
Standard Computer Science Notation and Mathematics
c© Quentin F. Stout

lg
ln

log base 2
log basee

}

Remember thatloga x = loga b · logb x.

n! n factorial, i.e.,n · (n − 1) · . . . · 2 · 1.
(

n
m

)

n choosem, the number of distinct subsets ofm items in a set ofn distinct items.
It is equal ton!/[m!(n − m)!], or n(n − 1) · . . . · (n − m + 1)/m!.

⌊x⌋ the floor ofx, i.e., the largest integer no greater thanx.
⌈x⌉ the ceiling ofx, i.e., the smallest integer no smaller thanx.

Some Sums

n
∑

i=0

C

(

n

i

)

xiyn−i = C(x + y)n

n
∑

i=1

Cxi =

{

C(xn+1 − x)/(x − 1) x 6= 1
Cn x = 1

If n = ∞ then this is∞ for x ≥ 1, undefined forx ≤ −1,
andCx/(1−x) for |x| < 1.

n
∑

i=1

Cixi = C[nxn+2 − (n + 1)xn+1 + x]/(x − 1)2 x 6= 1
To derive this, differentiate the preceding formula and multiply by x.
If n = ∞ then this is∞ for x ≥ 1, undefined forx ≤ −1,
andCx/(1−x)2 for |x| < 1.

n
∑

i=1

Ci = Cn(n + 1)/2

n
∑

i=1

(aki
k + ak−1i

k−1 + . . . + a1i + a0) =
ak

k + 1
nk+1 + bkn

k + . . . + b1n ,

for any positive integerk, and real constantsak . . . a0.
The constantsbk . . . b1 depend only on their index,k, and thea’s.

Integral Test

One of the most powerful methods available for estimating a variety of sums is known as theintegral
test. You may have used such a test in your calculus classes, though there it is usually used to
estimate an infinite sum. Here it will be used to estimate a finite sum.

For a positive functionf defined on the non-negative reals,

• if f is nonincreasing, then
∫ n

0
f(x) dx ≥

∑n
1

f(i) ≥
∫ n+1

1
f(x) dx

• if f is nondecreasing, then
∫ n

0
f(x) dx ≤ ∑n

1
f(i) ≤

∫ n+1

1
f(x) dx

Therefore, wheneverf is either nonincreasing or nondecreasing,
∣

∣

∣

∣

∣

n
∑

1

f(i) −
∫ n

1

f(x) dx

∣

∣

∣

∣

∣

≤
∫

1

0

f(x) dx +

∫ n+1

n

f(x) dx

O, Ω, ω, o, and Θ Notation
(sometimes called generalized O-notation)

Throughout,f , g, andh are positive functions defined on the nonnegative reals. Thefollowing
notation is as standard as possible, but many authors use slightly different definitions. In particular,
while here it will be written that, sayf ∈ Θ(g), this more often appears (even in my own writings)
asf = Θ(g). Also, many scientists useO when they could have usedΘ. It appears that only
computer scientists useΘ.

f is of order g, written f ∈ Θ(g) or f(n) ∈ Θ(g(n)) (“f is big theta ofg”), if there are positive
constantsC, D, andN such thatCg(n) ≤ f(n) ≤ Dg(n) for all n ≥ N . I.e., eventuallyf is
trapped between two multiples ofg.

f is of order at most g, written f ∈ O(g) or f(n) ∈ O(g(n)) (“f is big oh ofg”), if there are
positive constantsD andN such thatf(n) ≤ Dg(n) for all n ≥ N . I.e., eventuallyf remains
below some multiple ofg.

f is of order at least g, written f ∈ Ω(g) or f(n) ∈ Ω(g(n)) (“f is big omega ofg”), if there are
positive constantsC andN such thatCg(n) ≤ f(n) for all n ≥ N . I.e., eventuallyf remains
above some multiple ofg.

f is of order less than g, written f ∈ o(g) or f(n) ∈ o(g(n)) (“f is little oh of g”), if for any
positive constantD, there is a positive integerN (depending onD), such thatf(n) ≤ Dg(n) for
all n ≥ N . I.e., for any multiple ofg, no matter how small,f ultimately remains below it.

f is of order greater than g, written f ∈ ω(g) or f(n) ∈ ω(g(n)) (“f is little omega ofg”), if for
any positive constantC, there is a positive integerN (depending onC), such thatCg(n) ≤ f(n)
for all n ≥ N . I.e., for any multiple ofg, no matter how large,f ultimately remains above it.

The above can be extended to functions of any number of variables. For example,
f(n1, . . . , nk) ∈ Θ(g(n1, . . . , nk)) if there are positive constantsC, D, andN such that
Cg(n1, . . . , nk) ≤ f(n, . . . , nk) ≤ Dg(n, . . . , nk) for all n1, . . . , nk such thatmink

i=1 ni ≥ N ,
i.e., when all of the variables are sufficiently large.

Some Useful Properties

1. f ∈ Θ(g) if and only if f ∈ O(g) andf ∈ Ω(g).

2. f ∈ O(g) if and only if g ∈ Ω(f).

3. f ∈ o(g) if and only if g ∈ ω(f).

4. If f ∈ o(g) thenf ∈ O(g) andf 6∈ Ω(g).

5. If f ∈ ω(g) thenf ∈ Ω(g) andf 6∈ O(g).

6. If f ∈ Θ(h), g ∈ Θ(h), and there is anN ≥ 0 such thatf(n) ≤ e(n) ≤ g(n) for all n ≥ N ,
thene ∈ Θ(h).

7. If f ∈























Θ
O
Ω
o
ω























(h) andg ∈























Θ
O
Ω
o
ω























(h) thena · f + b · g ∈























Θ
O
Ω
o
ω























(h) for all a, b > 0.

8. If f ∈























Θ
O
Ω
o
ω























(g) and g ∈























Θ
O
Ω
o
ω























(h) thenf ∈























Θ
O
Ω
o
ω























(h).

9. f ∈ o(g) if and only if limn→∞ f(n)/g(n) = 0.

10. f ∈ ω(g) if and only if limn→∞ f(n)/g(n) = ∞.

11. If limn→∞ f(n)/g(n) = a, 0 < a < ∞, thenf ∈ Θ(g). The notationf ∼ g is sometimes
used to indicate thatlimn→∞ f(n)/g(n) = 1, and hence iff ∼ g thenf ∈ Θ(g).

12. f ∈ O(g) if and only if lim supn→∞
f(n)/g(n) < ∞.

13. f ∈ Ω(g) if and only if lim infn→∞ f(n)/g(n) > 0.

14. If ak > 0 thenakn
k + ak−1n

k−1 + . . . + a0 ∈ Θ(nk).

15. Sinceloga x = loga b · logb x, loga n ∈ Θ(logb n) for all a, b > 1, and we typically don’t
indicate the base of the logarithm inside O notation.

16.
n

∑

i=1

ip ∈







Θ(np+1) p > −1
Θ(log n) p = −1
Θ(1) p < −1

. This is easy to prove via the integral test.

17.
n

∑

i=1

logp
a i = Θ(n logp n) for a > 1 andp ≥ 1. In particular, loga n! =

∑n
i=1

loga i ∈

Θ(n log n). This also follows from Stirling’s approximation:n! ∼
√

2πn
(n

e

)n

.

18. If a > 0 andb > 1 thenlogb n ∈ o(na).

19. If b > a > 0 thenna ∈ o(nb).

20. If c > 1 anda > 0 thenna ∈ o(cn).

21. If d > c > 0 thencn ∈ o(dn).

22. If c > 0 thencn ∈ o(n!).

While the functions occuring in class are nicely behaved, there are pairs of functions which are
not comparable usingO, Ω, Θ, o, or ω, i.e., there are functionsf andg such thatf 6∈ Ω(g) and
f 6∈ O(g). For example, letf = | sin n| + 1/n, and letg = | cos n| + 1/n.

Some very common, but not universally agreed upon, terminology for rates of function growth are:

constant Θ(1)

logarithmic Θ(log n)

polylogarithmic O(logk n) for somek > 0

sublinear o(n)

linear Θ(n)

nearly linear O(n logk n) for somek > 0

superlinear ω(n)

quadratic Θ(n2)

cubic Θ(n3)

polynomial or feasible O(nk) for somek > 0

exponential Ω(Cn) andO(Dn) for some1 < C ≤ D

superexponential ω(Cn) for any constantC

doubly exponential Ω
(

C
Cn

2

1

)

andO
(

D
Dn

2

1

)

for someC1, C2, D1, D2 > 1

Unless otherwise stated, these always refer to the time requirements of an algorithm, rather than its
space requirements.

Since one often encounters algorithms that are nearly linear, or nearly quadratic, sometimes the
notationΘ̃ is used, wheref = Θ̃(g) meansf ∈ Ω(g(n)/ logj(n)) andf ∈ O(g(n) logk(n)) for
somej, k ≥ 0. It is called “soft theta”.

