in 3D.

Three advection examples with increasing complex-
ity have been tested. These include the advection of a
cosine bell around the sphere at different rotation
angles, the transport of a slotted cylinder with sharp
edges, and a smooth deformational cyclogenesis test
case that describes the roll-up of two vortices. Up to
four refinement levels have been tested with a minimal
mesh spacing of 0.3125°. The adaptations were guided
by user-defined adaptation criteria. In particular,
simple height- and gradient-based refinement strategies
were chosen that triggered refinements whenever the
problem-specific threshold values were reached. All
three test examples showed that the chosen features of
interest were reliably detected and tracked by the re-
finement regions. The additional resolution clearly
helped preserve the shape and amplitude of the trans-
ported field while saving computing resources in com-
parison to uniform-grid model runs. Overall, the adap-
tive simulations demonstrate that AMR might be a vi-
able option for atmospheric transport schemes. For
practical applications, the adaptation criterion can then
be tailored toward the specific advected quantities and
flow conditions.

The AMR block design is readily applicable to non-
linear model configurations that can utilize a block-data
structure on the sphere. This research effort is there-
fore a step toward a statically and dynamically adaptive
GCM that can focus its resolution on user-determined
regions or features of interest. The refined domains
could, for example, include static adaptations in moun-
tainous terrain or dynamic adaptations for cyclones or
convective regions. Tests with an adaptive nonlinear
2D and 3D version of the finite-volume dynamical core
have already been successfully performed and will be
discussed in a follow-up paper.

Whether adaptive mesh approaches for climate and
weather research will prevail in the future will crucially
depend on two major aspects. First, it must be shown
that adaptive atmospheric modeling is not just feasible,
but also accurate with respect to the resulting flow pat-
terns and furthermore, capable of detecting the fea-
tures of interest reliably in 3D setups. Second, adaptive
model simulations must also be computationally less
expensive than comparable uniform high-resolution
runs. We argue that both goals are within reach for
future atmospheric model generations.
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