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Abstract

In the past few years there have been several em-
pirical discoveries of phase transitions in constraint
satisfaction problems (CSPs), and a growth of inter-
est in the area among the arti�cial intelligence com-
munity. This paper extends a simple analytical the-
ory of phase transitions in three-satis�ability (3-SAT)
problems in two directions. First, a more accurate,
problem-dependent calculation leads to a new poly-
nomial time probabilistic estimate of the satis�ability
of 3-SAT problems called PE-SAT (Probabilistic Esti-
mate SATis�ability algorithm). PE-SAT empirically
classi�es 3-SAT problems with about 70% accuracy
at the hardest region (the so-called crossover point or
50% satis�able region) of random 3-SAT space. Fur-
thermore, the estimate has a meaningful magnitude
such that extreme estimates are much more likely to
be correct. Second, the same estimate is used to im-
prove the running time of a backtracking search for a
solution to 3-SAT by pruning unlikely branches of the
search. The speed-up is achieved at the expense of
accuracy|the search remains sound but is no longer
complete. The trade-o� between speed-up and accu-
racy is shown to improve as the size of problems in-
creases.

Introduction

Everyone has witnessed phase transitions in the phys-
ical sense; for example when the temperature of wa-
ter rises from below 100�C to above its boiling point.1

H2O abruptly transforms from a liquid to a gaseous
phase as its temperature crosses this threshold. The
de�ning characteristic of a phase transition is this type
of sudden, global change as a particular global param-
eter passes a critical value. In this case the global pa-
rameter is temperature and the critical value is 100�C.
It is somewhat astonishing that analogous phase

transition behavior occurs in abstract man-made struc-
tures like graph problems or constraint satisfaction

1Although technically a watched pot never boils, we are
assuming the reader is familiar with this particular physical
transition.

problems (CSPs). In fact, the existence of this type
of behavior in random graphs has been known since
as early as 1960. However, the empirical discovery of
phase transitions in constraint satisfaction and other
NP-hard problems, most notably three-satis�ability, is
relatively new and has caused an explosion in research
on the topic within the arti�cial intelligence commu-
nity. The main practical reason for interest in this phe-
nomena lies in the fact that the average-case time com-
plexity for problems near the phase boundary tends
to be much worse than for problems away from the
boundary.

The logic satis�ability problem (SAT) is the canoni-
cal intractable NP-complete problem and involves clas-
sifying an arbitrary propositional logic sentence as sat-
is�able or unsatis�able. SAT has found countless appli-
cations in areas ranging from circuit design to theorem
proving. Three-satis�ability (3-SAT) is a subclass of
problems where logic sentences are restricted to con-
junctions of clauses, each a disjunction of exactly three
(di�erent) complemented or uncomplemented literals.
Every SAT problem can be cast as a (possibly larger)
3-SAT problem and 3-SAT is also NP-complete. The
probability that a random 3-SAT problem is satis�-
able has been shown to undergo a sharp phase tran-
sition as the ratio of clauses to variables crosses the
critical value of about 4.2 (Crawford & Auton 1993;
Mitchell, Selman, & Levesque 1992). For \large
enough" problems2, below this threshold the proba-
bility that a problem is satis�able is near one while
above the threshold the probability that a problem is
satis�able is near zero.

This paper augments a simple analytical theory of
phase transitions in random 3-SAT problems in two
ways. The simple theory estimates the probability that
a random 3-SAT problem is satis�able by assuming
that all clauses are independent. The �rst extension

2The sharpness of the phase transition increases as the
problem size (number of variables) increases.



is a more accurate calculation that takes into account
some of the dependencies between clauses in a particu-
lar 3-SAT problem. This probabilistic estimate is used
to classify problems as satis�able or unsatis�able. The
polynomial time procedure, called PE-SAT (Proba-
bilistic Estimate SATis�ability algorithm), empirically
achieves about 70% accuracy on problems in the hard-
est region (at the phase boundary) of random 3-SAT
space. The magnitude of the estimate is informative;
the higher the estimate the more likely the problem is
satis�able and the lower the estimate the more likely
the problem is unsatis�able. Estimates that are among
the 10% most extreme (5% at each extreme) empiri-
cally classify problems with about 90% accuracy. The
second extension uses the same estimate to improve the
speed of a backtracking search for a solution to 3-SAT
by pruning branches when the expected number of so-
lutions falls below some threshold. The speed increase
is achieved at the expense of accuracy|the search re-
mains sound but is no longer complete. The trade-o�
between speed-up and accuracy is shown to improve
as the size of the problems increase. This extension to
backtracking is called PEB-SAT, or Probabilistic Esti-
mate Backtracking SATis�ability algorithm.

A Simple Theory of Phase Transitions
in 3-SAT Problems

A phase transition in a constraint satisfaction problem
(CSP) is a sharp change in the probability that a prob-
lem has a solution; a phase transition can thus only be
de�ned with respect to a speci�c distribution of prob-
lems. Sharp transitions have been observed in many
CSPs as some global parameter de�ning the distribu-
tion of problems passes a critical value. The critical
point is often also called the crossover point or the 50%
satis�able point; it is the point where the probability
that a legal, satisfying solution exists is 1=2.

For three-satis�ability (3-SAT) a common distribu-
tion of problems is the �xed clause length random dis-
tribution; given a particular number of variables and
clauses any three (di�erent) variables are chosen with
equal probability for each clause and each literal is
complemented with 50% probability.3 It has been em-
pirically found that the critical point for random3-SAT
occurs when the ratio of clauses to variables equals
about 4.2. More speci�cally, the authors of (Craw-
ford & Auton 1993) report after extensive testing that
the critical point or crossover point for random 3-SAT

3Technically no two clauses should be exactly the same.
Since this happens only rarely, the randomly generated
problems used in this paper were not checked for this
condition.

problems with n variables and m clauses occurs when:

m = 4:24n+ 6:21 (1)

An important task is to explain this equation with an
analytical formulation. The �rst comprehensive expla-
nation of the behavior of phase transitions in 3-SAT
problems (and other CSPs) is found in (Williams &
Hogg 1994). For the purposes of this paper, however,
a simpler formulation similar to that found in (Cheese-
man, Kanefsky, & Taylor 1992) and (Kirkpatrick &
Selman 1994) will su�ce.
Let n denote the number of variables and m denote

the number of clauses in a random 3-SAT problem. Let
~{ = f0; 1gn denote an instantiation of all the variables;
that is, an n element vector of zeros and ones. De�ne
s to be the probability that a random 3-SAT problem
with n variables and m clauses is satis�ed by a ran-
dom instantiation~{. Since each clause is a disjunction
of three di�erent variables, the probability that any
one random clause is satis�ed by~{ is 7=8. To calculate
s, we make an assumption that each clause is indepen-
dent of the others|this assumption is made purely to
simplify the analysis, and is not accompanied by any
claim about its accuracy, or to what degree it is an
approximation.

s =

�
7

8

�m

This is the probability that the problem is satis�ed
by a random instantiation~{. Now we also make an as-
sumption that each instantiation is independent. Since
there are 2n total possible instantiations, the expected
number of solutions, N , is:

N = 2n
�
7

8

�m

The change in phase occurs when the expected number
of solutions crosses from less than one to greater than
or equal to one. Solving the equation N = 1, we get
the location of the phase boundary:

m = 5:19n (2)

Next we derive the probability that a random 3-SAT
problem is satis�able, using the same assumptions.
The probability that a random problem is not satis�ed
by some random instantiation ~{ is 1 � (7=8)m. Then
the probability that the problem is not satis�ed for any
instantiation (i.e. unsatis�able) is (1 � (7=8)m)2

n

. Fi-
nally, the probability, S, that a random 3-SAT problem
is satis�able is:

S = 1�

�
1�

�
7

8

�m�2n



We can solve S = 1=2 to �nd the 50% satis�able
point or the crossover point. We can also �nd the m-
intercept at the crossover point by solving S = 1=2
when n = 0. This leads to:

m = 5:19n+ 5:19 (3)

In the limit Equation 3 is the same as Equation 2.
Equation 3 qualitativelymatches the empirical relation
reported in Equation 1 but the quantitative di�erence
is signi�cant enough to indicate that our independence
assumptions are too strong. The next section will in-
troduce a more accurate, problem-dependent calcula-
tion that takes into account some of the dependencies
between clauses.

PE-SAT: A Polynomial Time
Probabilistic Estimate for 3-SAT

The above simple calculation of the probability that a
3-SAT problem is satis�able relied on the simplifying
assumption that all clauses are independent. Of course
this is not the case; in fact if all clauses were completely

independent (i.e. had no variables in common) then
every problem would be satis�able. By taking into ac-
count some of the dependencies between clauses, we
can calculate a more accurate estimate of the satis�a-
bility of 3-SAT problems.
Consider a 3-SAT problem with n variables and m

clauses. De�ne a distribution on the variables such
that each instantiation ~{ occurs with equal probabil-
ity (each variable is zero with probability 1=2 and one
with probability 1=2). Let Ci be the event that the
ith clause in the sentence is true. Then C1C2 � � �Cm
is the event that all m clauses are true, and s =
Pr(C1C2 � � �Cm) is the probability that the problem
is satis�ed (all clauses are true) by a random instanti-
ation ~{. By the de�nition of conditional probability,

s = Pr(C1C2 � � �Cm)

=
mY
i=1

Pr(CijCi+1Ci+2 � � �Cm) (4)

In order to compress the notation, de�ne Ri �
Ci+1Ci+2 � � �Cm to be the conjunction of the \rest"
of the clauses after the ith clause. Each clause Ci is a
disjunction of exactly three literals; denote these liter-
als as xi, yi, and zi. Without loss of generality, assume
that each of these literals is uncomplemented. Now we
can rewrite s as:

s =
mY
i=1

Pr(xi + yi + zijRi)

=
mY
i=1

�
Pr( �xi �yizijRi) + Pr( �xiyi �zijRi) +

Pr( �xiyizijRi) + Pr(xi �yi �zijRi) + Pr(xi �yizijRi) +

Pr(xiyi �zijRi) + Pr(xiyizijRi)

�

Next we apply Bayes' Rule,

s =
mY
i=1

1
8 Pr(Rij �xi �yizi) + � � �+ 1

8 Pr(Rijxiyizi)

Pr(Ri)

and expand the denominator by cases:

s =
mY
i=1

1
8 Pr(Rij �xi �yizi) + � � �+ 1

8 Pr(Rijxiyizi)
1
8 Pr(Rij �xi �yi �zi) + � � �+ 1

8 Pr(Rijxiyizi)
(5)

The numerator of Equation 5 consists of seven terms
and the denominator consists of the same seven terms
plus one more. Up until this point in our derivation
the equations have been exact; now, we make an inde-
pendence assumption. Every term in Equation 5 is of
the form Pr(Rijxiyizi) = Pr(Ci+1Ci+2 � � �Cmjxiyizi).
For each of these terms we make the following approx-
imation:

Pr(Ci+1Ci+2 � � �Cmjxiyizi) �

Pr(Ci+1jxiyizi) � � �Pr(Cmjxiyizi) (6)

Each probability term on the right hand side of Equa-
tion 6 can be easily evaluated. For example Pr(x +
a + bjxyz) = 1 since x is given to be true; similarly
Pr(�x+a+ bjxyz) = 3=4 since �x is given to be false and
thus (�x + a + b) is true if and only if either a or b is
true.
Given a particular 3-SAT problem, Equation 5 cou-

pled with the approximation de�ned in Equation 6 can
be evaluated in O(m2) time. In this way we can cal-
culate a better approximation of s than presented in
the previous section. This problem-dependent calcu-
lation takes into account �rst-order dependencies be-
tween clauses that were ignored in that section.
We can also �nd an even more accurate estimate to

s by taking into account second order dependencies be-
tween clauses. This is done by recursively expanding
each term in Equation 5 using Equation 4 and mak-
ing an independence assumption only after this double
expansion. This \second-order" estimate can be eval-
uated in O(m3) time.
In computer experiments the estimate of s from

Equation 5, coupled with the independence assumption
de�ned in Equation 6, was calculated for one thou-
sand random 3-SAT problems at the crossover point
for varying size problems. Figure 1 shows the empir-
ical correlation between the estimate for s (the �rst-
order estimate) and the satis�ability of problems with
80 variables at the crossover point. The problems were
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gated varying avors of backtracking searches to solve
3-SAT problems.
One standard backtracking algorithm for SAT is the

Davis-Putnam procedure with unit propagation. This
is a recursive procedure that implements a depth-�rst
search through possible variable instantiations until a
satisfying assignment is found, or all possibilities are
exhausted. Unit propagation is used when a clause
contains only one uninstantiated literal and all other
literals in the clause have been set to zero. In this case
the singleton variable is set to the appropriate value
in order to make the literal (and its clause) true. One
unit propagation may in turn lead to others. When all
possible unit propagations are exhausted, a new vari-
able is chosen to branch on. By choosing variables in
most-constraining-�rst order and values for variables in
least-constraining-�rst order, we can further improve
the running time of Davis-Putnam.
By exploiting the same probabilistic estimate used

in PE-SAT, we can achieve another improvement in
search time, this time at the expense of accuracy. De-
note a particular 3-SAT problem as F (v1; v2; : : : ; vn),
a propositional logic function of n variables, consist-
ing of a conjunction of clauses, each clause a disjunc-
tion of three literals. At any particular level of recur-
sion we have a partial instantiation of the variables
~{p = f0; 1; �gn where � denotes an uninstantiated vari-
able. Then F (~{p) is a propositional function, possibly
reduced from the top-level function. We can calculate
an estimate to s, the probability that F (~{p) is satis�ed
by a random instantiation of the remaining (uninstan-
tiated) variables, by using Equation 5 coupled with
the independence assumption de�ned in Equation 6.
Let n0 be the number of variables still uninstantiated.
Then the expected number of legal solutions to F (~{p)
is:

N = (2n
0

)s

At any particular level of the recursion, if subproblem
F (~{p) has less than one expected solution, it is likely to
be unsatis�able; we can prune the search and back up
to the previous choice point with only a small chance
of missing a legal solution. In this way we can reduce
the search space (improve the running time) at the
expense of accuracy. We can vary the trade-o� between
speed and accuracy by changing the threshold number
of expected solutions used to prune the search. For
example, if we prune all subproblems F (~{p) with less
than four expected solutions (instead of one), we will
achieve an even greater speed-up, but have a higher
chance of missing all the legal solutions. This extension
to backtracking is called PEB-SAT.
Figure 2 shows some empirical results comparing

PEB-SAT with the ordinary Davis-Putnam proce-
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Figure 2: Accuracy versus speed-up trade-o� points for
PEB-SAT. Speed-up is measured in terms of the num-
ber of recursive calls, or the number of nodes traversed
in the search.

dure. In both algorithms, unit propagation, most-
constraining variable and least-constraining value
heuristics are used. The graph plots the speed-
up/accuracy trade-o� points for randomly generated
problems of size 40, 80, 120, and 160 variables at the
crossover point. Each point in the graph for 40 vari-
able problems is an average of 1000 problems; each
point for 80 and 120 variable problems is an average of
100; each point for 160 variable problems is an average
of 20. Each trade-o� point for the same size problems
is calculated using the same set of random problems.
Note that that the trade-o� between speed and ac-
curacy improves as the problem size increases. The
speed-up factors presented in Figure 2 are in terms of
the number of recursive calls, or the number of nodes
traversed in the search tree.
PEB-SAT is a sound, but not complete solution

method for 3-SAT. If PEB-SAT returns \satis�able",
then it is guaranteed to be correct; however if PEB-
SAT returns \unsatis�able", it may be incorrect. This
drawback is the same as for a hill-climbing 3-SAT al-
gorithm such as GSAT. It would be instructive to com-
pare the speed-up/accuracy trade-o� curves for PEB-
SAT and GSAT.

Related Work

In (Huberman & Hogg 1987), the authors predicted
that phase transitions would become an important fea-
ture of study in many AI systems.4 Several researchers

4A web page at Xerox Parc explores issues relating to
phase transitions in CSPs: ftp://parcftp.xerox.com/
pub/dynamics/constraints.html.



have reported experimental results concerning the be-
havior of phase transitions in CSPs and other NP-
hard problems (Mitchell, Selman, & Levesque 1992;
Crawford & Auton 1993; Cheeseman, Kanefsky, &
Taylor 1991). Analytical results similar to the \simple"
theory presented above, for 3-SAT and graph coloring
problems, were derived in (Cheeseman, Kanefsky, &
Taylor 1992). Williams and Hogg introduced the �rst
comprehensive theoretical model of phase transitions
in CSPs (Williams & Hogg 1994). An accurate analyt-
ical model for random K-SAT is presented in (Yugami
1995). Some researchers have made \practical" use
of the properties of phase transitions in order to im-
prove search algorithms (Zhang & Pemberton 1994;
Hogg & Williams 1994).

An alternate formula for estimating 3-SAT has been
derived by Sandholm using empirical methods (Sand-
holm 1994). This estimate can be computed in linear
time, and achieves about 60% accuracy at the crossover
region.

Percolation theory involves the study of phase tran-
sitions in lattice models of physical systems (Stau�er
& Aharony 1994) and insight from this �eld may shed
light on phase transitions in CSPs (Kirkpatrick & Sel-
man 1994). The Bethe lattice or Caylee tree, a well
understood structure from percolation theory, may be
a good analog to the search tree of a CSP.

Conclusions

We have presented two extensions to a simple analysis
of the probability that a random 3-SAT problem is sat-
is�able. The �rst is a more accurate probability esti-
mate that takes into account some of the dependencies
between clauses in a particular 3-SAT problem. This
estimate can be calculated in polynomial time and can
be used to classify problems as satis�able or unsat-
is�able. The procedure, called PE-SAT, empirically
achieves about 70% accuracy at the crossover point,
typically the region containing the hardest problems
to solve. Furthermore, the problems that yield the
10% most extreme estimates are classi�ed with about
90% accuracy. The second extension uses the same es-
timate to heuristically prune a backtracking search for
a solution to 3-SAT|the search is pruned when the ex-
pected number of solutions falls below some threshold.
The algorithm, called PEB-SAT, trades o� accuracy
for speed; it remains sound but is no longer complete.

A general goal for future research would be to ex-
tend these results to encompass larger classes of CSPs
and other NP-hard problems. The existence of phase
transitions has only recently been uncovered in a wide
variety of ubiquitous computer science problems. The
question of how exactly to exploit the phenomena for

better algorithms seems ripe with potential for discov-
ery and exploration.
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