
This is an addendum to

“Strict L∞ isotonic regression” (2012), J. Optimization Theory and Applications 152,

pp. 121–135, Quentin F. Stout.

Algorithm C below is a simplified algorithm for determining strict L∞ isotonic regression of an arbitrary

dag. It uses a simple array and a single sort instead of the dynamic priority queue used in Algorithm B. The

time constants should be quite small.

If the dag has a transitive closure of m′ pairs then the time is Θ(m′ logm′), the same as Algorithm B (this

does not count the time to determine the transitive closure, which is part of the input). In terms of the original

dag with n vertices this is at most Θ(n2 log n). A more detailed time analysis gives Θ(m′ + m⋆ logm⋆),
where m⋆ is the number of violating pairs of vertices, i.e., vertices u, v such that u ≺ v and f(u) > f(v).
The only component taking Θ(m⋆ logm⋆) time is the sort, with all other lines combined taking only Θ(m′).
Thus, for a fixed dag, the more isotonic the data is, the faster the algorithm.

1



input: weighted data (f,w), lists of successors and predecessors for each vertex
output: strict L∞ isotonic regression function S

violators: array of (mean error,u,v) for violating pairs u ≺ v, f(u) > f(v)
lowbd(v), upbd(v): lower and upper bounds on S(v)

numviolate=0
for every vertex v

lowbd(v) = −∞; upbd(v) = +∞; S(v) = undefined

for every successor s of v
if f(v) > f(s) then violators(numviolate)= (mean err(v,s), v, s); numviolate++

sort violators by mean err

for i=0 to numviolate-1
(mean err,pred,suc)=violators(i)

if (S(pred) defined) ∨ (S(suc) defined) then cycle

wmean = mean(pred,suc)
if wmean ≥ upbd(pred) then {f(pred) is ≥ upbd(pred), no later mean is < upbd(pred)}

S(pred) = upbd(pred)
if wmean ≤ lowbd(suc) then {f(suc) is ≤ lowbd(suc), no later mean is > lowbd(suc)}

S(suc) = lowbd(suc)

if (S(pred) undefined) ∧ (S(suc) undefined) then {low(suc) ≤ wmean ≤ high(pred)}
S(pred) = S(suc) = wmean

if S(pred) defined then
for every successor s of pred

lowbd(s) = max{lowbd(s),S(pred)}
if S(suc) defined then

for every predecessor p of suc

upbd(p) = min{upbd(p),S(suc)}
end for i

for every vertex v

if S(v) undefined then

if f(v) ≥ upbd(v) then S(v)=upbd(v)

else if f(v) ≤ lowbd(v) then S(v)=lowbd(v)

else S(v)=f(v)

Algorithm C: Computing S=Strict(f,w) using transitive closure

2


