Standard Computer Science Notation and M athematics

(© Quentin F. Stout

lg log base 2 _
n log basee } Remember thatlog, x = log, b - log,, x.
n! n factorial, i.e.,n-(n—1)-...-2-1.

(™) nchoosen, the number of distinct subsets ofitems in a set of: distinct items.

Itis equal ton!/[m!(n —m)!], orn(n—1)-...- (n —m+1)/ml.

1=1

n

|x] the floor ofz, i.e., the largest integer no greater than
1 the ceiling ofz, i.e., the smallest integer no smaller than

Some Sums

Cz+y)"

Cn z=1

If n = oo then this isco for z > 1, undefined forr < —1,
andCz/(1—z) for |z| < 1.

{ Clz" —z)/(x—1) z#1

Clna"? — (n+ 12" +2)/(z — 1) z#1

To derive this, differentiate the preceding formula andtipiyl by x.
If n = oo then this isco for z > 1, undefined forr < —1,
andCx/(1—x)? for |z| < 1.

Cn(n+1)/2

aj

Z(akik +ap_1i" N tagi+ ap) = — gl g+ bn,

i=1

kE+1

for any positive integek, and real constants; . . . ag.
The constant$y, . .. b; depend only on their indeX;, and thea's.

Integral Test

One of the most powerful methods available for estimatingraty of sums is known as thetegral
test. You may have used such a test in your calculus classes, hhibge it is usually used to
estimate an infinite sum. Here it will be used to estimate &fisiim.

For a positive functiory defined on the non-negative reals,

e if fis nonincreasing, thef’ f(z)dz > >°7 f(i) > 1"+1f(x) dx
o if fis nondecreasing, thef{' f(z)dz < 7 f(i) < [f(z)dx
Therefore, whenevef is either nonincreasing or nondecreasing,

i::f(i)—/lnf(ac)dx S/Olf(m)dx—k/nnﬂf(m)dx

O, Q,w, 0,and © Notation
(sometimes called generalized O-notation)

Throughout, f, g, andh are positive functions defined on the nonnegative reals. fol@ving
notation is as standard as possible, but many authors gbdisldifferent definitions. In particular,
while here it will be written that, say € ©(g), this more often appears (even in my own writings)
asf = O(g). Also, many scientists us@ when they could have used. It appears that only
computer scientists uge.

f isof order g, written f € ©(g) or f(n) € ©(g(n)) (“ f is big theta ofg”), if there are positive
constants”, D, and N such thatCg(n) < f(n) < Dg(n) foralln > N. le., eventuallyf is
trapped between two multiples gf

f isof order at most g, written f € O(g) or f(n) € O(g(n)) (“f is big oh of¢"), if there are
positive constantd) and N such thatf(n) < Dg(n) for all n > N. l.e., eventuallyf remains
below some multiple o§.

f isof order at least g, written f € Q(g) or f(n) € Q(g(n)) (“f is big omega of"), if there are
positive constant§’ and N such thatCg(n) < f(n) for all n > N. l.e., eventuallyf remains
above some multiple qf.

f is of order less than g, written f € o(g) or f(n) € o(g(n)) (“f is little oh of ¢”), if for any
positive constanD, there is a positive intege¥ (depending orD), such thatf(n) < Dg(n) for
alln > N. lLe., for any multiple ofy, no matter how smallf ultimately remains below it.

f isof order greater than g, written f € w(g) or f(n) € w(g(n)) (“ f is little omega ofg”), if for
any positive constant’, there is a positive intege¥ (depending orC'), such thatCg(n) < f(n)
foralln > N. l.e., for any multiple ofy, no matter how largef ultimately remains above it.

The above can be extended to functions of any number of Jasiabor example,

f(ny,...,ng) € O(g(ny,...,ni)) if there are positive constan€s, D, andN such that
Cg(ni,...,nk) < f(n,...,ng) < Dg(n,...,ng) forall ny, ..., n, such thatmin®_, n; > N,
i.e., when all of the variables are sufficiently large.

o a0 > w b

11.

12.
13.
14.
15.

16.

17.

Some Useful Properties

f€0©(g) ifandonlyif f € O(g) andf € Q(g).
f € 0(g) ifandonly if g € Q(f).

f €o(g) ifand only if g € w(f).

If f € o(g) thenf € O(g) andf & Q(g).

If f ew(g)thenf e Q(g)andf & O(g).

If f € ©(h), g € ©(h), and there is av > 0 such thatf(n) < e(n) < g(n) foralln > N,
thene € ©(h).

© © ©
O @) @)
ffed Q@ p(h)andge s Q p (h)thena- f+b-ge ¢ Q » (h)forall a,b> 0.
o o o
w w w
© © S)
@) @))
ffed Q p(g)andge ¢ Q (k) thenf e ¢ Q 5 (h).
o o o
w w w

. f € o(g) ifand only if lim,,_. f(n)/g(n) = 0.
10.

f € w(g) ifand only if lim,, .o f(n)/g(n) = co.

If limy, o0 f(n)/g(n) =a,0 < a < oo, thenf € O(g). The notationf ~ g is sometimes
used to indicate thadtm,, ., f(n)/g(n) = 1, and hence iff ~ gthenf € O(g).

f € O(g) ifand only if lim sup,,_.. f(n)/g(n) < co.
f € Q(g) ifand only if liminf, .., f(n)/g(n) > 0.
If aj, > 0 thenagn® + ap_1n*~1 + ... 4+ ap € O(nF).

Sincelog, x = log, b - log, x, log, n € O(log,n) for all a,b > 1, and we typically don’t
indicate the base of the logarithm inside O notation.

n @(np+1) p>—1
i€ O(logn) p=-1. This is easy to prove via the integral test.
1 ©(1) p<-—1

1=

n
Zloggi = O(nlogPn) fora > 1 andp > 1. In particular,log,n! = > ' log,i €

=1
O(nlogn). This also follows from Stirling’s approximationa! ~ v27mn (ﬁ)n
e

18.
19.
20.
21.
22.

If « > 0andb > 1 thenlog, n € o(n?).
If o > a > 0thenn® € o(n®).

If ¢ > 1 anda > 0 thenn® € o(c™).
Ifd > ¢ > 0thenc” € o(d").

If ¢ > 0thenc™ € o(n!).

While the functions occuring in class are nicely behavedretare pairs of functions which are
not comparable usin®, 2, O, o, orw, i.e., there are functiong andg such thatf ¢ Q(g) and
f & O(g). Forexample, lef = |sinn|+ 1/n, and letg = |cosn| + 1/n.

Some very common, but not universally agreed upon, terrogyofor rates of function growth are:

constant ©(1)

logarithmic ©(logn)

polylogarithmic O(log” n) for somek > 0
sublinear o(n)

linear O(n)

nearly linear O(nlog” n) for somek > 0
superlinear w(n)

quadratic ©(n?)

cubic ©(n?)

polynomial or feasible O(n*) for somek > 0
exponential Q(C™) andO(D"™) for somel < C < D
superexponential w(C™) for any constant”

doubly exponential 2 (C’IC;) andO (ng> for someCy, Cs, D1, Dy > 1

Unless otherwise stated, these always refer to the timereagents of an algorithm, rather than its
space requirements.

Since one often encounters algorithms that are nearlyrlioeaearly quadratic, sometimes the
notation® is used, wher¢f = ©(g) meansf € Q(g(n)/log?(n)) and f € O(g(n)log®(n)) for
somej, k > 0. Itis called “soft theta”.

